
A bluff-and-fix algorithm
for polynomial chaos methods ?

Laura Lyman1 and Gianluca Iaccarino2

1 Institute for Computational and Mathematical Engineering, 475 Via Ortega,
Stanford University, Stanford CA 94305, USA

lymanla@stanford.edu
2 Department of Mechanical Engineering and Institute for Computational

Mathematical Engineering, Stanford University, Building 500, Stanford, CA 94305
jops@stanford.edu

Abstract. Stochastic Galerkin methods can be used to approximate the
solution to a differential equation in the presence of uncertainties repre-
sented as stochastic inputs or parameters. The strategy is to express the
resulting stochastic solution using M + 1 terms of a polynomial chaos
expansion and then derive and solve a deterministic, coupled system of
PDEs with standard numerical techniques. One of the critical advan-
tages of this approach is its provable convergence as M increases. The
challenge is that the solution to the M + 1 system cannot easily reuse
an already-existing computer solution to the M system. We present a
promising iterative strategy to address this issue. Numerical estimates
of the efficiency of the proposed algorithm (bluff-and-fix) demonstrate
that it can be more efficient than using monolithic methods to solve the
whole M + 1 system directly.

Keywords: Polynomial chaos · Galerkin projections · Stochastic differ-
ential equations · Numerical PDE solvers · Spectral methods

1 Introduction

Uncertainty quantification (UQ) in physical models governed by systems of par-
tial differential equations is important to build confidence in the resulting predic-
tions. A common approach is to represent the sources of uncertainty as stochas-
tic variables; in this context the solution to the original differential equations
becomes random. Stochastic Galerkin schemes (SGS) are used to approximate
the solution to parametrized differential equations. In particular, they utilize a
functional basis on the parameter to express the solution and then derive and
solve a deterministic system of PDEs with standard numerical techniques [2]. A
Galerkin method projects the randomness in a solution onto a finite-dimensional
basis, making deterministic computations possible. SGS are part of a broader
class known as spectral methods.

The most common UQ strategies involve Monte Carlo (MC) algorithms,
which suffer from a slow convergence rate proportional to the inverse square
root of the number of samples [5]. If each sample evaluation is expensive —

? Supported by the US Department of Energy under the PSAAP II program.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

2 L. Lyman and G. Iaccarino

as is often the case for the solution of a PDE — this slow convergence can
make obtaining tens of thousands of samples computationally infeasible [3]. Ini-
tial spectral method applications to UQ problems showed orders-of-magnitude
reductions in the costs needed to estimate statistics with comparable accuracy
[8].

In the present approach for SGS, the unknown quantities are expressed as an
infinite series of orthogonal polynomials in the space of the random input vari-
able. This representation has its roots in the work of Wiener [7], who expressed
a Gaussian process as an infinite series of Hermite polynomials. Ghanem and
Spanos [4] truncated Wiener’s representation and used the resulting finite se-
ries as a key ingredient in a stochastic finite element method. SGS based on
polynomial expansions are often referred to as polynomial chaos approaches.

Let D = [0, 1] × T be a bounded subset of the spatial and time domain
Rx × Rt≥0.3 Then let u : D → R be continuous and differential in its space and
time components; further, let u ∈ L2(D), and u(0, t) = 0. This u represents the
solution to a differential equation,

F(u, x, t) = 0. (1)

Here F is a general differential operator that contains both spatial and temporal
derivatives. Often F is assumed to be nonlinear.

Let ξ : R → R be a zero-mean, square-integrable, real random variable. We
assume uncertainty is present in the initial condition u(· , 0) and represent it by
setting

u(x, 0; ξ) : Rx → R u(x, 0; ξ) = f(x, ξ)

where f is a known function of x and ξ. Accordingly, the solution u(x, t; ξ) to
F(u, x, t) is now a random variable indexed by (x, t) ∈ D, meaning u(x, t; ξ) is a
stochastic process.

As statistics of ξ, we require that both u(x, t; ξ) and f(x, ξ) have existing
second moments — and in accordance with u(0, t; ξ) = 0, we assume f(0, ξ) = 0
as well.4 Note that these are the only restrictions; namely, even though f is
chosen as sinusoidal in the example of Section 2, we do not require f to be
periodic, bounded over the real line, zero on the whole boundary ∂D, etc.

We consider a polynomial chaos expansion (PCE) and separate the deter-
ministic and random components of u by writing

u(x, t; ξ) =

∞∑
k=0

uk(x, t)Ψk(ξ).

The uk : D → R output deterministic coefficients, while Ψk are orthogonal
polynomials with respect to the measure dξ induced by ξ. Let 〈· , ·〉 denote the

3 For convenience we set D = [0, 1] × T , though all of the presented results follow
immediately when D = [a, b]× T for some arbitrary interval [a, b] ⊂ Rx.

4 These assumptions ensure that the needed conditions for applying the Cameron-
Martin theorem [1] are met.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

A bluff-and-fix algorithm for polynomial chaos methods 3

inner product mapping (φ, ψ) 7→
∫
φ(ξ)ψ(ξ) dξ, where the triple-product nota-

tion 〈φψ ϕ〉 is understood as 〈φ, ψϕ〉 = 〈φψ, ϕ〉 =
∫
φ(ξ)ψ(ξ)ϕ(ξ) dξ. Then we

require the Ψk to satisfy the properties

〈Ψ0,Ψ0〉 = Eξ(Ψ0) = 1 〈Ψi,Ψj〉 = ciδij

where ci ∈ R are nonzero and δij is the Kronecker delta.
By the Cameron-Martin theorem [1], the PCE of this random quantity con-

verges in mean square,

M∑
k=0

uk(x, t)Ψk(ξ)
M→∞
−−−−→
L2

u(x, t; ξ).

This justifies the PCE and its truncation to a finite number of terms for the sake
of computation. Substituting the truncation into Equation (1), we have

F

(
M∑
k=0

uk(x, t)Ψk(ξ), x, t

)
= 0. (2)

Furthermore, we can determine the initial conditions for the deterministic com-
ponent functions. Multiplying u(x, 0; ξ) by any Ψk and integrating with respect
to the ξ-measure dξ yields

∞∑
i=0

ui(x, 0)

∫
Ψi(ξ)Ψk(ξ) dξ =

∫
f(x, ξ)Ψk(ξ) dξ = Eξ[f(x, ξ)Ψk(ξ)]

uk(x, 0) =
1

ck
Eξ[f(x, ξ)Ψk(ξ)].

The scalars ck of course are dependent on the choice of polynomial Ψk. Similarly,
we can “integrate away” the randomness in Eq. (2) by projecting onto each basis
polynomial. This is discussed in detail in the next section.

2 Inviscid Burgers’ equation

Our choice of orthogonal polynomials Ψk will rely on the distribution of the ξ
random variable. Throughout this paper, we will choose ξ ∼ N (0, 1) and the Ψk

to be Hermite polynomials; however, many of the results apply almost identically
to other distributions and their corresponding polynomials.

Note that Hermite polynomials satisfy 〈Ψk,Ψj〉 = (k!)δkj and by [6],

〈ΨiΨjΨk〉 =

{
0 if i+ j + k is odd or max(i, j, k) > s

i!j!k!
(s−i)!(s−j)!(s−k)! else

where s = (i + j + k)/2. Now let u : D → R be the solution to the inviscid
Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= 0 u(x, 0; ξ) = ξ sin(x) u(0, t; ξ) = 0. (3)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

4 L. Lyman and G. Iaccarino

The goal is to determine the solution u given the randomness in the initial
conditions. Substituting in the finite PCE to (3), projecting on the polynomial
basis, and integrating with respect to the ξ-measure yields

M∑
i=0

∂ui
∂t
〈ΨiΨk〉+

M∑
i=0

M∑
j=0

ui
∂uj
∂x
〈ΨiΨjΨk〉 = 0 for every k ∈ {0, . . . ,M}. (4)

This is a system of (M + 1) non-linear and coupled PDEs, which we will refer
to as an M system. Solving the original problem with randomness has now been
transformed into solving a system that is completely deterministic.

For instance, the system for M = 2 is

∂u0
∂t

= −u0
∂u0
∂x
− u1

∂u1
∂x
− 2u2

∂u2
∂x

∂u1
∂t

= −u1
∂u0
∂x
− (u0 + 2u2)

∂u1
∂x
− 2u1

∂u2
∂x

∂u2
∂t

= −u2
∂u0
∂x
− u1

∂u1
∂x
− (u0 + 4u2)

∂u2
∂x

.

As shown in Section 1, the initial conditions are

uk(x, 0) =
1

k!
sin(x)

∫
ξΨk(ξ) dξ =

1

k!
sin(x)Eξ[ξΨk(ξ)] for every k ∈ {0, . . . ,M}.

These initial conditions are easily computed. For example, when 0 ≤ k ≤ 10 the
only nonzero uk(x, 0) is u1(x, 0) = sin(x).

For any k ∈ {0, . . . ,M}, define the symmetric matrix Ψ
(M)
k ∈ RM+1×M+1

such that
(Ψ

(M)
k)ij = 〈ΨiΨjΨk〉 for i, j ∈ {0, . . . ,M}. (5)

For the case k = M, we also name the particular matrix LM := ΨM
M and let

(LM)k• denote its kth row. When the Ψk are Hermite polynomials, we can easily
prove that

LM =


0 · · · 0 〈Ψ0ΨMΨM 〉
... . .

. ...

0 . .
. ...

〈ΨMΨ0ΨM 〉 · · · · · · 〈ΨMΨMΨM 〉

 .

Lemma 1. Let u = (u0, . . . , uM)T be the vector of M + 1 functions, v =

(u0, . . . , uM−1)T , and w = uM . Adopting the shorthand (uj)x :=
∂uj

∂x and (u)x :=
∂u
∂x , we can rewrite Equation (4) as

∂uk
∂t

+
1

k!
uTΨ

(M)
k (u)x = 0 for every k ∈ {0, . . . ,M} (6)

and when k < M as

∂uk
∂t

+
1

k!
vTΨ

(M−1)
k (v)x + (LM)k•

∂

∂x

[
w

(
v
1
2w

)]
= 0 (7)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

A bluff-and-fix algorithm for polynomial chaos methods 5

recalling that (LM)k• is the kth row of LM .

Let DM be the diagonal M ×M matrix such that Dkk = 1
k! and L̃M be the

M × (M + 1) matrix comprised of the first M rows of LM . Then let Ψ(M−1)

denote the M2 ×M matrix

Ψ(M−1) :=


Ψ

(M−1)
0
...

Ψ
(M−1)
M−1

 .
Then (7) can be expressed in aggregate (i.e. for all k < M) as

∂v

∂t
+ (DM ⊗ vT)Ψ(M−1)(v)x +DM L̃M

∂

∂x

[
w

(
v

1
2 (w)

)]
= 0 (8)

where ⊗ is the Kronecker product.

Proof. See Appendix.

Equations (6) and (7), along with the last term in the LHS of Equation (8), will
be used to inform an algorithm to solve the M system using the solution to the
M − 1 system. This is described in the following section.

3 Bluff-and-fix (BNF) algorithm

We will use the superscript u(M) to denote the (M+1)×1 vector of functions that

is the solution to the M system. Similarly, u
(M)
k is the kth component function of

u(M). When a component function u
(M)
k (x, t) is written without the superscript

i.e. as uk(x, t), the value of M is considered to be a fixed but arbitrary positive
integer.

Suppose we have computed u(M−1). How can we incorporate this information
into solving for u(M)? Firstly, the M system has the added equation for ∂uM

∂t ,
namely

∂u
(M)
M

∂t
= − 1

M !

M∑
i=0

M∑
j=0

〈ΨiΨjΨM 〉u(M)
i

∂u
(M)
j

∂x
. (9)

If we had the first M coefficients u
(M)
0 , . . . , u

(M)
M−1 of u(M) corresponding to the

M system rather than to the M − 1 system, we could substitute directly into
the RHS of (9) and simply integrate the remaining equations. However, the

numerical solutions u
(M−1)
0 , . . . , u

(M−1)
M−1 will differ from u

(M)
0 , . . . , u

(M)
M−1. To see

why, recall Equation (6) in Lemma 1 and its notation to observe that u
(M−1)
k is

the solution to

∂vk
∂t

= − 1

k!
vTΨ

(M−1)
k (v)x := FM−1(v, w) (10)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

6 L. Lyman and G. Iaccarino

and by (7), u
(M)
k for k < M is the solution to

∂vk
∂t

= − 1

k!

(
vTΨ

(M−1)
k (v)x + (LM)k•

∂

∂x

[
w

(
v
1
2w

)])
:= FM (v, w). (11)

Thus, the numerical solutions u
(M−1)
k and u

(M)
k are different, because the right

hand sides of (10) and (11) differ by the function

Gk(v, w) := − 1

k!
(LM)k•

∂

∂x

[
w

(
v
1
2w

)]
. (12)

We can write all of the Gk functions together via the third term on the LHS of
(8); that is,

G := (G0, . . . , GM−1)T so that G(v, w) = −DM L̃M
∂

∂x

[
w

(
v

1
2 (w)

)]
. (13)

3.1 One step bluff-and-fix

From (12), we know there is a discrepancy between u
(M−1)
k and u

(M)
k for k < M.

Regardless, we can bluff and take the solutions we have u
(M−1)
0 , . . . , u

(M−1)
M−1

to solve for some approximation of u
(M)
M , which we can call û

(M)
M , and then

back-substitute to solve the previous (M − 1) equations in the M system for

u
(M)
0 , . . . , u

(M)
M−1 using û

(M)
M . This approach is potentially more efficient than

calculating the solution of the M system directly via classic monolithic methods.
However, we will opt for an algorithm with even less computation time.

A workable strategy is based on a similar idea. Instead of re-computing

u
(M)
0 , . . . , u

(M)
M−1 after obtaining û

(M)
M , we re-solve for the least accurate u

(M)
k

at the same time as solving for û
(M)
k . That is, we only correct the û

(M)
k that

we believe will be the worst approximations of their corresponding u
(M)
k . The I

in Algorithm 1 is the collection of correction indices i.e. the indices k denoting

which u
(M)
k are corrected.

An algorithm to use the solution to an M − 1 system to solve an M system.

Algorithm 1: one step bluff-and-fix(c, u(M−1))

input:
• correction size c ∈ {1, . . . ,M}
• u(M−1) obtained by standard monolithic methods

select correction indices I ⊆ {0, . . . ,M − 1} such that |I| = c− 1
I ← I ∪ {M}
set approximate solutions to the M system equal to those of the
(M − 1) system (bluff), if those solutions are not getting corrected:

û
(M)
k ← u

(M−1)
k for all k ∈ {0, . . . ,M} \ I

solve (fix) the coupled system {û (M)
k }k∈I of size c to obtain û(M)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

A bluff-and-fix algorithm for polynomial chaos methods 7

Since the correction size c must be at least one, M ∈ I always. Here the

language is less intuitive; a former approximation of u
(M)
M is not being “corrected”

per say, since û
(M)
M is being determined for the first time — but when c > 1,

solving for û
(M)
M is occurring at the same time as some other û

(M)
k are being

fixed.

Algorithm 1 poses two immediate questions.

1. How large should we make the correction size c ∈ {1, . . . ,M}?
2. How should we choose the correction indices I? That is, how do we pick

which û
(M)
k approximations should be fixed?

To address question 1, note that if c = M , then the one step bluff-and-fix (BNF)
is equivalent to solving the entire M system directly. In this case, we use u(M−1)

to set none of the approximations û
(M)
k (no bluffing), and the entire coupled

system {û (M)}Mk=0 of M +1 equations is solved by standard numeric techniques.

The hypothesis is that by choosing which û
(M)
k to correct judiciously, we

can still well-approximate u(M) when c < M. This brings us to second posed

question. To determine the correction indices I, we target the u
(M)
k such that

u
(M−1)
k and u

(M)
k are very different so that the approximation û

(M)
k = u

(M−1)
k is

a poor one). From (12), we know the difference between the numeric solutions

u
(M)
k and u

(M−1)
k arises from the function Gk, so we would like I to ideally

include k∗ = arg maxk∈{0,...M−1} ‖Gk‖ , where ‖ · ‖ denotes some function norm
over (x, t) ∈ D. From the definition of Gk, we do not know what values its input
functions (v, w) or their derivatives will take over (x, t) ∈ D; however, we do
know the entries of the matrix LM .

Now there is some choice. The function Gk is the difference between FM and
FM−1 from Equations (9) and (10), and all three of these equations are scaled
by the 1

k! factor. We can keep this 1
k! factor and select the Gk that is large in

an “absolute error” sense. Alternatively, we can ignore this scaling and choose

the û
(M)
k to fix such that the difference function Gk is significant relative to its

corresponding FM and FM−1.

The former approach (call it the absolute version) targets k∗1 = maxk∈{0,...,M−1}
1
k!‖(L̃M)k•‖∞ = maxk∈{0,...,M−1}

1
k!

∑M
j=0 |(L̃M)k,j |. Equivalently, by Equation

(13), this is selecting k∗1 = arg max0≤k≤M−1
∑M
j=1 |(DM L̃M)kj | i.e. the k∗1 in-

dexing the row of DM L̃M with largest absolute row sum — where we recall that
L̃M is matrix of the first M rows of LM . The latter approach (call it the relative

version) simply picks the row indexing the largest row sum in L̃M itself (i.e. not

in DM L̃M).

Selecting the row of L̃M with maximal absolute row sum is simple; it is
straight-forward to verify that row M − 1 obtains the maximum (though may

not do so uniquely) and that the row sums of L̃M are non-decreasing as the row

index k increases. The structure of the DLL̃M matrix does not lend itself to as
obvious of a pattern.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

8 L. Lyman and G. Iaccarino

We opt for the relative version when constructing our algorithm, since its
numeric results are overwhelmingly promising (as discussed in Section 4) and its
implementation avoids an additional row sorting step; however, this is a potential
area for future investigation. Since we require |I| = c for a given correction size
parameter c, we simply pick the indices corresponding to the last c rows in the
M system i.e. I = {M − c+ 1, . . . ,M}.

3.2 Iterative bluff-and-fix

An assumption of the one step bluff-and-fix algorithm is that you already have
solved the fully coupled M − 1 system via some explicit time-stepping scheme
(e.g. as fourth-order Runge Kutta). Realistically, we likely only want to solve a
fully coupled M0 system for when M0 is small (say 2 or 3). How can we then
use this information for approximating u(M) for a larger M > M0?

An algorithm to use the solution to an M0 system to solve an M system for
general M > M0.

Algorithm 2: iterative bluff-and-fix(c,u(M0))

input:
• correction size c ∈ {1, . . . ,M}
• u(M0) obtained by standard monolithic methods

û(M0) ← u(M0)

for m = M0 + 1, . . . ,M do
select correction indices I ⊆ {0, . . . ,m− 1} such that |I| = c− 1
I ← I ∪ {m}
(bluff) set approximate solutions to the m system equal to those of
the (m− 1) system, if those solutions are not getting corrected:

û
(m)
k ← u

(m−1)
k for all k ∈ {0, . . . ,m} \ I

(fix) solve the coupled system {û(m)
k }k∈I to obtain û(m)

end

The iterative bluff-and-fix algorithm uses some baseline u(M0) solution to
get an approximation û(M0+1) of u(M0+1). The approximation û(M0+1) is then
re-fed into the one step bluff-and-fix algorithm, instead of the “true” u(M0+1),
to determine û(M0+2), and the process continues.

4 Numerical results

We report solutions for Burgers’ equation with uncertain initial conditions, which
are u(x, 0; ξ) = ξ sin(x) for ξ ∼ N (0, 1). The equation is solved for x ∈ [0, 3] on
a uniform grid with ∆x = 0.05. Time integration is based on the Runge-Kutta
4-step (RK4) scheme with ∆t = 0.001.

Throughout this discussion, we will define error as the deviation of the so-
lution approximated û(M) produced by bluff-and-fix from the solution yielded
from solving the full M system via RK4. That is, our computations are not being

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

A bluff-and-fix algorithm for polynomial chaos methods 9

compared with a true analytic solution but instead with the numerical solution
from a standard monolithic method. In particular,

absolute error in ûk(x, t) := ‖û BNF
k (x, t)− u RK4

k (x, t)‖2 (14)

relative error in ûk(x, t) :=
‖û BNF

k (x, t)− u RK4
k (x, t)‖2

‖uRK4
k (x, t)‖2

(15)

In (14) and (15), uk(x, t) is the matrix (uk(xi, tj))i,j of uk evaluated on the
uniform grid of position x and time t points. The ‖ · ‖2 denotes the matrix
2-norm.

When reporting the average absolute (resp. relative) error for an approxima-
tion û BNF for an M system, we mean taking the average of the absolute (resp.
relative) errors of each û BNF

k over all k indices.

4.1 Results for one step version

We compare the solution obtained by solving the full M system via RK4 against
the computations obtained by inputting the M − 1 solution u(M−1) into the one
step BNF algorithm. We test

1. correction size c = 1 (only û
(M)
M is computed per step),

2. correction size c = 2 (û
(M)
M is computed and û

(M)
M−1 is fixed per step), and

3. correction size c = 3 (û
(M)
M is computed and both û

(M)
M−2 and û

(M)
M−1 are fixed

per step).

The results are shown in Table 1.
Picking a small correction size (say one or two) can be sufficient for pro-

ducing accurate solution approximations. For instance, using the solution u(4)

to produce û(5) has average absolute error of under 1% for all c, around 4%
average relative error for c = 1, and under 1% average relative error for c = 2, 3,
as shown in the M = 5 row of Table 1. Figure 1 displays how the approximate

solution û
(5)
5 in this system converges to the RK4 solution as the correction size

c increases from 1 to 2. Similarly, using the solution u(6) to produce û(7) has
average absolute error of under 1% for all c values, around 6% average relative
error for c = 1, and about 2.5% average relative error for c = 2, as shown in the
M = 7 row of Table 2.

Table 1: Average absolute & relative errors for correction sizes c ∈ {1, 2, 3} in one
step bluff-and-fix for M = 3, . . . , 8.

M Avg. Abs. Error Avg. Rel. Error

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

3 0.1515 0.05593 0.01114 0.03196 0.004364 0.001683

4 0.03481 0.01823 0.007423 0.03711 0.005768 0.0008361

5 0.009536 0.006371 0.003599 0.04300 0.009232 0.001656

6 0.003279 0.002619 0.001859 0.05112 0.01530 0.003765

7 0.001330 0.001195 0.0009746 0.05986 0.02541 0.008166

8 0.0006404 0.0006118 0.0005623 0.06080 0.02630 0.01116

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

10 L. Lyman and G. Iaccarino

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Position x

−0.0004

−0.0002

0.0000

0.0002

0.0004

Tr
ue

 u
5(
x,

t)
an

d
its

 A
pp

ro
xi

m
at

io
n

True u5(x, t) and its Approximation v.s. Position (x) for M = 5

t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Position x

−0.0004

−0.0002

0.0000

0.0002

0.0004

Tr
ue

 u
5(
x,

t)
an

d
its

 A
pp

ro
xi

m
at

io
n

True u5(x, t) and its Approximation v.s. Position (x) for M = 5

t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

Fig. 1: The standard (“true”) RK4 solution u
(5)
5 (solid lines) against the û

(4)
5 produced

by one step bluff-and-fix (dashed lines) at time points t = 0, 0.05, 0.10, 0.15, 0.20 seconds

for 0 ≤ x ≤ 3. LHS figure shows û
(5)
5 for c = 1, and RHS figure shows û

(5)
5 improvement

for c = 2.

What if average or relative error can be further reduced by choosing a dif-

ferent subset of û
(M)
k to fix? To evaluate how well the correction indices I were

selected, we can examine the absolute and relative error in the approximation

ûMk = u
(M−1)
k for all k over various M values. Then we can see whether the

least accurate û
(M)
k for every M were appropriately chosen for correction. These

results are displayed in Table 2.

Table 2: Selection of correction indices I ranked by priority in one step bluff-and-
fix against the ideal û

(M)
k to correct (in this numeric example) for M ∈ {3, . . . , 8}.

Matching indices are shown in blue.

Ranking of k < M by Numeric Error

M (Descending) in û
(M)
k = u

(M−1)
k Order of Selection in I

Absolute Error Relative Error

3 2, 1, 0 2, 0, 1 2, 1, 0

4 3, 2, 1, 0 3, 2, 0, 1 3, 2, 1, 0

5 4, 3, 2, 1, 0 4, 3, 2, 0, 1 4, 3, 2, 1, 0

6 3, 4, 5, 2, 1, 0 5, 4, 3, 2, 0, 1 5, 4, 3, 2, 1, 0

7 3, 4, 5, 2, 6, 1, 0 6, 5, 4, 3, 2, 0, 1 6, 5, 4, 3, 2, 1, 0

8 3, 4, 2, 5, 1, 6, 7, 0 7, 6, 5, 4, 3, 2, 0, 1 7, 6, 5, 4, 3, 2, 1, 0

We see from Table 2 that one step bluff-and-fix is often spot-on for guess-

ing which approximations û
(M)
k are least accurate. When defining the “worst”

approximation by relative error, BNF always selects correctly for c < M − 1 —
and while the ideal indices when c = M − 1 or c = M are not all chosen, this
is likely no issue, as in practice a correction size that large would not be used.
(Recall that c = M is equivalent to using regular RK4.) Also, it should be noted
that bluff-and-fix can still produce an accurate solution approximation when

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

A bluff-and-fix algorithm for polynomial chaos methods 11

an “incorrect” index is chosen — it just might not be the best approximation
possible given that value of c.

In addition, we test the computational cost of one step and iterative bluff-
and-fix for different correction sizes and M values. The runtimes are measured
using the %timeit command in iPython with parameters -r 10 -n 10 to obtain
an average with standard deviation over 100 realizations. All computations are
performed on a machine with a 1.8 GHz Intel Dual-Core processor. The results
are displayed in Table 3.

From Table 3, we observe that bluff-and-fix consistently requires less compu-
tation time than the standard Runge-Kutta 4-step. That being said, recall that
one step bluff-and-fix assumes that the solution to the smaller system is readily
available. Any additional time that was spent to obtain this M − 1 system solu-
tion u(M−1) is not accounted for when obtaining runtime measurements — and
when M is large, this additional time is not trivial. Such concerns are addressed
when timing the iterative version of the algorithm in the following section, which
only assumes that we know u(M0) for some small M0 value.

Table 3: Runtimes of one step bluff-and-fix to approximate u(M) when given u(M−1)

compared with runtimes of solving full M systems via RK4. Tested over M = 3, . . . , 8
with correction sizes c = 2, 3. Each time measurement is averaged over 100 loops to
provide a confidence interval.

M
Avg. One Step BNF Runtime Avg. RK4 Runtime

c = 2 c = 3

3 146 ms ± 7.81 ms 175 ms ± 14.1 ms 181 ms ± 7.81 ms

4 162 ms ± 13.2 ms 183 ms ± 22.5 ms 222 ms ± 22.4 ms

5 167 ms ± 21.3 ms 184 ms ± 4.42 ms 260 ms ± 15.2 ms

6 167 ms ± 5.42 ms 189 ms ± 3.96 ms 315 ms ± 37.6 ms

7 191 ms ± 21.1 ms 202 ms ± 6.01 ms 336 ms ± 13.1 ms

8 216 ms ± 31.5 ms 217 ms ± 5.38 ms 377 ms ± 3.77 ms

4.2 Results for iterative version

Now we present results for Algorithm 2 when using the baseline solution u(M0) for
M0 = 2 to approximate solutions to the M systems for M = 3, . . . , 8. Correction
sizes c = 1, 2, 3 are all tested. The results are displayed in Table 4.

We observe how quickly the solution approximation from iterative bluff-and-
fix converges to the “true” RK4 solution as the correction size is increased. For
example, the average relative error in û(7) drops from ∼ 27% (c = 1) to ∼ 5.7%
(c = 2) to ∼ 1.4% (c = 3), and the average absolute error falls from ∼ 8.7% to
∼ 3.5% to ∼ 1%.

Furthermore, choosing a small correction size, such as c = 2, is highly accu-
rate even when M is as large as 8, with average relative error in this case always
below 8.5% and average absolute error always below 6%. Future work will be
focused on testing the algorithm for larger values of M to assess whether such a
small c value can maintain these promising results.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

12 L. Lyman and G. Iaccarino

Table 4: Average absolute & relative errors in iterative bluff-and-fix when using the
baseline solution M0 = 2 to approximate solutions to the M systems for M = 3, . . . , 8.
Results for correction sizes c = 1, 2, 3 are shown.

M Avg. Abs. Error Avg. Rel. Error

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

3 0.1515 0.05593 0.01115 0.03196 0.004363 0.001682

4 0.1337 0.05301 0.01420 0.07467 0.01019 0.001924

5 0.1145 0.04634 0.01357 0.1313 0.02034 0.003412

6 0.09894 0.04033 0.01227 0.2013 0.03642 0.006904

7 0.08676 0.03547 0.01096 0.2740 0.05793 0.01400

8 0.07711 0.03147 0.009704 0.3586 0.08464 0.02020

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Position x

 0.003

 0.002

 0.001

0.000

0.001

0.002

0.003

Tr
ue
 u
4(
x,

t)
an
d
its
 A
pp
ro
xi
m
at
io
n

True u4(x, t) and its Approximation v.s. Position (x) for M = 7
t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Position x

 0.002

 0.001

0.000

0.001

0.002

Tr
ue
 u
4(
x,

t)
an
d
its
 A
pp
ro
xi
m
at
io
n

True u4(x, t) and its Approximation v.s. Position (x) for M = 7
t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Position x

 0.002

 0.001

0.000

0.001

0.002

Tr
ue
 u
4(
x,

t)
an
d
its
 A
pp
ro
xi
m
at
io
n

True u4(x, t) and its Approximation v.s. Position (x) for M = 7
t = 0.00
t = 0.05
t = 0.10
t = 0.15
t = 0.20

Fig. 2: The standard (“true”) RK4 solution u
(8)
4 (solid lines) against the û

(8)
4 pro-

duced by iterative bluff-and-fix (dashed lines) from a baseline M0 = 2 solution. Solved
over a uniform grid with 0 ≤ x ≤ 3 and 0 ≤ t ≤ 0.25, with solutions at times
t = 0, 0.05, 0.10, 0.15, 0.20 displayed. We can see how the approximation û

(8)
4 converges

to the RK4 solution as the correction size is increases from one (top left figure) to two
(top right figure) to three (bottom figure).

As before, we test the computational cost via %timeit in iPython for different
correction sizes and M values, averaging each measurement over 100 realizations
to provide a confidence interval. The computation time of iterative bluff-and-fix
is on average 853 ms ± 39.5 ms, 1.12 s ± 121 ms, and 1.28 s ± 63.5 ms for

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

A bluff-and-fix algorithm for polynomial chaos methods 13

c = 1, 2, 3, respectively. We can see that the added cost from correcting û
(M)
M−1,

as opposed to just solving for û
(M)
M , is on average only 267 milliseconds. This

suggests that the reduction in error between c = 1 and c = 2 potentially comes
at a cheap cost, especially given that average absolute error and relative error is
under 6% and 8.5% (respectively) after this transition.

Using RK4 to only solve the M = 8 system is faster than using iterative bluff-
and-fix from the baseline M0 = 2 solution: the former spends 426 ms ± 48.6 ms
per loop, as opposed to around 850 milliseconds. However, it is possible that for
larger M values, the iterative bluff-and-fix algorithm will eventually out-perform
RK4 in terms of runtime. This is an area for future investigation.

Furthermore, iterative bluff-and-fix has the advantage of producing approx-
imate solutions to all of the M systems for M = 3, . . . , 8 along the way. When
repeatedly solving the full M system via RK4 for M = 3, . . . , 8, the average
runtime is 2.05 s ± 145 ms per loop — meaning bluff-and-fix with correction
sizes c = 1 (averaged at 853 milliseconds), c = 2 (averaged at 1.21 seconds), and
c = 3 (averaged at 1.28 seconds) is far more efficient for this type of goal.

5 Conclusion

Polynomial chaos (PC) methods are effective for incorporating and quantifying
uncertainties in problems governed by partial differential equations. In this pa-
per, we present a promising algorithm (one step bluff-and-fix) for utilizing the
solution to a polynomial chaos M system arising from inviscid Burgers’ equation
to approximate the solution to the corresponding (M+1) system. We expand the
algorithm to an iterative version, which utilizes the solution to an M0 system to
approximate the solution to an M system for a general M > M0. Bluff-and-fix is
shown to be effective in producing accurate approximations, even when its cor-
rection size parameter is small, for both its one step and iterative versions. In the
one step version, these approximations are produced more efficiently than doing
so with a standard monolithic numeric scheme. While iterative bluff-and-fix from
some baseline M0 can be less efficient than solving the full M system directly, it
has the advantage of producing approximations to all of the m systems along the
way for M0 ≤ m ≤M — and does so faster than the monolithic method solves
all of the full m systems one by one. In general, it could be beneficial to know the
solution to an M system for a consecutive range of M values, because then one
could observe when the difference between consecutive system solutions is small,
which provides a rough sense of the M value sufficient for solution convergence.

Future work will be focused on generalizing and testing the algorithm on
other nonlinear PDEs with uncertain initial conditions. We also plan to investi-
gate different choices of the uncertainty representation ξ. It is expected that the
process for selecting which solutions to “fix” will need to be generalized, since
those choices rely entirely on the structure of the LM matrix, which depends on
the choice of orthogonal polynomial.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://dx.doi.org/10.1007/978-3-030-50436-6_55

14 L. Lyman and G. Iaccarino

6 Appendix

Proof of Lemma 1. The computation for (6) is straight-forward. To prove (7)

write
∑M
i=0

∑M
j=0 ui

∂uj

∂x 〈ΨiΨjΨk〉 as

M−1∑
i,j=0

〈ΨiΨjΨk〉ui(uj)x +

M−1∑
j=0

〈ΨMΨjΨk〉[uMuj]x + 〈Ψ2
MΨk〉uM (uM)x

=

M−1∑
i,j=0

(Ψ
(M−1)
k)ijui(uj)x +

M−1∑
j=0

(LM)k,j
[
uMuj

]
x

+ (LM)k,M
[
1
2uM (uM)

]
x

= vTΨ
(M−1)
k (v)x + (LM)k•

∂

∂x

[
w

(
v
1
2w

)]
.

where the chain rule and symmetry of the triple-product were applied in the
first equality. Finally, note that the first and third terms on the LHS of (7) in

aggregate are clearly ∂v
∂t and DM L̃M

∂
∂x

[
w

(
v

1
2w)

)]
, respectively. By definition

of the Kronecker product, DM ⊗ vT is the M ×M2 matrix

DM ⊗ vT =


1

(0)!v
T

. . .
1

(M−1)!v
T


and so (DM ⊗vT)Ψ(M−1) is the M ×M matrix whose kth row is 1

k!v
TΨ

(M−1)
k .

Thus, (DM ⊗ vT)Ψ(M−1)(v)x is the desired M × 1 vector whose kth entry is
1
k!v

TΨ
(M−1)
k (v)x, completing the proof of (8).

References

1. Cameron, R., Martin, W.: The orthogonal development of non-linear functionals in
series of Fourier-Hermite functionals. Annals of Mathematics. 48, 385-392 (1947).

2. Constantine, P.: A primer on stochastic Galerkin methods. Academic home-
page, https://www.cs.colorado.edu/~paco3637/docs/constantine2007primer.

pdf. Last accessed 6 Feb 2020
3. Constantine, P.: Spectral methods for parametrized matrix equations. Ph.D. thesis,

Stanford University (2009)
4. Ghanem, R., Spanos, P.: Stochastic finite elements: a spectral approach. Springer-

Verlag, New York (1991)
5. Owen, A.: Monte Carlo theory, methods and examples, Ch. 1. Academic homepage,

https://statweb.stanford.edu/~owen/mc/. Last accessed 15 April 2020
6. Szegö, G: Orthogonal Polynomials, 2nd Edition. American Mathematical Society,

New York (1959)
7. Wiener, N.: The homogenous chaos. Amer. J. Math. 60(4), 897–936 (1938)
8. Xiu, D., Karniadakis, G.: The Wiener–Askey polynomial chaos for stochastic differ-

ential equations. SIAM J. Sci. Comput. 24, 619-644 (2002)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_55

https://www.cs.colorado.edu/~paco3637/docs/constantine2007primer.pdf
https://www.cs.colorado.edu/~paco3637/docs/constantine2007primer.pdf
https://statweb.stanford.edu/~owen/mc/
https://dx.doi.org/10.1007/978-3-030-50436-6_55

