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Abstract. Accurate predictions in subsurface flows require the forecasting of
quantities of interest by applying models of subsurface fluid flow with very lit-
tle available data. In general a Bayesian statistical approach along with a Markov
Chain Monte Carlo (MCMC) algorithm can be used for quantifying the uncertain-
ties associated with subsurface parameters. However, the complex nature of flow
simulators presents considerable challenges to accessing inherent uncertainty in
all flow simulator parameters of interest. In this work we focus on the trans-
port of contaminants in a heterogeneous permeability field of a water aquifer. In
our problem the limited data comes in the form of contaminant fractional flow
curves at monitoring wells of the aquifer. We then employ a Karhunen-Loève
expansion to truncate the stochastic dimension of the permeability field and thus
the expansion helps reducing the computational burden. Aiming to reduce the
computational burden further, we code our numerical simulator using parallel
programming procedures on Graphics Processing Units (GPUs). In this paper we
mainly present a comparative study of two well-known MCMC methods, namely,
two-stage and DiffeRential Evolution Adaptive Metropolis (DREAM), for the
characterization of the two-dimensional aquifer. A thorough statistical analysis
of ensembles of the contaminant fractional flow curves from both MCMC meth-
ods is presented. The analysis indicates that although the average fractional flow
curves are quite similar, both time-dependent ensemble variances and posterior
analysis are considerably distinct for both methods.

Keywords: Porous media, Contaminant transport, Two-stage, MCMC, DREAM,
MPSRF

1 Introduction

In subsurface characterization and flow forecasting, one could characterize the subsur-
face using a Bayesian framework. The Bayesian framework consists essentially of a
Markov Chain Monte Carlo (MCMC) algorithm, in which we repeatedly solve a flow
numerical simulator that models the porous media problem of interest [11]. In this paper
we use a single-phase flow numerical simulator that simulates the contaminant transport
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in a water aquifer. In the MCMC algorithm we characterize the heterogeneous perme-
ability field of the water aquifer using the simulator. Our C/C++ flow simulator takes
advantage of Graphics Processing Units (GPUs), which have the computational capac-
ity to speedup the single-phase flow simulation [12]. The GPU flow simulator runs on
a computational grid of the permeability field that is divided into several thousand el-
ements. However, populating each computational element by a random permeability
value and changing those values in each MCMC iteration is impracticable. In this case
the dimension of the stochastic space is that of the computational domain and the di-
mension reduction is achieved by a Karhunen-Loève expansion (KLE) [15]. Due to the
serial nature of the MCMC algorithm, the computational burden in solving the problem
recurrently using the GPU numerical simulator is still huge. This can make the Bayesian
framework less attractive for our problem. Parallelizations of the MCMC algorithm to
speedup the characterization were considered in [10, 12]. The simulation of several par-
allel MCMCs reduces the computational cost drastically. However, the convergence of
such parallel MCMCs should be carefully analyzed.

In this paper we consider two-stage and DiffeRential Evolution Adaptive Metropolis
(DREAM) MCMC methods for the subsurface characterization. The two-stage MCMC
was introduced in [6, 8] and it has been investigated more recently (see [14, 7] and
references therein). The two-stage procedure is of particular interest to subsurface flow
problems because samples can be rejected with inexpensive simulations on coarse grids.
The DREAM is an extension of Differential Evolution (DE) MCMC, which integrates
the essential ideas of DE genetic algorithm and MCMC algorithm [3]. Inspired by DE
MCMC, the DREAM was proposed in [22] and applied to several interesting problems
(see [20, 21, 19] and references therein). The DREAM is well known to converge rel-
atively faster when compared to earlier procedures. It employs subspace sampling and
outlier chain correction to accelerate the convergence towards the stationary distribu-
tion.

In the current work we run several parallel simulations for each MCMC method.
In this approach, we need to determine when it is safe to stop the MCMC simulations
for a reliable characterization of the permeability field. There are several convergence
diagnostics available for this purpose and those diagnostics fall into two categories:
the first category of diagnostics entirely depends on the output values of the MCMC
simulation and those in the second category use not only the output values but also
the information on the target distribution. In the first category, Brooks and Gelman [4]
proposed a convergence diagnostic that uses the Multivariate Potential Scale Reduc-
tion Factor (MPSRF) to decide when to terminate MCMC simulations. Very recently
in [2] we proposed a stopping criterion using a statistical analysis for single-phase flow
prediction. In the analysis we considered ensembles of fractional flow curves to decide
when it is safe to stop MCMC simulations for a reliable characterization and prediction.
In this work we use the criterion in [2] for both MCMC methods and compare them for
the characterization of the permeability field of the aquifer. Our results show that the
two-stage MCMC provides a good estimate for the average of the quantity of inter-
est (fractional flow curves), but the DREAM MCMC method reveals that the posterior
distribution is not well characterized by the two-stage method.
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We organize the present study as follows. We discuss the computational modeling of
the single-phase flow of the water aquifer in Section 2. The reduction of the parameter
space dimension by the KLE is discussed in Section 3. Section 4 contains the statistical
framework using two-stage and DREAM MCMC methods for the characterization of
the permeability field in the water aquifer. The MPSRF, a frequently used criterion to
estimate convergence of the MCMC methods, is presented in Section 5. Results ob-
tained from our numerical experiments are discussed in Section 6. Concluding remarks
appear in Section 7.

2 Computational Physical Model
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Fig. 1. Top: On the left, the reference permeability field for a unit square-shaped region, where
circle and squares on the boundary denote the spill and monitoring wells, respectively. On the
right, contaminant flow at t = 0.25 PVI. Bottom: Contaminant flow at t = 0.75 PVI on the left
and t = 1.0 PVI on the right.

We consider a unit square-shaped subsurface aquifer Ω with a heterogeneous perme-
ability field. The aquifer contains two monitoring wells: one of which is located at the
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top right corner of the domain (corner well) and the other well (center well) is placed at
the middle of the right boundary. An accidental contamination occurs at the spill site and
the contaminated water flows naturally through the aquifer. The spill well is positioned
at the bottom left corner through which the contaminated (or tracer) water is discharged
(Fig. 1). In this single-phase flow model we assume a relatively low concentrations of
the contaminant, thus it does not affect the velocity field.

Let us denote the Darcy velocity and the pressure of the fluid by v(x, t), and p(x, t),
respectively, where x ∈ Ω is the location at time t. We also denote the absolute perme-
ability of the rock, porosity of the rock, fluid viscosity, and contaminant concentration
in the fluid by k(x), φ(x), µ, and ρ(x, t), respectively. We consider that the pore space
of the aquifer is filled by water. Applying Darcy’s law and mass conservation, the gov-
erning equations describing the single-phase flow can be written as the following [5]:

∇ · v = 0, where v = −k(x)
µ
∇p, x ∈ Ω,

φ(x)
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)v) = 0.

(1)

In this study the porosity of the rock is considered a constant throughout the domain
with φ(x) = 0.2. We assume no-flow boundary conditions and we take ρ(x, t = 0) =
0. The system of partial differential equations in (1) does not contain any source or
sink because all three wells are modeled through appropriate boundary conditions. The
coupled system consists of an elliptic problem and a hyperbolic problem. After applying
an operator splitting technique, we solve each problem separately by an appropriate
numerical scheme [18, 13].

The permeability field is characterized by using measured data in the form of frac-
tional flow curves, F (t) which are defined as

F (t) = 1−
∫
∂Ωout

vn(x, t)ρ(x, t) ds∫
∂Ωout

vn(x, t) ds
, (2)

where ∂Ωout represents the well outflow boundary, and vn(x, t) is the component of
the velocity field normal to the well boundary. The dimensionless time is denoted by t,
which is measured in Pore Volume Injected (PVI) and is computed using the following
integral:

PVI =
∫ T

0

Vp
−1
∫
∂Ωout

vn(x, t) ds dτ, (3)

where Vp denotes the total pore volume of the reservoir and T represents the total time
the contaminated water entered through the spill well.

3 Reduction in Parameter Space

If we consider the water aquifer in a 128 × 128 computational domain, we have 16,
384 elements. In our Bayesian framework the numerical simulator uses the permeabil-
ity value in each element. Therefore, we need to start with a random permeability value
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in each element and change one or more of those values in each MCMC iteration. Thus,
the dimension of the parameter space is 16, 384 and it presents a far-fetched frame-
work for the characterization of the permeability field. In order to reduce the number
of uncertainty parameters, we therefore use the KLE. Below we reduce the parameter
space from 16, 384 to d, which is 20 for our study, using the KLE. The KLE has been
explained in [11, 12, 10]. A very short discussion on the KLE is being presented below
for the sake of completeness.

Suppose log [k(x)] = Y k(x), where x ∈ Ω ⊂ R2, Y k(x) is a Gaussian field and
the covariance function Cov(Y k(x1), Y

k(x2)) is given by the following formula:

R(x1,x2) = σ2
Y exp

(
−|x1 − x2|

2

2L2
x

− |y1 − y2|
2

2L2
y

)
, (4)

where Lx and Ly are the correlation lengths in x− and y−direction, respectively, and
σ2
Y = Var[(Y k)2]. It is assumed that Y k(x) is a second-order stochastic process and
E[(Y k)2] = 0. Thus, for a given orthonormal basis {ϕi} in L2(Ω), Y k(x) can be
expressed as the following:

Y k(x) =

∞∑
i=1

Y ki ϕi(x), with Y ki =

∫
Ω

Y k(x)ϕi(x)dx, (5)

where Y ki are random coefficients. On the other hand, since L2 is a complete space,
thus ϕi(x) is an eigenfunction satisfying

∫
Ω

R(x1,x2)ϕi(x2)dx2 = λiϕi(x1), i = 1, 2, ..., (6)

and the corresponding eigenvalue λi = E[(Y ki )
2] > 0. By using the assumption θi =

Y ki /
√
λi, the KLE in equation (5) can be expressed as the following:

Y k(x) =

∞∑
i=1

√
λiθiϕi(x). (7)

If the eigenvalues decrease, a truncated KLE can be written as

Y kd (x) =

d∑
i=1

√
λiθiϕi(x). (8)

If the eigenvalues in (8) decay quickly, the Y kd will be a good approximation of Y k.
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Fig. 2. Decay of eigenvalues in KLE

We set Lx = Ly = 0.2 and σ2
Y = 4 in (4). Fig. 2 shows that the eigenvalues decay

fast for these values. In this paper we thus consider the first twenty eigenvalues in the
KLE to model the permeability field.

4 Bayesian Framework

4.1 Exploration of the Posterior

In this subsection we discuss how to characterize the permeability field using the frac-
tional flow curves at the monitoring wells of the water aquifer. Let us denote the frac-
tional flow data by Fm and the corresponding permeability field byψψψ. Using the Bayes’
theorem we can write the posterior probability

P (ψψψ|Fm) ∝ P (Fm|ψψψ)P (ψψψ), (9)

where P (ψψψ) denotes the prior distribution and the normalizing constant is ignored due
to the iterative search in the MCMC algorithm. Theψψψ is generated through the KLE, for
which the vector θθθ is used as input in the expansion. In the remainder of the discussion
we use ψψψ = KLE[θθθ]. Moreover, we consider a Gaussian distribution as in [9] for the
likelihood function, i.e.,

P (Fm|ψψψ) ∝ exp
(
− (Fm − Fψψψ)>Σ(Fm − Fψψψ)

)
, (10)

where the simulated fractional flow data Fψψψ is obtained by the numerical solution from
the GPU simulator for each permeability distribution ψψψ in the MCMC algorithm. We
denote the covariance matrix by Σ, which is defined as Σ = III/2σ2

F where III and σ2
F

are the identity matrix and the precision parameter, respectively.
We sample data from the posterior by using the Metropolis-Hasting (MH) MCMC

and create a Markov chain, which has the posterior distribution as target distribution. We
consider an instrumental distribution q(ψψψp|ψψψ), whereψψψ denotes the previously accepted
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proposal, in order to propose ψψψp = KLE[θθθp] at every iteration. We use the following
acceptance probability in MH MCMC and the probability value is computed by solving
the forward problem for a given permeability distribution on the numerical simulator:

α(ψψψ,ψψψp) = min
(
1,
q(ψψψ|ψψψp)P (ψψψp|Fm)

q(ψψψp|ψψψ)P (ψψψ|Fm)

)
. (11)

We now describe the two-stage and DREAM MCMCs that use the MH algorithm.

4.2 Two-stage MCMC

Here we present the two-stage MCMC method. The method has been widely used for
porous media applications [8, 16]. The two-stage MCMC consists of a screening proce-
dure, which relies on a coarse-scale model approximating the governing equations (1).
The coarse-scale discretization is done in a similar way as in the fine-scale discretiza-
tion. The main idea lies on a rigorous projection of k on the coarse-scale that is obtained
from the fine-scale resolution. For this reason, an upscaling method is used so that the
effective permeability values on the coarse-scale yield a similar average response as that
of the underlying fine-scale problem locally [11]. We then run the numerical simulator
on the coarse-scale model and get the numerical solution Fc. Now we can compute the
coarse-scale and fine-scale acceptance probabilities

αc(ψψψ,ψψψp) = min
(
1,
q(ψψψ|ψψψp)Pc(ψψψp|Fm)

q(ψψψp|ψψψ)Pc(ψψψ|Fm)

)
and

αf (ψψψ,ψψψp) = min
(
1,
Pf (ψψψp|Fm)Pc(ψψψ|Fm)

Pf (ψψψ|Fm)Pc(ψψψp|Fm)

)
, respectively.

(12)

In the two-stage MCMC the following Random Walk Sampler (RWS) is used:

θp = β θ +
√
1− β2 ε, (13)

where θ and θp represent the previously accepted proposal and the current proposal,
respectively. The symbol ε stands for a N (0, 1)-random variable and β (= 0.75) is
a tuning parameter [1]. The two-stage MCMC algorithm is presented in Algorithm 1.
The convergence diagnostic to break the “for loop” in the algorithm is described in
Section 5.

4.3 DREAM MCMC

The DREAM, which is an extension of DE MCMC [3], runs multiple MCMCs simul-
taneously for a thorough exploration of the posterior, and has an in-built mechanism
to adapt the scale and orientation of the proposal distribution during the evolution to
the posterior distribution [22]. We describe the DREAM for our application below. In
Algorithm 2, m denotes the number of parallel chains that we run simultaneously.
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Algorithm 1 Two-stage MCMC
1: Given covariance function R generate KLE.
2: for p = 1 to Mmcmc do
3: At ψψψ = KLE[θθθ] using (13) generate ψψψp = KLE[θθθp].
4: Compute the upscaled permeability on the coarse-scale using ψψψp.
5: Solve the forward problem on the coarse-scale to get Fc.
6: Compute the coarse-scale acceptance probability αc(ψψψ,ψψψp).
7: if ψψψp is accepted then
8: Use ψψψp in the fine-scale simulation to get Ff .
9: Compute the fine-scale acceptance probability αf (ψψψ,ψψψp).

10: if ψψψp is accepted then ψψψ = ψψψp.
11: end if
12: end if
13: end for

Algorithm 2 DREAM MCMC
1: Given covariance function R generate KLE.
2: for c = 1 to m do
3: for p = 1 to Mmcmc do
4: At ψψψ = KLE[θθθ] using equation (14) generate ψψψp = KLE[θθθp].

θp = θ + (Id + f ) γ(δ, d
′
)

 δ∑
j=1

θr1(j) −
δ∑

k=1

θr2(k)

+ ε, (14)

where δ and d
′

denote the number of pairs that are used to generate the proposal and
the number of parameters that are updated jointly in each iteration, respectively. Two
randomly chosen chains are denoted by r1 and r2. Moreover, f and ε are drawn in-
dependently from CU[−b, b] and N (0, b∗), respectively, where CU[a, b] represents the
continuous uniform distribution on the interval [a, b].

Algorithm 3 DREAM MCMC (continued)
5: Use ψψψp to get Ff (on the fine-scale).
6: Compute the acceptance probability α(ψψψ,ψψψp) using (11).
7: if ψψψp is accepted then ψψψ = ψψψp.
8: end if
9: end for

10: end for

We simultaneously run the DREAM MCMC with m = 11 parallel chains. In (14)
we set δ = 5, b = 0.1 and b∗ = 10−6. The jump rate is given by γ = 2.38β0√

2δd′
, where

the constant β0 = 1
16 . The user should select the value of β0 in such a way the MCMC
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method has an acceptance rate between 15-35%. In the present study we set d
′
= 5, i.e,

we update five parameters at every iteration. In addition to setting those parameters, we
also set γ = 1.0 at every tenth iteration to encourage a jump between two disconnected
posterior modes.

5 Convergence Diagnostics of MCMC Methods

The DREAM MCMC requires a parallel simulation of multiple chains simultaneously.
However, the two-stage MCMC does not require the same. Due to the computational
burden in repeatedly solving the numerical simulator, we still run the parallel simulation
of several two-stage MCMCs. Now we need to investigate the convergence of multiple
chains in each method for a reliable characterization of the permeability field of the
aquifer. In this section we discuss convergence diagnostics for that purpose. The Poten-
tial Scale Reduction Factor (PSRF) and its multivariate extension MPSRF are used to
measure the convergence of multiple MCMCs [4].

We set the number of parameters as d = 20 in θ as discussed in Section 3. Let us
consider m chains and n posterior draws of θ in each chain. θti refers to the vector θ at
iteration t in the ith chain of multiple MCMCs. Then the posterior variance-covariance
matrix in higher dimensions is computed by

V̂ =
n− 1

n
W +

(
1 +

1

m

)
B

n
. (15)

The within-covariance-matrix W is given by

W =
1

m(n− 1)

m∑
i=1

n∑
t=1

(
θti − θ̄i.

) (
θti − θ̄i.

)′
, (16)

and the between-chain-covariance-matrix B is computed by

B =
n

m− 1

m∑
i=1

(
θ̄i. − θ̄..

) (
θ̄i. − θ̄..

)′
, (17)

where θ̄i. denotes the mean of θs within the chain and θ̄.. represents the mean of θs in
all the chains. The PSRF is defined as follows:

PSRFp =

√
diag(V̂)p
diag(W)p

, where p = 1, 2, ..., d. (18)

The PSRF values close to one indicate that the samples in multiple chains are being
generated from the same limiting distribution and thus confirm the convergence. The
MPSRF is computed as follows [17]:

MPSRF =

√(
n− 1

n
+

(
m+ 1

m

)
λ1

)
, (19)
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where λ1 is the greatest eigenvalue of W−1B/n. If the MPSRF approaches one for
a reasonably large n, the convergence of the multiple chains is ensured. Moreover, a
relationship between the PSRFs and MPSRF is given by [4]

max of PSRFs ≤ MPSRF. (20)

6 Numerical Results

6.1 Simulation Study

In this subsection we present a simulation study of the characterization of the heteroge-
neous permeability field of the water aquifer. See Fig. 1. The water aquifer is not con-
taminated initially. The contaminated water flows through a spill well into the aquifer at
a rate of one pore-volume every five years. The synthetic reference permeability field is
constructed on a fine-grid of size 128×128. The fractional flow curves for this reference
field at the monitoring wells are shown in Fig. 5. These curves are generated by running
the numerical simulator on the reference field until t = 1.0 PVI. The time evolution
of the contaminant flow on the reference permeability field is shown in Fig. 1. We use
the two-stage and DREAM MCMC methods to generate samples from the posterior. A
coarse-grid of size 32×32 is chosen for the two-stage algorithm, which runs four times
faster than the fine-grid simulation, but still manages to capture the general trend of the
flow. See Fig. 3.

0.0

0.2

0.4

0.6

0.8

1.0

F
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

time (t in PVI)

128x128 fine-grid

64x64 coarse-grid

32x32 coarse-grid

16x16 coarse-grid

8x8 coarse-grid

center well

corner well

Fig. 3. A comparison of simulated fractional flows obtained from coarse-scale models and the
fine-scale model.

6.2 Convergence Analysis

This subsection contains the MPSRF and PSRF analysis for both two-stage and DREAM
MCMCs. We run twelve and eleven chains for two-stage and DREAM MCMCs, re-
spectively. Using an equal number of total proposals in all chains, we then compute
the maximum of PSRFs and the MPSRF against the number of iterations. Fig. 4 shows
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Fig. 4. The maximum of PSRFs and the MPSRF for DREAM and two-stage MCMCs

that the MPSRF for each method is the upper bound of the maximum of the PSRFs,
which is consistent with the inequality shown in (20). Moreover, it is also observed
that both MPSRF and the maximum of PSRFs for the DREAM MCMC have a faster
downward trend than the two-stage MCMC method. Thus, we can conclude that the
DREAM MCMC samples from the posterior faster than the two-stage MCMC and con-
verges faster towards the stationary distribution. However, Fig. 4 demonstrates that both
MCMC methods need a large number of iterations to achieve a complete convergence.
To achieve a complete convergence, the curves should approach the numerical value of
one.

Next we focus on a statistical analysis of two ensembles of accepted fractional flow
curves. In the analysis we consider the variances of the ensembles of fractional flow
curves as well as the posterior distributions.

6.3 Variance Analysis
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Fig. 5. Fractional flow curves of (a) center and (b) corner wells for two-stage and DREAM
MCMCs.

We compute the average production curves using 24000 accepted proposals and com-
pare those curves with the reference fractional flow curves. See Fig. 5. From the com-
parison we can say that both two-stage and DREAM MCMCs produce very similar
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fractional flow curves. Table 1 shows the acceptance rates for both MCMCs, where σ2
F

and σ2
C are precision parameters in (10) for coarse- and fine-scale simulations, respec-

tively. Note that the acceptance rates for both MCMC methods are the same, however,
the convergence rate in the DREAM MCMC is considerably higher than that in the
two-stage MCMC (see Fig. 4).

two-stage MCMC DREAM MCMC
σ2
F 10−4 10−4

σ2
C 2× 10−4 –

acceptance rate 35% 35%

Table 1. A comparison of accepted proposals for two-stage and DREAM MCMCs
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Fig. 6. Variance plots of fractional flow curves at (a) the center well and (b) corner well for two-
stage and DREAM MCMCs.

We now construct two ensembles by taking the same number of fractional flow
curves in each MCMC method: The first ensemble contains 24000 samples and the sec-
ond one has 36000 samples. Fig. 6 displays the variances of the fractional flow curves
for the center and corner wells of the aquifer. The variance curves differ between not
only both ensembles but also both MCMC methods. Furthermore, we sketch the pos-
terior densities in Fig. 7 for the same ensembles that we considered for the variance
analysis. The normalized frequencies reveal that the posterior densities are also differ-
ent for both MCMC methods.

7 Conclusions

Using a GPU-based single-phase flow simulator we have compared two frequently used
MCMCs, the two-stage algorithm based on a random walk sampler and the DREAM.
We have confirmed that the DREAM converges much faster than the two-stage MCMC
by comparing the corresponding PRSF and MPRSF curves. Moreover, a careful statis-
tical analysis of ensembles of accepted fractional flow curves, produced by the two
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Fig. 7. Normalized frequency plots of fractional flow curves for two-stage and DREAM MCMCs.
Top: Center well. Bottom: Corner well. Left: At t = 0.78 PVI. Right: At t = 0.98 PVI.

MCMCs, reveals that such ensembles share essentially the same average behavior.
However, significant differences have been observed in the time-dependent variance
curves as well as in the posterior distributions for those ensembles. This provides an in-
dication that, for the purpose of making Monte Carlo predictive simulations, one might
observe considerable differences in the results. One could combine both MCMC meth-
ods in a two-stage version of DREAM to achieve good convergence along with reduced
computational cost in line with the work of [14]. As a future work we intend to combine
both methods for our problem and study the convergence.
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