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Abstract. Real-world datasets often have missing values, which hin-
ders the use of a large number of machine learning (ML) estimators. To
overcome this limitation in a data analysis pipeline, data points may
be deleted in a data preprocessing stage. However, an alternative better
solution is data imputation.
Several methods based on Artificial Neural Networks (ANN) have been
recently proposed as successful alternatives to classical discriminative
imputation methods. Amongst those ANN imputation methods are the
ones that rely on Generative Adversarial Networks (GAN).
This paper presents three data imputation methods based on GAN:
SGAIN, WSGAIN-CP and WSGAIN-GP. These methods were tested
on datasets with different settings of missing values probabilities, where
the values are missing completely at random (MCAR). The evaluation of
the newly developed methods shows that they are equivalent or outper-
form competitive state-of-the-art imputation methods in different ways,
either in terms of response time, the data imputation quality, or the
accuracy of post-imputation tasks (e.g., prediction or classification).

Keywords: Missing Data · Data Imputation · Generative Adversarial
Network.

1 Introduction

Real-world datasets often have missing values, a large number of those can be
found at the website of OpenML [23] or at the Machine Learning (ML) repository
maintained by the University of California at Irvine [6]. TBase [14], one of the
largest transplant databases in Europe, is another example of a large collection
of data with missing values. A few reasons for the missing values in TBase are:
a sensor malfunction, a nurse that forgot to register the weight of a patient, or
an attribute (of the database) that accepts Null entries. Yet, domain experts

? The second author is a participant in the BIH Charité Digital Clinician Scientist
Program funded by the Charité – Universitätsmedizin Berlin, the Berlin Institute of
Health and the German Research Foundation (DFG)
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often find incorrect values for a given attribute (aka variable or feature), due
to quantitative or qualitative data errors [2, 1]. Incorrect values may also be
marked as missing values, turning a complete dataset into an incomplete one or
an already incomplete dataset may end up with more missing values.

Datasets with missing values will hinder the use of a large number of ma-
chine learning (ML) estimators and/or will impair the ML model quality. As
a consequence, the conclusions and insights that could be extracted from the
data may be of no use [17, 9, 12, 22, 15]. Handling missing values is a common
task during the data preprocessing stage of a data analysis pipeline [2, 1], which
has challenged many researchers. One possibility is to apply listwise deletion
(i.e., remove the data points that have at least one missing value) as a way to
get a complete dataset from an incomplete one. However, listwise deletion is
not always an adequate solution, since it may lead to a high decrease in the
amount of data points and, ultimately, to an empty dataset, which would turn
impracticable or meaningless the planned data analysis [17, 9, 12, 22, 15].

A substantial effort has been dedicated to devise new algorithms, methods,
libraries and frameworks for robust data imputation, from univariate to mul-
tivariate techniques, from basic imputation (e.g., mean, median and mode) to
regression-based algorithms (e.g., linear, logistic, or stochastic regression), from
discriminative to generative imputation methods. Among the latter, the Gen-
erative Adversarial Networks (GAN) became popular for its extraordinary ca-
pability of capturing the data distribution. GAN is the base for our novel data
imputation methods, and also used in purify for synthetic data generation4.

The mechanisms of missingness are typically classified as missing at random
(MAR), missing completely at random (MCAR) and missing not at random
(MNAR). A precise definition of these terms can be found in [18]. This work only
addresses the MCAR mechanism, mainly due to: (i) modelling MAR or MNAR
data requires domain knowledge as well as a deep insight on every detail of the
data, hardly feasible with third-party datasets, while in MCAR the missingness
does not depend on the observed data, nor on the unobserved data; (ii) modelling
MCAR data requires less complex ML models, since no feature (attribute or
variable) dependency needs to be modeled; (iii) literature describing the main
imputation methods (discriminative or generative) usually assume that missing
data is MCAR; (iv) by assuming the same missingness setting, fair comparisons
of our work against competitive methods can be established.

Current references in generative imputation methods are GAIN [24], and a
Wasserstein GAIN (WGAIN) [7]. GAIN achieved excellent results due to the
exceptional ability of its GAN-based architecture to generate a model data dis-
tribution close to the real data distribution [8, 24]; however, it has some caveats,
namely the optimization process is delicate and unstable, as theoretically shown
in [3], and the training phase is a computationally expensive task [20, 11].

4 The first author used synthetic data to develop and test ML models for the kidney
disease pilot (see https://www.bigmedilytics.eu/pilot/kidney-disease/) of BigMedi-
lytics (an EU-funded project supported by the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No. 780495).
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The key contributions of this work are the three novel generative imputa-
tion methods, all improved versions of the GAIN implementation: a Slim GAIN
(SGAIN), a Wasserstein Slim GAIN with Clipping Penalty (WSGAIN-CP) and
a Wasserstein Slim GAIN with Gradient Penalty (WSGAIN-GP).

Other contributions include:

• concrete and scientific evidence (in Section 2) that the algorithm described
in Section 3.3, is a trustworthy implementation of a Wasserstein GAN and
has a better overall quality when compared to the one described in [7];

• an empirical experimental demonstration (in Section 4) that the novel meth-
ods outperform state-of-the-art imputation methods in different aspects,
namely in response time, on data imputation quality, or in the accuracy
of post-imputation tasks (e.g., prediction or classification).

2 Imputation Methods Based on GAN

Imputation methods can be classified as discriminative or generative meth-
ods. Classical imputation methods typically fall in the former class, while ad-
vanced methods based on ANN fall in the latter. Classical methods, such as
KNNImpute [21], MICE [5] and MissForest [19] are mature and have a wide
acceptance, being used in several domains or applications. Typically, the use of
these methods is grounded on assumptions about the data itself, namely on data
distributions, correlations, skewness, and dependencies. On the other hand, gen-
erative methods rely on a different approach, no matter if for data imputation
or not: to learn from data samples.

Recently, Goodfellow et al. devised a novel deep learning architecture, GAN,
based on two ANN that contest each other, a generator and a discriminator [8],
which became known as a minimax two-player game. Despite their impressive
capability to learn from data samples and to capture the data distribution, they
have undesired features, namely mode collapse and vanishing gradients.

To mitigate these GAN caveats, a Wasserstein GAN was proposed [4], which
impose bounds on the weights of the discriminator ANN (renamed as critic).
Few months later an improvement to the training of a Wasserstein GAN was
also proposed [10]. A little after, Soon Yoon et al. proposed GAIN [24], a simple
but yet very effective and accurate data imputation method based on a GAN.
However, since GAIN is based on a vanilla GAN, it still has the aforementioned
caveats (besides the ones mentioned in Section 1).

To reduce the impact of those limitations, we decided to develop a slim
Wasserstein GAIN and explore variants with two types of penalties: a weight
clipping penalty (WSGAIN-CP) and a gradient penalty (WSGAIN-GP). These
data imputation methods exhibit better execution times than the GAIN coun-
terparts.

Very recently, Friedjungová et al. published a work [7] that claims to have
implemented a data imputation method using a Wasserstein GAN [7]. Unfortu-
nately, there is no public repository with that implementation, which hinders a
thoroughly comparison against such work. Furthermore, in our opinion, the algo-
rithm described in [7] cannot be considered a WGAN [4] since, for instance, the
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critic ANN is not trained more times than the generator ANN. Additionally, the
results presented in [7] do not promote a fair comparison with those published
in [24] and several inconsistencies and discrepancies are noticed. Therefore, we
consider that our WSGAIN-CP data imputation method is a trustworthy imple-
mentation of a Wasserstein GAN and has a better overall quality when compared
to the one described in [7].

3 Novel Generative Imputation Methods

This section introduces our novel generative imputation methods: SGAIN,
derived from the implementation of GAIN [24] and grounded on the seminal work
of Goodfellow et al. [8]; WSGAIN-CP and WSGAIN-GP, Wasserstein variations
of the baseline data imputation method, SGAIN. Before introducing these three
generative imputation methods, we start paving the way with some notation and
giving a brief problem formulation to ease the understanding of each algorithm.

3.1 Notation and Problem Formulation

In terms of linear algebra operations, let us consider �, ⊕, and 	 as the
element-wise multiplication, addition, and subtraction operations, respectively.

Let us consider:

• X an Rd data space: X = X1 × · · · × Xd;
• d independent continuous and/or discrete random variables X = (X1, . . . , Xd)

that take values in X and whose distribution is denoted by P(X);
• M = (M1, . . . ,Md) as being a mask of the values in X, where a missing value

in {Xi}di=1 is represented by a zero and any non-missing value is represented
by a one; thus, {Mi}di=1 assume values in {0, 1}.

The goal of the imputation process is to estimate values for all missing val-
ues in each {Xi}di=1. However, it could happen that the estimation is done for
every element, no matter if it corresponds to a missing value or not. Generative
imputation methods (e.g., [24]) do exactly this, since they attempt to model the
distribution of the (existing) data (i.e., P(X)).

Let us denote X̄ as the output vector of an abstract imputation function that
produces estimations for all elements in each {Xi}di=1. Then, the estimation final
vector, which we denote as X̂, can be assembled as follows:

X̂ = M�X⊕ (1	M)� X̄ (1)

3.2 Slim GAIN

This section introduces the Slim GAIN imputation method (SGAIN). The
architecture of SGAIN (in Figure 1) is derived from the counterpart of GAIN [24].

In contrast to the architecture of GAIN, in SGAIN there is no Hint Generator
and, consequently, no Hint Matrix is generated. The architecture of SGAIN is
even slimmer, since both the generator and the discriminator neural networks
have only two layers, whereas in GAIN each of them has three layers.
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Loss
(Cross	Entropy)

Back	Propagate

Fig. 1: The architecture of SGAIN.

SGAIN uses the hyperbolic tangent activation function (aka tanh) in the
output layers of the generator and the discriminator. The rationale to use the
tanh and not the sigmoid activation function is twofold: (i) the convergence
of the optimizer used in a neural network is usually faster if its inputs are lin-
early transformed to have zero means and unit variances, and decorrelated, as
discussed in [13]; and (ii) the derivatives of the tanh activation function are
larger than the derivatives of the sigmoid, which means that the optimizer can
converge faster when tanh is used.

The architecture of SGAIN also invokes twice the discriminator, one for the
real data and the other for the fake data. This brings the architecture of SGAIN
closer to the one used by Goodfellow et al. in [8].

Generator The generator (G) inputs are Z and M, and the output is X̄. Z
is a d-dimensional variable, Z = (Z1, . . . , Zd), in which each {Zi}di=1 has the
non-missing values of {Xi}di=1 and the missing values in {Xi}di=1 are replaced
by random values (aka noise). We denote N = (N1, . . . , Nd) as the output of a
function that draws out random values from a continuous uniform distribution
(a common configuration is to use the interval [−0.01,+0.01]).

Formally, the Z vector is assembled as follows:

Z = M�X⊕ (1	M)�N (2)

X̄ is formally defined as:

X̄ = G(Z,M) (3)
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Discriminator The discriminator (D) is the other player of the minimax game
described in [8]. In SGAIN, the discriminator input is either the real data (i.e.,
X) or the fake data (i.e., X̄); the fake data is produced by G (Equation 3).

Using back-propagation, the different outputs of D are used to compute the
losses of the generator and of the discriminator.

Algorithm 1: Pseudo-code of SGAIN

Input: X // dataset w/ missing values

1 Parameter: mb // mini-batch size

2 Parameter: α // hyper-parameter of Generator loss

3 Parameter: n iter // number of iterations

4 Result: X̂ // imputed dataset

5 M← mask(X) // each miss. value is 0, otherwise 1

6 for iter ← 1 to n iter do
7 Draw mb samples from X: {x̃(j)}mbj=1

8 Draw mb samples from M: {m̃(j)}mbj=1

9 Draw mb i.i.d. samples of N: {ñ(j)}mbj=1 // random noise

10 for j ← 1 to mb do

11 z̃(j)← m̃(j)� x̃(j)⊕
(

1	 m̃(j)
)
� n(j) // Equation 2

12 x̄(j)← G
(
z̃(j), m̃(j)

)
// Equation 3

13 end
// (1) Discriminator Optimization

14 Update D using Adam or RMSprop or SGD

15 ∇θD − 1
mb

mb∑
j=1

LD
(
D
(
x̃(j)

)
, D
(
x̄(j)

)
, m̃(j)

)
// (2) Generator Optimization

16 Update G using Adam or RMSprop or SGD

17 ∇θG − 1
mb

mb∑
j=1

LG
(
D
(
x̄(j), m̃(j)

))
+ α

mb

mb∑
j=1

LMSE

(
x̃(j), x̄(j), m̃(j)

)
18 end
19 Z←M�X⊕ (1	M)�N // Equation 2

20 X̄← G(Z,M) // Equation 3

21 X̂←M�X⊕ (1	M)� X̄ // Equation 1

SGAIN Algorithm A common step during the training of a GAN is to draw
samples from the (training) data, which form a mini-batch of data used in an
iteration. The SGAIN algorithm, as shown in Algorithm 1, also has this step.
To fully understand the algorithm let us denote x̃, m̃, and ñ as samples draw
from X, M, and N, respectively, and for the same data points.

In a nutshell, the SGAIN algorithm follow these steps:

• draws the x̃, m̃, and ñ samples, assembles z̃ with them (Equation 2) and
computes x̄, which is the output of the generator G (Equation 3);

• optimizes the discriminator (in line 14) with the loss function (line 15) given
by Expression 4;

• optimizes the generator (in line 16) with the loss function (line 17) given by
Expression 5;

• repeats these steps for the given number of iterations (n iter);
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• after training SGAIN, estimates the whole set of missing values (in lines 19, 20
and 21).

∇θD 1
mb

mb∑
j=1

[
m̃(j)�D

(
x̃(j)

)]
− 1

mb

mb∑
j=1

[(
1	 m̃(j)

)
�D

(
x̄(j)

)]
(4)

∇θG − 1
mb

mb∑
j=1

[(
1	 m̃(j)

)
�D

(
x̄(j)

)]
+ α

mb

mb∑
j=1

[
m̃(j)�

(
x̃(j)	 x̄(j)

)2]
(5)

For the sake of brevity, the parameter that allows to select a specific optimizer
(the options are: Adam, RMSProp, and SGD) as well as the hyper-parameters
of that optimizer, are elided in Algorithm 1.

3.3 Wasserstein Slim GAIN with Clipping Penalty

This Section introduces the Wasserstein Slim GAIN with Clipping Penalty im-
putation method (WSGAIN-CP). This method was inspired in the work de-
scribed in [8, 4, 24] and it aims to reduce the main caveats that affect a vanilla
GAN [8, 24], such as mode-collapse and vanishing gradients [4]. The architecture
of WSGAIN-CP remains almost identical to that of SGAIN (Figure 1).

Generator The generator of WSGAIN-CP is identical to the counterpart of
SGAIN (Section 3.2); they even share the same loss function (see Expression 6
and Expression 5).

∇θG − 1
mb

mb∑
j=1

[(
1	 m̃(j)

)
� C

(
x̄(j)

)]
+ α

mb

mb∑
j=1

[
m̃(j)�

(
x̃(j)	 x̄(j)

)2]
(6)

Critic In a Wasserstein GAN, as it is WSGAIN-CP, the discriminator is named
critic (C) and is trained more times than the generator. A common configuration
is to train the critic 5 times more per each train of the generator. Moreover, for
each train of the critic its weights are kept within a predefined interval (usually,
that interval is [−0.01,+0.01]), a technique known as (weight) clipping penalty. It
deserves to be noticed that, this penalty is not a component of the loss function
of the critic, as shown in Expression 7 (which is identical to Expression 4) and
in Lines 18 and 19 of Algorithm 2.

∇θC 1
mb

mb∑
j=1

[
m̃(j)� C

(
x̃(j)

)]
− 1

mb

mb∑
j=1

[(
1	 m̃(j)

)
� C

(
x̄(j)

)]
(7)

WSGAIN-CP Algorithm For the sake of brevity, we elide to fully describe
the WSGAIN-CP algorithm (Algorithm 2). However, one should notice that the
loss function of the critic (in line 18) is given by Expression 7, whereas the
loss function of the generator (in line 22) is given by Expression 6. In line 19,
the weights of the critic network are kept within an interval whose bounds are
determined by the clip parameter. Again, the parameter that allows to select a
specific optimizer (the options are: Adam, RMSProp, and SGD), as well as the
hyper-parameters of that optimizer, are elided in Algorithm 2.
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Algorithm 2: Pseudo-code of WSGAIN-CP

Input: X // dataset w/ missing values

1 Parameter: mb // mini-batch size

2 Parameter: α // hyper-parameter of Generator loss

3 Parameter: clip // clip value of Critic weights

4 Parameter: n iter // number of iterations

5 Parameter: n critic // additional times to train the Critic

6 Result: X̂ // imputed dataset

7 M← mask(X) // each miss. value is 0, otherwise 1

8 for iter ← 1 to n iter do
9 for extra← 1 to n critic do

10 Draw mb samples from X: {x̃(j)}mbj=1

11 Draw mb samples from M: {m̃(j)}mbj=1

12 Draw mb i.i.d. samples of N: {ñ(j)}mbj=1 // random noise

13 for j ← 1 to mb do

14 z̃(j)← m̃(j)� x̃(j)⊕
(

1	 m̃(j)
)
� n(j) // Equation 2

15 x̄(j)← G
(
z̃(j), m̃(j)

)
// Equation 3

16 end
// (1) Critic Optimization

17 Update C using Adam or RMSprop or SGD

18 ∇θC 1
mb

mb∑
j=1

LC
(
C
(
x̃(j)

)
, C
(
x̄(j)

)
, m̃(j)

)
19 wc ← clip critic weights(wc,−clip,+clip)
20 end

// (2) Generator Optimization

21 Update G using Adam or RMSprop or SGD

22 ∇θG − 1
mb

mb∑
j=1

LG
(
C
(
x̄(j), m̃(j)

))
+ α

mb

mb∑
j=1

LMSE

(
x̃(j), x̄(j), m̃(j)

)
23 end
24 Z←M�X⊕ (1	M)�N // Equation 2

25 X̄← G(Z,M) // Equation 3

26 X̂←M�X⊕ (1	M)� X̄ // Equation 1

3.4 Wasserstein Slim GAIN with Gradient Penalty

This section introduces the Wasserstein Slim GAIN with Gradient Penalty
imputation method (WSGAIN-GP). This method was inspired in the work de-
scribed in [8, 4, 10, 24] and the motivation behind it is to reduce the main caveats
that affect a vanilla GAN [8, 24] as well as the ones that affect a WGAN [4],
namely the undesired behaviour that can arise due to weight clipping [10]. The
architecture of WSGAIN-GP remains almost identical to that of WSGAIN-CP.

Generator The generator of WSGAIN-GP is identical to the counterpart of
WSGAIN-CP (Section 3.3).

Critic The critic (C) of WSGAIN-GP is almost identical to the counterpart of
WSGAIN-CP (Section 3.3). However, since WSGAIN-GP aims to get rid of the
undesired behaviour that can arise due to weight clipping [10], there is no weight
clipping. Instead, to improve its training the critic uses a technique known as
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gradient penalty. The gradient penalty is a component of the loss function, which
is the only difference between Expression 7 and Expression 9.

Algorithm 3: Pseudo-code of WSGAIN-GP

Input: X // dataset w/ missing values

1 Parameter: mb // mini-batch size

2 Parameter: α // hyper-parameter of Generator loss

3 Parameter: lambda // hyper-parameter of Critic loss

4 Parameter: n iter // number of iterations

5 Parameter: n critic // additional times to train the Critic

6 Result: X̂ // imputed dataset

7 M← mask(X) // each miss. value is 0, otherwise 1

8 for iter ← 1 to n iter do
9 for extra← 1 to n critic do

10 Draw mb samples from X: {x̃(j)}mbj=1

11 Draw mb samples from M: {m̃(j)}mbj=1

12 Draw mb i.i.d. samples of N: {ñ(j)}mbj=1 // random noise

13 Draw mb i.i.d. samples of N: {ε̃(j)}mbj=1 // random noise

14 for j ← 1 to mb do

15 z̃(j)← m̃(j)� x̃(j)⊕
(

1	 m̃(j)
)
� n(j) // Equation 2

16 x̄(j)← G
(
z̃(j), m̃(j)

)
// Equation 3

17 ẋ(j)← m̃(j)�
(
ε̃(j)�x̃(j)

)
⊕
((

1	m̃(j)
)
�
(

1	ε̃(j)
)
�x̄(j)

)
18 end

// (1) Critic Optimization

19 Update C using Adam or RMSprop or SGD

20 ∇θC 1
mb

mb∑
j=1

LC
(
C
(
x̃(j)

)
, C
(
x̄(j)

)
, m̃(j)

)
+

λ
mb

mb∑
j=1

LGradPen
(
C
(
ẋ(j)

))
21 end

// (2) Generator Optimization

22 Update G using Adam or RMSprop or SGD

23 ∇θG − 1
mb

mb∑
j=1

LG
(
C
(
x̄(j), m̃(j)

))
+ α

mb

mb∑
j=1

LMSE

(
x̃(j), x̄(j), m̃(j)

)
24 end
25 Z←M�X⊕ (1	M)�N // Equation 2

26 X̄← G(Z,M) // Equation 3

27 X̂←M�X⊕ (1	M)� X̄ // Equation 1

ẋ(j) = m̃(j)�
(
ε̃(j)� x̃(j)

)
⊕
((

1	 m̃(j)
)
�
(

1	 ε̃(j)
)
� x̄(j)

)
(8)

∇θC
1

mb

mb∑
j=1

[
m̃(j)� C

(
x̃(j)

)]
− 1

mb

mb∑
j=1

[(
1	 m̃(j)

)
� C

(
x̄(j)

)]
+

λ

mb

mb∑
j=1

(∥∥∥∥∇ẋ(j)C
(
ẋ(j)

)∥∥∥∥
2

	 1

)2
(9)
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WSGAIN-GP Algorithm For the sake of brevity, we elide to fully describe
the WSGAIN-GP algorithm (Algorithm 3). However, four details deserve to be
noticed: (i) the new random noise (line 13) is generated as described in Sec-
tion 3.2; (ii) the statement in line 17 corresponds to Equation 8 and is crucial
to compute the norm of the gradients (line 20 and Expression 9); (iii) the loss
function of the critic (line 20) is given by Expression 9; as aforementioned, the
gradient penalty component is the only difference between Expression 7 and
Expression 9; and (iv) the loss function of the generator (line 23) is exactly the
same of that in WSGAIN-CP Algorithm 2 (line 22) and is given by Expression 6.
Again, the parameter that allows to select a specific optimizer (the options are:
Adam, RMSProp, and SGD) as well as the hyper-parameters of that optimizer,
are elided in Algorithm 3.

4 Experimental Results

This section evaluates the novel generative imputation methods on 10 real-world
datasets from the ML repository maintained by the University of California at
Irvine [6], as presented in Table 1.

Table 1: Short description of datasets.

Name Area Instances Attributes Continuous Discrete Target Model

Breast
Cancer

Life 569 31 (32) 30 0 Diagnosis LR

Credit
Card

Business 30000 24 (25) 14 9
Def. Pay.

Next Month
LR

EEG
Eye State

Life 14980 15 (15) 14 0 Eye Detect. KNN

Iris Life 150 5 (5) 4 0 Class KNN

Letter
Recognition

Computer 20000 17 (17) 16 0 Letter KNN

Online News
Popularity

Business 39644 60 (61) 56 3 Shares LR

Spambase Computer 4601 58 (58) 57 0 Spam LR

(Red) Wine
Quality

Business 1599 12 (12) 11 0 Quality KNN

(White) Wine
Quality

Business 4898 12 (12) 11 0 Quality KNN

Yeast Life 1484 9 (10) 6 (7) 2 (1) Local. Site KNN

During the data preprocessing several data transformations were applied:
drop one (non-relevant) attribute (aka variable or feature) in Breast Cancer,
Credit Card, Online News Popularity, and Yeast datasets; perform one-hot en-
coding of discrete (aka categorical) attributes; and scale the continuous (aka
numerical) attributes to fit inside the interval [−1.00,+1.00], using the scikit-
learn [16] MinMaxScaler5. In the Yeast dataset we considered one continuous

5 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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attribute as being discrete, thus, it has two discrete attributes instead of just
one. The missing values are introduced under an MCAR setting and, unless oth-
erwise stated, the amount of missing values is 20% of all data points. Moreover,
the amputation is evenly distributed by all attributes. However, it is highly likely
for an amputated dataset to have rows with just missing values, we did nothing
to prevent such cases.

We obtained GAIN from its GitHub repository6 and for every run we kept
unchanged the batch size (128), the hint rate (0.9), the hyper-parameter alpha
(100), and the number of iterations (9000). To promote a fair comparison, we
also used these values to run SGAIN, WSGAIN-CP, and WSGAIN-GP (we re-
call that our methods do not have the hint generator). However, since the critic
of WSGAIN-CP and WSGAIN-GP was trained five times more than the gener-
ator, we decided to divide the number of iterations by three, in these cases. For
WSGAIN-CP and WSGAIN-GP the generator was trained 3000 times, whereas
the critic was 15000 times, which sums up to as many times the generator and
the discriminator of GAIN are trained (each 9000 times).

Three types of experimental results are discussed in the next sections: (i) re-
sponse times, which measure how fast the methods can present results; (ii) the
quality of the results, measured by the root mean square error (RMSE) between
the imputed values and the original deleted values; and (iii) the area under
the receiver operating characteristics (AUROC), which in this study is used to
measure a model accuracy of post-imputation prediction.

4.1 Response Times

Figure 2 shows the mean execution time, taken from ten executions, of GAIN,
SGAIN, WSGAIN-CP and WSGAIN-GP on each dataset. The exact same am-
putated datasets were used by each algorithm to perform the imputation of miss-
ing values. In all cases, SGAIN outperformed GAIN, with improvements ranging
from (roughly) 20 to 30% less than the execution time of GAIN. WSGAIN-CP
and WSGAIN-GP also outperformed GAIN, the only exception is that GAIN
is marginally faster than WSGAIN-CP on the Letter Recognition dataset. In
general, SGAIN, WSGAIN-CP and WSGAIN-GP are considerable faster than
GAIN, in particularly SGAIN. This is an extremely significant result since each
one of our novel generative imputation methods are trained faster than GAIN.

Fig. 2: Response times in seconds (lower is better).

6 https://github.com/jsyoon0823/GAIN
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4.2 RMSE Performance

A common way to compare the quality of the imputed data is to measure how
close are the imputed data points to the counterpart data points in the original
(i.e., complete) dataset. Usually, this is achieved by computing the root mean
square error (RMSE). Figure 3 reports on the RMSE achieved by GAIN, SGAIN,
WSGAIN-CP, and WSGAIN-GP on all datasets and from ten executions. The
exact same amputated datasets were used by each algorithm to perform the
imputation of missing values.

Fig. 3: RMSE performance (values range from 0 to 1, lower is better).

The main observation that can be derived from the RMSE results is that our
novel generative imputation methods have competitive performance to that of
GAIN. This is again a very significant result, since it shows, besides the observed
consistency, that the changes and optimizations of the architecture of SGAIN,
from which WSGAIN-CP and WSGAIN-GP were derived, do not impair the
quality of the missing data imputation.

4.3 AUROC Performance

Fig. 4: AUROC performance (values range from 0 to 1, higher is better); the
amounts of missing values are 20%, 40%, 60%, and 80%.

In this study, the areas under the receiver operating characteristics (AU-
ROC) are used to measure the models accuracies of post-imputation predictions.
The models are the Logistic Regression (LR)7 and the K Neighbours Classifier

7 https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
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(KNN)8 (see rightmost column of Table 1). We do not present results for the
(Online) News (Popularity) dataset since the post-imputation predictions took
too longer to complete due to the size of the dataset.

The main observation that can be derived from the AUROC results shown
in Figure 4 is that both new WSGAIN imputation methods present the higher
values in almost all datasets and for all settings of missing values. This is again a
very significant result, since it shows, besides the observed consistency, that the
changes and optimizations of the architecture of SGAIN, from which WSGAIN-
CP and WSGAIN-GP were derived, do not impair the models accuracies of
post-imputation predictions.

5 Conclusions

This paper presented and discussed three novel generative imputation methods:
SGAIN, WSGAIN-CP, and WSGAIN-GP. SGAIN is a slimmer GAN version,
whereas WSGAIN-CP and WSGAIN-GP are variations of a Wasserstein GAN.
These methods are available online in a GitHub repository9.

The performed experimental work comparatively evaluated our novel meth-
ods with the competition, using real-world datasets from different domains, with
distinct characteristics and under various settings. Results explicitly showed that
our methods outperformed the reference GAN-based imputation method (GAIN)
and implicitly showed that they outperformed other imputation methods (e.g.
MICE, MissForest, Matrix Completion, Auto-Encoder, and EM) [24, 7]. This
latter conclusion is derived from the fact that our methods outperform GAIN
and GAIN outperforms those data imputation methods, as shown in [24]. The
measured response times also showed that the newly developed methods are
considerably faster than GAIN and require significant less time to be trained.
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19. Stekhoven, D.J., Bühlmann, P.: Missforest—non-parametric missing value impu-
tation for mixed-type data. Bioinformatics 28(1), 112–118 (2012)

20. Strigl, D., Kofler, K., Podlipnig, S.: Performance and scalability of gpu-based con-
volutional neural networks. In: 2010 18th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing. pp. 317–324. IEEE (2010)

21. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tib-
shirani, R., Botstein, D., Altman, R.B.: Missing value estimation meth-
ods for DNA microarrays . Bioinformatics 17(6), 520–525 (06 2001),
https://doi.org/10.1093/bioinformatics/17.6.520

22. Van Buuren, S.: Flexible imputation of missing data. CRC press (2018)
23. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: Networked

science in machine learning. SIGKDD Explorations 15(2), 49–60 (2013),
http://doi.acm.org/10.1145/2641190.2641198

24. Yoon, J., Jordon, J., Van Der Schaar, M.: Gain: Missing data imputation using
generative adversarial nets. arXiv preprint arXiv:1806.02920 (2018)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_10

https://dx.doi.org/10.1007/978-3-030-77961-0_10

