
HSLF: HTTP Header Sequence based LSH
fingerprints for Application Traffic Classification

Zixian Tang1,2, Qiang Wang1,2, Wenhao Li1,2, Huaifeng Bao1,2, Feng Liu1,2,
and Wen Wang1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS,

Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
{tangzixian,wangqiang3113,liwenhao,baohuaifeng,liufeng,wangwen}@iie.ac.cn

Abstract. Distinguishing the prosperous network application is a chal-
lenging task in network management that has been extensively studied
for many years. Unfortunately, previous work on HTTP traffic classi-
fication rely heavily on prior knowledge with coarse grained thus are
limited in detecting the evolution of new emerging application and net-
work behaviors. In this paper, we propose HSLF, a hierarchical system
that employs application fingerprint to classify HTTP traffic. Specifi-
cally, we employ local-sensitive hashing algorithm to obtain the impor-
tance of each field in HTTP header, from which a rational weight alloca-
tion scheme and fingerprint of each HTTP session are generated. Then,
similarities of fingerprints among each application are calculated to clas-
sify the unknown HTTP traffic. Performance on a real-world dataset of
HSLF achieves an accuracy of 96.6%, which outperforms classic machine
learning methods and state-of-the-art models.

Keywords: HTTP header fields · Application traffic classification · Local-
sensitive hashing · Traffic fingerprinting

1 Introduction

Network traffic classification is an important task in network management. With
the vigorous development of information technology, numerous applications flush
into terminal devices, which results in the increasingly complicated network traf-
fic. In order to manage network more effectively, a powerful network traffic clas-
sification solution needs to be implemented. Although HTTPS has been popu-
larized in recent years, we found that HTTP is still one of the most mainstream
network protocols. Many applications implement client-server communications
based on HTTP, so that the importance of the HTTP protocol has not dimin-
ished.

HTTP headers play a very important role in application traffic. The headers
are flexible to design according to developers’ needs. For example, in a POST re-
quest, Content-Type is often designed to indicate the form of payload submitted

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


2 Z. Tang et al.

by the client. The server will perform different processing strategies for various
types of data according to the value of Content-Type. The design of header
fields have their specific meanings which directly reflects the developer’s think-
ing in communication module development. Many researchers have conducted
in-depth research on HTTP header fields. However, their research on header
fields are one-sided that only focuses on limited fields rather than delving into
all of them.

In this paper, we propose HSLF, a system that transforms HTTP traffic into
fingerprint and classifies application traffic. HSLF generates an HTTP Header
Sequence (HHS) based on HTTP headers. The sequence contains all header
fields. For each HHS, we perform a Local-sensitive hashing algorithm to convert
each sequence into a simple fingerprint. In this way, the sessions sent by various
applications are saved as fingerprints with ground-truth labels. Through a large
collection of traffic fingerprints, we can gradually describe the features of an
application’s HTTP traffic, and store fingerprints in a massive database that
is continuously updated. We implement application identification by measuring
the similarities between labeled fingerprints and fingerprints to be identified. The
experimental results indicate that, HSLF outperforms classic machine learning
models and two state-of-the-arts in four metrics.

In general, our main contributions can be concluded as follows:

– We comprehensively analyze most of HTTP headers and rationally assessed
their importance based on machine learning algorithm.

– We build a dynamically updated fingerprinting database based on LSH al-
gorithm which can be applied for measuring the similarities between HTTP
sessions.

– To the best of our knowledge, we are among the first to propose a method
that includes all HTTP headers. Evaluated on real-world datasets, HSLF
achieves eye-catching performance and is superior to the state-of-the-arts.

2 Background and Related Work

2.1 Traffic Classification Solutions

Many previous traffic classification methods have some limitations that prevent
them from being useful in real-time environment. These methods can be divided
into rule-based matching and machine learning-based methods. Rule matching
methods are mainly based on TCP quintuples (Source IP, Destination IP, Source
port, Destination port, protocol) [5] or payload. TCP quintuples based meth-
ods may fail for some applications that use ephemeral port allocation or CDN
policies. Crotti et al. [3] proposed a flow classification mechanism based on statis-
tical properties of the captured IP packets. However, statistical features based
methods are difficult to classify applications accurately. Mainstream payload
based methods like Deep Packet Inspection (DPI) [10] and signature seeking are
not only infringe on the privacy of end users, but also unsuitable for real-time
traffic analysis due to the high resource overhead. Another popular methods

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


HSLF for Application Traffic Classification 3

are machine learning based models, they train their classifier based on some
statistical features in application-generated traffic [15] [19] [12]. However, due
to the limitations of machine learning, it cannot adapt to the growing traffic
scale. These methods are far behind network management requirements. In ad-
dition to the limitations of the method itself, many traditional classification
methods are coarse-grained that include limited categories (e.g. email, news,
and games) [8] [11]. There are also many methods using fingerprinting algo-
rithm [22] [18] [4] for traffic classification, and they are proved successful in real
environments.

2.2 Research on HTTP headers

Many researchers have conducted in-depth research on HTTP header fields. Kien
Pham et al. [16] studied the UserAgent and identified web crawler traffic based
on this field. Fei Xu et al. [20] discovered the ContentType inconsistency phe-
nomenon and used the inconsistency to detect malwares. Arturs et al. [9] and
William J. Buchanan1 et al. [1] investigated the use of security headers on the
Alexa top 1 million websites to conduct security assessments.

Xu et al. [21] proposed a method that was using the identifier contained
in the UserAgent of the HTTP header to distinguish mobile applications. Yao
et al. [22] proposed SAMPLES, which automatically collect conjunctive rule
corresponds to the lexical context, associated with an application identifier found
in a snippet of the HTTP header. However, previous researches pay attention
to limited header fields, and few works can adapt to the real environment which
contains complex combinations of HTTP header fields.

3 Preprocessing

In this section, we introduce some preprocessing steps. We investigate HTTP
headers to determine the weight of each header field. Then we introduce HTTP
Header Sequence (HHS), which is used to create a standardized template for an
HTTP session.

3.1 Weight Assignment

Different headers contribute differently in application identification. For exam-
ple, the field Content−Type reflects the MIME type of the subsequent payload,
that is, the data processing format, which directly reflects the data type passed
in the application; while the field Date represents the time at which the mes-
sage was originated. It indicates the creation time of the message. Obviously,
the contribution of Content− Type to traffic classification is much greater than
that of Date.

In order to maximize the value of each field, we design the weighting algo-
rithm of the HTTP headers. We perform machine learning methods to train fields

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


4 Z. Tang et al.

to study the influence of headers. Some machine learning models have mecha-
nisms for scoring features which makes them easier to be applied to feature
selection tasks. We select 10 typical application including browsing, chat, video
etc. By one-hot encoding and standardizing all the header fields, the headers can
be learned by the machine learning model.

The machine learning model we choose is Random Forest (RF). RF consists
of multiple decision trees. Each node in the tree is a condition about a certain
feature, in order to divide the data into two according to different response
variables. The node can be determined by the impurity (optimal condition). For
classification purposes, Gini Impurity or information divergence is usually used.
When training a decision tree, we can calculate how much the tree’s impurity is
reduced by each feature. For a decision tree forest, it is possible to figure out the
average reduction of each feature which can be regarded as the value of feature
importance.

The feature score we choose is Gini Impurity (Gini Index). Select a header
field F and count the sum of the Gini index (GI) decline degree (or impurity
decline degree) of the branch nodes formed by t in each tree of RF. It is defined
as:

GI(t) = 1−
K∑
k=1

p2
k|t (1)

k indicates that there are k categories, and pk|t indicates the proportion of
the category k in the node t.

The importance of field Fj at node t (Ij|t), that is, the amount of Gini index
change before and after the node T branch is computed as:

Ij|t = GI(t)−GI(l)−GI(r) (2)

where GI(l) and GI(r) respectively represent the index of Fj on the left and
right node. Then, add up the importance of Fi in the whole forest (m trees in)
as:

Ij =

m∑
i=1

∑
t∈T

Ij|t (3)

Finally, we normalize all Ij to get each field’s final importance (ij) score. The
normalization process is computed as:

ij =
Ij∑n
i=1 Ii

(4)

Importance i indicates the field F ’s contribution to application classification.
We calculate i of all the fields for weight assignment. The results are shown in
Table 1. We treat the importance of headers as weights.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


HSLF for Application Traffic Classification 5

Table 1. Importance Ranking list of HTTP headers (Top 20)

Rank Header Importance Rank Header Importance

1 User-Agent 0.10407 11 Accept-Language 0.04164

2 Server 0.09036 12 Accept-Encoding 0.0337

3 Path 0.0864 13 Upgrade 0.02585

4 Connection 0.08349 14 Pragma 0.02216

5 Cache-Control 0.06304 15 Date 0.02192

6 Content-Type 0.06136 16 Expires 0.02158

7 Host 0.05998 17 Method 0.01954

8 Accept 0.05816 18 Referer 0.01689

9 Content-Length 0.05671 19 Status-Line 0.01645

10 Cookie 0.04616 20 Last-Modified 0.01463

3.2 HTTP Header Sequence

We define two types of headers: character headers and numeric headers. The
character headers are mainly composed of character strings, while a numeric
header contains a definite value. We propose different approaches to deal with
these two type of headers. For numeric headers, we keep the value directly. For
a character header, if the form of characters in this field is relatively simple,
such as a Server header “nginx”, we retain the original character strings. If the
character field is more complicated, such as the Host field which will appear
with multiple directory separators, we further split the string according to the
delimiter. Taking “pan.baidu.com” for example, we split it into “pan”, “baidu”,
“com”. Such segmentation is conducive to extracting as many features of long
characters as possible.

Meanwhile, there may be multiple request and response exchanges in a ses-
sion, each header may appear more than once. In most cases, values of a header
are constant. However, there are also cases where values are different and can-
not be ignored. So we choose to generate a first draft of this session S = {F1 :
k1;F2 : k2; ...Fn : kn} based on the first request and response pair. If the k′i in
the subsequent data is not the same as the ki in S, then we append k′i to Fi to
update S as S = {f1 : k1; f2 : k2; ...fi : ki, k

′
i; ...fn : kn}. Then we allocate the

weights achieved in Section 3 to each F to form a complete sequence (HHS) for
the HTTP session S = {F1(w1) :k1;F2(w2) :k2; ...Fi(wi):ki, k

′
i; ...Fn(wn):kn}.

4 HTTP Header Sequence based LSH Fingerprints

HSLF is a hierarchical system shown in Fig. 1. In this section, we will present
HSLF in detail. We first introduce the proposed fingerprinting algorithm de-
veloped from SimHash [2] to generate the fingerprint of HHS. Based on it, we
establish a fingerprint database which enable the system to identify applications
in HTTP traffic.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


6 Z. Tang et al.

Fig. 1. The overview of HSLF framework.

4.1 LSH Fingerprint

Although we have made predictions through the RF model in Section 3 and
obtained some successful predictions, general machine learning algorithms can-
not adapt to large-scale data classification. In real environments, there are far
more than 10 categories. If we use machine learning algorithms for modeling
and prediction, we need to learn the characteristics of each application, in which
case the consumption of resources will multiply and the increased categories
will also decrease the accuracy of model predictions. When we increased the
number of applications from 10 to 50, the classification accuracy dropped from
95.8% to 87.2%. Obviously, such accuracy is far from satisfactory for application
identification. In addition, it is also difficult to standardize the headers of the
string type when modeling machine learning. The efficiency of standardization
also directly affects the prediction performance. Therefore, we propose to employ
fingerprinting algorithm to describe application traffic.

Local-sensitive hashing (LSH) [6] is an important method with solid theo-
retical basis for measuring text similarity. It is also widely used in the nearest
neighbor search algorithm. The traditional Hash algorithm is responsible for
mapping the original content as uniformly and randomly into a signature, which
is equivalent to a pseudo-random number generation algorithm in principle. The
traditional hash algorithm no longer provides any information except that the
original content is not same. The two signatures generated by it may be very
different, even if the original content differs by only one byte. Therefore, the
traditional hash cannot measure the similarity of the original content in the di-
mension of the signature. However, the hash signature generated by LSH can
represent the similarity of the original content to a certain extent. Its main ap-
plication is to mine similar data from massive data, which can be specifically
applied to text similarity detection, web search and other fields. SimHash is one
of LSH algorithms proposed by Charikar [2], and it has been widely used in data
retrieval and near-duplicates detection. It maps high-dimensional feature vectors
to fixed-length binary bit strings.

The HHS is essentially a high-dimensional vector composed of natural lan-
guage. Each sequence represents a network communication of an application.
In order to identify applications on HTTP traffic, we propose the HHS based

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


HSLF for Application Traffic Classification 7

Fig. 2. Example of fingerprint generating.

SimHash algorithm to generate a 64-bit fingerprint for each HTTP session. The
details of fingerprinting are as follows.

Templatizing Templatizing module is to transform an HTTP session into HHS
like {F1(w1) : k1;F2(w2) : k2; ...;Fi(wi) : ki, k

′
i; ...;Fn(wn) : kn} , and saves them

in the pool.

Hash In order to get a fingerprint that can be used to summarize the session
and save the characteristics of the session, we utilize the hash algorithm indepen-
dently on each ki. Then we add weights and merge these irrelevant hash values
to process the dimensionality reduction into the fingerprint format for normal
storage. The hash algorithm we choose is MD5 algorithm. The first 64 bits of
MD5 are preserved as the result of a hash operation. Since the MD5 algorithm
is a classic algorithm, we will not describe it in detail here. ki’s hash result is
hi = HashMD5(ki). As we have highly divided the string in the foregoing, the
local hash algorithm will not have an avalanche effect on the entire sequence.

Integrate After calculating the hash for each ki, we perform a bit-wise accu-
mulation on all hi: if a bit of hi,j is 0, add the weight value −wi, if it is 1, add
the weight value wi, and finally get the value on each bit weighted value vi. vi
is computed by:

vi =

n∑
i=1

(−1)1−hi,jwi (5)

The si of each digit on the final fingerprint is accumulated by all vi bits and
judged according to positive and negative, it is defined as follows:

si =

{
0, vi < 0
1, vi ≥ 0

(6)

After completing the above steps, we get a fingerprint of 64 bits. The Fig. 2
shows an example flow chart of fingerprinting. For one HTTP session, the first
step is to extract headers and generate an HHS. Then, hash each fields’ strings
and assign weights. Finally, merge all bits with addition to get the fingerprint
represents the session (we use a 5-bit value like 10110 for easy explanation).

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


8 Z. Tang et al.

4.2 Fingerprint Database

We process each HTTP session into a 64-bit fingerprint and measure the similar-
ity between fingerprints by the Hamming distance. Hamming distance represents
the number of different bits in two (same length) words. Charikar [2] proposed
that when the Hamming distance is less than 3, the text can be considered sim-
ilar. Our purpose here is not to select all similar texts, but to select the closest
one.

First, we need to determine the threshold of the Hamming distance. HSLF
and SimHash are substantively different that HHS is not a text composed of
natural language. Therefore, we cannot directly use the threshold 3 of natural
language text as our threshold for judging similarity. To determine the thresh-
old, we randomly selected 1000 fingerprints and calculated the minimum value
of similarities between one of 1000 and all other fingerprints under the same
application, which we call internal similarities; and the minimum value of sim-
ilarities between the one and other fingerprints of different applications, which
we call external similarities. The distribution of internal similarities and external
similarities is shown in the Fig. 3(a) and Fig. 3(b).

It can be found that most internal similarities are between 0-3, and the
internal similarities between 0-5 account for 98.2%; the distribution of external
similarities is more scattered that similarities greater than 5 account for 68.7%.
So in order to locate a new session to its original application, we consider both
the distributions of internal similarities and external similarities and set the
threshold to 5. Fingerprints with a similarity of 5 and below are listed as optional.

Gurmeet et al. [14] realized near-duplicate detection at the scale of 8 billion
web pages, they found that the problem was how to quickly find fingerprints
with a Hamming distance of less than 3, so they proposed an algorithm to speed
up the index and successfully used in Google’s detection module. Although the
amount of fingerprints we achieve is far less large, but if we compare fingerprints
one by one to find the most similar fingerprint, the resource overhead is also
huge. So we build our method of fingerprint storage and indexing on the basis
of Gurmeet’s method, which win the time at the cost of space.

In order to facilitate indexing, we divide all fingerprint libraries into multiple
levels and store them into 6 tables {T0, T1, ..., T5} according to Hamming distance

(a) Distribution of internal similarities. (b) Distribution of external similarities.

Fig. 3. The Similarity distribution of LSH fingerprints

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


HSLF for Application Traffic Classification 9

from 0 to 5. The table with Hamming distance 0 is the usual Hash table, a
theoretical index structure with a time complexity ofO(1). Tables with Hamming
distance greater than or equal to 1 are stored as follows:

Copy the entire fingerprint database with the order of 2d into t sub-tables,
each sub-table has an integer pi and a permutation πi, the sub-tables Z1, Z2...Zt
are constructed by πi that permutes the pi bits of all fingerprints in the sub-table
to top bits. Then, the fingerprint F to be identified is changed by πi(F ). πi(F )
will be matched with top pi bits in each Zi in parallel. If the fingerprints are all
random sequences, there are probably 2d−pi fingerprints left. Finally, find out
fingerprints whose Hamming distance with F are ξi. pi and t are determined
according to the actual situation. If pi is too small, the number of matching
fingerprints 2d−pi is too large, and the search volume is still very high. If pi is
too large, the quantity of sub-tables t will grow a lot.

4.3 Application Identification

The application identification method consists of application fingerprint database
pre-work and real-time traffic stream identification. This section describes the
algorithm. For a session to be identified, HHS function is used to extract HHS
with different fields. LSHFingerprint function calculate session’s fingerprint.

The Algorithm 1 describes how an unknown session is identified from a set
of requests. The input is fingerprint tables (work as indexable memory data
structure) and a new session s. Fingerprint tables {T0, T1, ..., T5} are labeled with
known application names. Each capture session s will be transformed into an
HHS and fingerprinted to get F . Then algorithm queries F from the fingerprint
tables Tξi in the order of ξi from 0 to 5: if a similar fingerprint of F is indexed
when ξi = 0, HSLF will return the application label of the matched fingerprint
and end the loop immediately, otherwise continue to find fingerprint with ξi self-
increasing until ξi equal to 5 (the max of pre-work). If multiple fingerprints with
different application labels are hit, the return value will be the max number
of accumulate labels. If the fingerprint to be predicted does not match any
application when xi ∈ [0, 5], we will treat such a fingerprint as a new fingerprint
and store it in the unknown set for future re-predict. As the size of the fingerprint
database continues to increase, fingerprints in the unknown set will be gradually
identified.

5 Experiments

In this section, we evaluate our proposed system on real-world dataset to verify
the rationality and effectiveness of the system. First, we introduce the public
dataset used in the experiments. Then, we detail specific aspects of our approach
such as the performance of multi-classification and the superiority compared to
machine learning algorithms. Finally, we compare HSLF against some state-of-
the-art methods.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


10 Z. Tang et al.

Algorithm 1: Application identification

Input: Fingerprint tables T0, T1, ..., T5 where ξi ∈ [0, 5],
A new session s to be identified.

Output: Application identification result L.
1 S ← HHS(s) F ← LSHFingerprint(S) i ← 0
2 while i ≤ 5 do
3 Labelsi ← Index(Ti, F )
4 num← len(Counter(Labelsi))
5 if num == 0 then
6 i ← i+ 1
7 else if num == 1 then
8 return L← Counter(Labelsi)
9 else if num > 1 then

10 return L←Max(Counter(Labelsi))

11 end

5.1 Dataset

We collect our original traffic on the lab gateway by using the process log tool
PPfilter developed ourselves to mark the application traffic. PPfilter collects
network and process log information at the terminal to form a log with a 5-
tuple including: IP (source IP and destination IP), port (source port and desti-
nation port), port open time, process number (Corresponds to this port), and
application-related process name. We use PPfilter to collect their daily traffic for
15 volunteers on campus for one month, and filter out the traffic of each applica-
tion in the total traffic. During the filtering process, we perform anonymization
and privacy protection by replacing or deleting the IP address and some pay-
loads. All collected traffic is marked with application labels. In total, ProcFlow
contains 72GB PCAP files from 35 applications.

5.2 Multi-class Classification Performance

We conduct 10-fold cross validation on ProcFlow and separately verify the per-
formance of HSLF on 10 typical applications. The classification result is shown
in Fig. 4. It can be found that each application’s three evaluation metrics Preci-
sion, Recall, F1-score are satisfactory, and the averages (AVE) are all higher than
0.9. Some applications such as Thunder and Xunfeng can be classified absolutely
right.

5.3 Compared with classic Machine Learning Models

Many previous studies employed machine learning (ML) models for application
recognition and proved effective. To prove the superiority of HSLF, we com-
pare it with 4 classic machine learning models: C4.5 (C4.5 decision tree) [7],

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


HSLF for Application Traffic Classification 11

Fig. 4. Precision, recall, F1-score of HSLF on 10 popular Apps.

RF (Random Forests) [17], SVM (Support Vector Machines) [13], kNN (K-
NearestNeighbor) [23]. The input of ML models are the one-hot encodings of the
headers. To achieve a fair result, all the parameters of machine learning models
have been adjusted to the best. We also conduct a 10-fold cross validation on
ProcFlow2020 dataset for each model.

The classification results are shown in Table 2. It can be found that the four
evaluation metrics of HSLF are: 0.966, 0.926, 0.901, 0.916. Although the accuracy
of the four machine learning models are all higher than 85%, the precision, recall,
and F1-score are much lower compared to HSLF. It indicates that traditional
machine learning classification is unstable, and may have slip in some categories.
In contrast, HSLF stay strong performance (higher than 0.9) on precision, recall
and F1-score. The comparision result shows that HSLF outperforms machine
learning models.

Table 2. Comparison Results of HSLF and classic ML methods

Methods
ProcFlow2020

ACC Precision Recall F1-Score

C4.5 0.8934 0.7075 0.6417 0.6527

Random Forest 0.8946 0.7486 0.6555 0.6806

kNN 0.8777 0.5936 0.5116 0.5310

SVM 0.8699 0.5658 0.4568 0.4848

HSLF 0.9655 0.9257 0.9055 0.9155

5.4 Comparison with other Approaches

In this section, we compare HSLF with two state-of-the-art application traffic
classification methods to describe the superiority of HSLF.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


12 Z. Tang et al.

Table 3. Comparison Results of Miner-Killer and Other Methods

Methods
ProcFlow2020

ACC Precision Recall F1-Score

TrafficAV 0.9020 0.9006 0.9020 0.8995

FlowPrint 0.5007 0.5232 0.5007 0.5063

HSLF 0.9655 0.9257 0.9055 0.9155

TrafficAV [18] is an effective malware identification and classification method.
It extracts traffic features, and then uses detection models based on machine
learning to judge whether the app is malicious or not. TrafficAV contains two
detection models namely HTTP detection model and TCP flow detection model.
We choose the HTTP detection model for comparison with HSLF. The authors of
TrafficAV describe the depiction of the analysis steps and detection solution with-
out open-source implement. Therefore, we faithfully reimplemented the HTTP
detection model of TrafficAV feature extraction strategy, and build a classifier
based on C4.5 decision tree algorithm the same as TrafficAV.

FlowPrint [4] is a semi-supervised approach for fingerprinting mobile apps
from network traffic. It can find temporal correlations among destination-related
features of network traffic and use these correlations to generate app fingerprints.
FlowPrint calculates the Jaccard distance between two fingerprints and compares
with threshold to measure the similarity. The application label of each traffic flow
receives the same label as the fingerprint that is most similar to it.

Table 3 shows the identification performance of TrafficAV, FlowPrint and
HSLF. It can be found that HSLF outperforms both of them on four metrics.
Although the traffic classification purposes of TrafficAV and FlowPrint are dif-
ferent from ours, there are similarities in our solutions. TrafficAV focus on some
key information in the HTTP headers, however, TrafficAV only selects 4 headers
which ignores the valid information that may be contained in the other headers.
In an environment with numerous applications, it is likely to cause collision of
feature sequences. Our method HSLF learns from natural language processing
to treat the entire headers of the HTTP session as a sequence, and generates
a fingerprint of the session to mark the application according to a reasonable
weight assignment method. It does not miss any header features and does not
rely on specific identifiers. Compared with TrafficAV and FlowPrint, HSLF has
better robustness.

6 Conclusion

In this paper, we propose HSLF, a system transforms HTTP sessions into finger-
prints for applications traffic classification. HSLF retains almost all the features
of HTTP headers and templatizes the headers into HTTP Header Sequence
with rational weights. With the help of LSH algorithm, HSLF processes high-
dimensional vectors into fingerprints and stores them as tables of different levels.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


HSLF for Application Traffic Classification 13

HTTP based applications traffic can be classified by fast index. Experimental
results show that HSLF have a satisfactory classification performance and out-
performs some classic machine learning methods. Compared with some state-
of-the-art approaches, HSLF also has a big improvement. In the future, we will
optimize HSLF to fit more network protocols, such as encrypted protocols SSL
/ TLS.

7 Acknowledgment

This work was supported by the National Key R&D Program of China with No.
2018YFC0806900 and No. 2018YFB0805004, Beijing Municipal Science & Tech-
nology Commission with Project No. Z191100007119009, NSFC No.61902397,
NSFC No. U2003111 and NSFC No. 61871378.

References

1. Buchanan, W.J., Helme, S., Woodward, A.: Analysis of the adoption of security
headers in http. IET Information Security 12(2), 118–126 (2017)

2. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing.
pp. 380–388 (2002)

3. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through sim-
ple statistical fingerprinting. ACM SIGCOMM Computer Communication Review
37(1), 5–16 (2007)

4. van Ede, T., Bortolameotti, R., Continella, A., Ren, J., Dubois, D.J., Lindorfer,
M., Choffnes, D., van Steen, M., Peter, A.: Flowprint: Semi-supervised mobile-app
fingerprinting on encrypted network traffic. In: Network and Distributed System
Security Symposium, NDSS 2020. Internet Society (2020)

5. Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely,
T., Diot, S.C.: Packet-level traffic measurements from the sprint ip backbone. IEEE
network 17(6), 6–16 (2003)

6. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium
on Theory of computing. pp. 604–613 (1998)

7. Jie, Y., Lun, Y., Yang, H., Chen, L.y.: Timely traffic identification on p2p streaming
media. The Journal of China Universities of Posts and Telecommunications 19(2),
67–73 (2012)

8. Kaoprakhon, S., Visoottiviseth, V.: Classification of audio and video traffic over
http protocol. In: 2009 9th International Symposium on Communications and In-
formation Technology. pp. 1534–1539. IEEE (2009)

9. Lavrenovs, A., Melón, F.J.R.: Http security headers analysis of top one million
websites. In: 2018 10th International Conference on Cyber Conflict (CyCon). pp.
345–370. IEEE (2018)

10. Li, Y., Li, J.: Multiclassifier: A combination of dpi and ml for application-layer
classification in sdn. In: The 2014 2nd International Conference on Systems and
Informatics (ICSAI 2014). pp. 682–686. IEEE (2014)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5


14 Z. Tang et al.

11. Li, Z., Yuan, R., Guan, X.: Accurate classification of the internet traffic based on
the svm method. In: 2007 IEEE International Conference on Communications. pp.
1373–1378. IEEE (2007)

12. Liu, C., He, L., Xiong, G., Cao, Z., Li, Z.: Fs-net: A flow sequence network for
encrypted traffic classification. In: IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. pp. 1171–1179. IEEE (2019)

13. Liu, C.C., Chang, Y., Tseng, C.W., Yang, Y.T., Lai, M.S., Chou, L.D.: Svm-
based classification mechanism and its application in sdn networks. In: 2018 10th
International Conference on Communication Software and Networks (ICCSN). pp.
45–49. IEEE (2018)

14. Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawling.
In: Proceedings of the 16th international conference on World Wide Web. pp. 141–
150 (2007)

15. Moore, A., Zuev, D., Crogan, M.: Discriminators for use in flow-based classification.
Tech. rep. (2013)

16. Pham, K., Santos, A., Freire, J.: Understanding website behavior based on user
agent. In: Proceedings of the 39th International ACM SIGIR conference on Re-
search and Development in Information Retrieval. pp. 1053–1056 (2016)

17. Raghuramu, A., Pathak, P.H., Zang, H., Han, J., Liu, C., Chuah, C.N.: Uncovering
the footprints of malicious traffic in wireless/mobile networks. Computer Commu-
nications 95, 95–107 (2016)

18. Wang, S., Chen, Z., Zhang, L., Yan, Q., Yang, B., Peng, L., Jia, Z.: Trafficav:
An effective and explainable detection of mobile malware behavior using network
traffic. In: 2016 IEEE/ACM 24th International Symposium on Quality of Service
(IWQoS). pp. 1–6. IEEE (2016)

19. Williams, N., Zander, S.: Evaluating machine learning algorithms for automated
network application identification (2006)

20. Xu, F., Pan, H., Cao, Z., Li, Z., Xiong, G., Guan, Y., Yiu, S.M.: Identifying mal-
ware with http content type inconsistency via header-payload comparison. In: 2017
IEEE 36th International Performance Computing and Communications Conference
(IPCCC). pp. 1–7. IEEE (2017)

21. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying
diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference. pp. 329–344 (2011)

22. Yao, H., Ranjan, G., Tongaonkar, A., Liao, Y., Mao, Z.M.: Samples: Self adaptive
mining of persistent lexical snippets for classifying mobile application traffic. In:
Proceedings of the 21st Annual International Conference on Mobile Computing
and Networking. pp. 439–451 (2015)

23. Zhang, J., Xiang, Y., Zhou, W., Wang, Y.: Unsupervised traffic classification using
flow statistical properties and ip packet payload. Journal of Computer and System
Sciences 79(5), 573–585 (2013)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_5

https://dx.doi.org/10.1007/978-3-030-77961-0_5

