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Abstract. Uncertainty of input parameters in crop models and high
costs of their experimental evaluation provide an exciting opportunity
for sensitivity analysis, which allows identifying the most significant pa-
rameters for different crops. In this research, we perform a sensitivity
analysis of soil parameters which play an essential role in plant growth
for the MONICA agro-ecosystem model. We utilize Sobol’ sensitivity
indices to estimate the importance of main soil parameters for several
crop cultures (soybeans, sugar beet and spring barley). High-throughput
computing allows us to speed up the computations by more than thirty
times and increase the number of sampling points significantly. We iden-
tify soil indicators that play an essential role in crop yield productivity
and show that their influence is the highest in the topsoil layer.

Keywords: Crop model · Sobol’ indices· Soil parameters UQ.

1 Introduction

Numerical digital crop models are used for crop yield prediction worldwide nowa-
days [24] and have applications in decision-support systems for farmers [10,15].
These models require soil, environmental and agro-management input data to
establish plant growth simulation. The most widespread crop models, such as
CENTURY [13], APSIM [5], DNDC [2] and MONICA [11] include modules of
soil processes, climate and crop properties and allow to improve model’s fore-
cast with the calibration of internal parameters. Unfortunately, measurements
of soil parameters for spatial modeling might be expensive and time-consuming,
especially in countries where agrochemical data is not freely available.
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Various approaches to reduce the number of parameters in environmental
models have been proposed [14]. One of the most promising tools is evaluation
of the performance of complex environmental models through sensitivity analysis
(SA) [22]. Sensitivity analysis simplifies the process of modeling by identifying
and removing unnecessary elements from the structure of the model. There is a
series of recent publications regarding the assessment of soil and plant sensitivity
indicators conducted by Krishnan [8], Zhang [26], Karki [7], Gunarathna [3].

In practice, sensitivity analysis involves a) sampling of the multidimensional
input parameter space; and b) subsequent simulations of the model. To obtain
reliable confidence intervals, it may require millions of simulation runs, which
may be infeasible for general-purpose computers. In previous works, the number
of input samples was limited to 2000 - 30 000 points [12,23], which may be insuf-
ficient in other settings, where the amount of varied parameters is much larger.
A natural way to speed up the simulations is to distribute them into independent
blocks and perform parallel computations using a supercomputer [6].

In this work, we develop an effective and fast method for computing more
than 500 000 agro-ecosystem MONICA model simulations per hour. It allows us
to consider a much broader class of problems of practical interest. In particular,
we increase the number of sampling points for sensitivity analysis of parame-
ters up to 100 000, efficiently distribute calculations using a supercomputer and
perform 2 000 000 model runs.

2 Materials and methods

In this section, we describe the materials and methods that we use in our work.

2.1 MONICA agro-ecosystem model

There is a variety of commercial and open-source models for crop growth simu-
lations and yield prediction. In our research, we choose an open-source process-
based agro-ecosystem model MONICA [11] that has been developed by ZALF
institute during the last decades (Müncheberg, Germany). As input, MONICA
requires soil parameters, crop rotation, fertilization schedule, and climate data.

Even though MONICA was developed for Western Europe soil conditions
and climate, it can be optimized to other crop types by using model parameters
for physiology and plant development. The MONICA model includes more than
120 parameters in soil hydrology processes, soil nutrients and organic matter
turnover, plant physiology, and other blocks responsible for different processes
that influence crop yield. MONICA receives soil data as different depth horizons
(layers of soil with relatively uniform properties), which can be set up by a user
in the format of a JSON-file.

2.2 Soil parameters

The selection of parameters and their bounds play an essential role in sensitivity
analysis [17]. In our research, we use agricultural data from a field experiment
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Table 1. Soil parameters of MONICA model and their min/max values used in SA.

Parameter Description Unit Min. Max.
SOC Soil organic carbon % 2.58 6.20
Sand Soil sand fraction kg ∗ kg−1 0.01 0.30
Clay Soil clay fraction kg ∗ kg−1 0.01 0.30
pH Soil pH value - 4.6 6.9
CN Soil carbon:nitrogen ratio - 10.9 12.4
BD Soil bulk density kg ∗m−3 900.0 1350.0

in the Russian Chernozem region. Among the great variety of climate conditions
and soil types in Russia, the Chernozem region has special significance because
of its potential productivity due to the highest nutrition and carbon content. We
examine the commercial field in Kursk, Russia (51◦52′20′′N, 37◦50′52′′E) with
six years crop-rotation from 2011 to 2017. The crop rotation consists of three
different crops, namely sugar beet (Beta vulgaris) for years 2011, 2014, 2017,
spring-barley(Hordeum vulgare) in 2012, and soybean(Glycine max ) in 2015.
The soil profile consists of several layers (or horizons). The upper arable horizon
is especially crucial for the growth and development of crops. Subsoil layers may
take part in hydrology regime and affect plant growth as well.

MONICA model requires more than ten different parameters for simulation
within each soil layer. We select six main soil parameters (see Table 1) for sen-
sitivity analysis (Soil organic carbon, Soil pH, Clay content, Sand content, Car-
bon:Nitrogen ratio, Bulk density). These parameters represent significant soil
properties and have a considerable impact on crop yield. The value boundaries
for the parameters were taken from the Russian Soil database [1] and represent
the actual values for chernozem soils. In our research, we concentrate on crop
yield (kgDryMatter ∗ha−1) as an output of the MONICA model for sensitivity
analysis. Prediction of yield is a complicated task because the yield depends on
almost all processes in an agricultural system.

To identify the most critical horizons, we evaluate the sensitivity indices of
soil parameters at various depths. MONICA model allows us to set up soil layers
with various thickness and parameters. We set nine layers with different thickness
typical for agricultural soils of the Chernozem region as follows: topsoil 30 cm,
seven horizons with 10 cm depth and the subsoil layer with 100 cm depth. We
iteratively select each parameter from the Table 1 and evaluate how changes of
this parameter in each soil layer affect the model’s predictions. After identifying
the most influential (in terms of crop yield) horizon, we perform sensitivity
analysis of all six soil parameters for this layer specifically.

2.3 The Sobol’ sensitivity analysis

Sensitivity analysis is a methodology of qualitative investigation of a model and
its parameters which helps to identify parameters affecting the output of the
model. It is possible to distinguish local and global sensitivity analyses. In our
research, we choose the method developed by Sobol’ [19] for global SA.
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Consider the model output as

Y = f(X) = f (X1, . . . , Xp) ,

where f in our case depicts MONICA simulator, X are p varied input parameters
and Y is the predicted crop yield. Following the techniques by Sobol’ [21] we
represent the multi-variate random function f using Hoeffding decomposition:

f(X1, . . . , Xp) = f0 +

p∑
i

fi +

p∑
i

p∑
j>i

fij + · · ·+ f1...p, (1)

where f0 is a constant term, fi = fi(Xi) denotes main effects, fij = fij(Xi, Xj)
and others describe higher-order interactions. These terms can be written as

f0 = E(Y ),

fi = EX∼i(Y |Xi)− E(Y ),

fij = EX∼ij (Y |Xi, Xj)− fi − fj − f0,

. . .

where E is mathematical expectation and X∼i denotes all parameters except ith.
Under the assumption that the input parameters are independent, total variance
V (Y ) of the crop yield can be decomposed as follows:

V (Y ) =

p∑
i

Vi +

p∑
i

p∑
j>i

Vij + · · ·+ V12...p,

where partial variances are

Vi = V [fi(Xi)] = VXi
[EX∼i

(Y |Xi)] ,

Vij = V [fij(Xi, Xj)] = VXiXj

[
EX∼ij

(Y |Xi, Xj)
]
− Vi − Vj ,

. . .

This way, sensitivity indices (SI) can be introduced as

Si =
Vi

V (Y )
, Sij =

Vij

V (Y )
, . . . (2)

One can note the total sum of the indices is normalized to 1. The value of
the Sobol’ index corresponds to the “order” of sensitivity of f to the change
of the corresponding input parameter or their group (see the details in [19]
or [21]). Analogously to Equation 1, first-order indices denote variance induced
by changes of a single parameter without any interactions; second-order indices
consider second-order interactions between the parameters; etc. In order to in-
corporate all of the interactions for a particular parameter, one can compute the
total effect index:

STi
=

EX∼i
[VXi

(Y |X∼i)]
V (Y )

= 1− VX∼i
[EXi

(Y |X∼i)]
V (Y )

(3)
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Fig. 1. Distributed computations comprising 5 steps: a) Sobol’ sequence sampling from
the initial input data, where D is the number of perturbed input parameters, n =
N × (2×D+2) is the total number of simulations and N is sampling size; b) mapping
of acquired samples in batches to p HTC nodes; c) running n/p parallel MONICA
simulations on each node; d) aggregating yield values from simulation results; and e)
calculation of Sobol’ sensitivity indices.

Evaluation of Sobol’ indices requires us to perform a random sampling of the
parameter hyperspace. In our work, we utilize quasi-random sampling approach.
In general, such methods add new points into the sequence taking into account
previously added points and may create a uniformly filled parameter space in
the unit hypercube. In our work, we use the classical approach also proposed by
Sobol’ [18,20], which helps to achieve a convergence rate of confidence intervals
almost O(N−1), where N is the number of samples [9].

2.4 Crop simulation and high-throughput computing

Sensitivity analysis requires the results of a significant number of simulations
with various parameters. The number of simulations necessary for the conver-
gence of sensitivity indices can be computationally expensive. In our work, we
use “Zhores” supercomputer to tackle this problem [25]. Figure 1 outlines our
approach. First, the initial values of D parameters are used to generate the n×D
matrix of samples using Sobol’ quasi-random sequence, more particularly, its ex-
tension proposed by Saltelli [16], where n = N× (2×D+2) and N is the sample
size. Second, these samples are grouped into batches of size n/p × D and each
batch is then mapped to one of p HTC nodes. Third, each node performs n/p
MONICA simulations in parallel. Then, yield predictions are extracted from out-
put results and aggregated back to a vector of size n. Finally, these yield values
are used to calculate Sobol’ sensitivity indices using SALib Python library [4].
The most computationally expensive step is running the simulations, whereas
the generation of samples and sensitivity analysis are negligible (several minutes
in our experiments compared to hours of simulations).

To obtain the convergence of confidence intervals for sensitivity indices we
use a different number of input sample points (from 10 to 100 000) to find
the optimal amount needed for SA. To evaluate the acceleration, we compare
the time spent for 2 000 000 simulations on a single core and p = 96 Intel
Xeon C6140 cores. This set of simulations is the main time-consuming part of
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Fig. 2. Heatmap of STi index for six soil parameters across different horizons in the
five-year crop rotation. For the majority of crops, the most considerable role in yield
variation is played by the change of parameters in the upper horizon.

computational work. It takes almost ∼112 hours to calculate this on one core,
and 3.5 hours on 96 cores. The acceleration is 32.5 times and limited mostly by
the performance of the file system. The speedup is defined by S = ts/tp, where
ts and tp are the time for serial and parallel model simulations. We could have
achieved additional acceleration of computations via the storage of simulation
input files and technical outputs in RAM instead of direct creation and removal
of files on hard-drives. We plan to do it in our future work.

3 Results and discussion

In this section, we investigate the effect of input soil data on crop yields and
provide our experimental results. For this purpose, we select six principal soil
parameters important for plant growth, develop and evaluate the sensitivity of
the model for each indicator at different soil depths. To demonstrate which soil
horizons have the most significant impact on crop productivity, first, we divide
the soil profile into nine horizons of different thickness and, second, perform
separate sensitivity analyses for each of the parameters from the Table 1.

We present the obtained results in Figure 2 in the form of heatmaps displaying
the soil profile. Crop rotation and the depth of soil horizons are represented with
X and Y axes, respectively. We use a sample size N equal to 100 000 and conduct
2 000 000 simulations for each soil parameter, which allows us to obtain suitable
confidence intervals. Color depicts the values of the total-order Sobol’ SI, where

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_54

https://dx.doi.org/10.1007/978-3-030-50436-6_54


Title Suppressed Due to Excessive Length 7

100μ

0.001

0.01

0.1

1

10 100 1000 10k 100k

1μ

10μ

100μ

0.001

0.01

0.1

1

Number of input samples
10 100 1000 10k 100k

Number of input samples

C
o
n
fi

d
en

ce
 i

n
te

rv
al

Si

SOC SandClay Bulk Density

STi

Fig. 3. The convergence of Si (left) and STi (right) confidence intervals for the topsoil
layer of Sugar beet crop (2017 year) with different input sample sizes N . It can be seen
that the convergence rate achieved is equivalent to O(N−1).

light yellow color indicates no impact of parameter variation on the crop yield,
and purple color indicates significant influence. We conclude that for most of the
considered crops the main influence of parameters on final yield concentrates in
the top horizon. However, the clay fraction and soil organic carbon affect the
yield of barley in the entire soil profile. The effect of soil organic matter content
on sugar beet yields changes during crop rotation. The content of organic matter
in the upper horizon affects the yield only at the beginning of crop rotation. The
transformation of organic matter in the soil leads to the distribution of organic
compounds along the profile, and the subsurface horizons begin to affect the
yield of sugar beet. For further analysis of soil parameters, we concentrate only
on the upper horizon of 0-30 cm.

To identify the parameters in the topsoil layer that have the most significant
impact on crop yield, we analyze first-order Si and total effect STi indices. One
of the necessary conditions for successful SA is the convergence of the obtained
SI values. As noted above, we use quasi-random sampling method proposed by
Sobol’ to increase the convergence rate of sensitivity indices values with a sample
size N varying from 10 to 100 000. Figure 3 demonstrates convergence of the
confidence intervals for Si and STi indices of the main six parameters, which
achieves the rate of O(N−1) for Sugar beet crop (2017). For other crops, we
obtain the same qualitative results.

Figure 4 shows Si and STi values and additionally their confidence inter-
vals for different cultures: spring barley (2012), soybean (2015) and sugar beet
(2017). We exclude the plots for two other years of Sugar beat because they are
qualitatively the same as in 2017. Soil parameters with sensitivity indices close
to zero achieved stable values faster than the parameters with higher indices.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_54

https://dx.doi.org/10.1007/978-3-030-50436-6_54


8 M. Gasanov et al.

Si STi

Number of input samples

S
o
y
b
ea

n
 2

0
1
5

−1

−0.5

0

0.5

1

−0.5

0

0.5

1

1.5

−0.5

0

0.5

1

1.5

S
u
g
ar

 B
ee

t 
2
0
1
7

  
S

p
ri

n
g
 b

ar
le

y
 2

0
1
2

10     50     100     500     1000     5000     10 000     100 000 10     50     100     500     1000     5000     10 000     100 000

Soil Organic CarbonClay Bulk density Confidence level 0.95

Fig. 4. Values of Si (left) and STi (right) indices for different crops, sample sizes N
and soil parameters. Filled regions depict confidence intervals of the respective indices.
Some of the parameters have rapid convergence of their confidence intervals because
their Sobol’ indices are very close to zero.

Significant model parameters (which have strongly nonzero sensitivity indices)
required input samples size from 1000 to 5000. It can be seen that different soil
parameters have different importance for crop yield. Soil organic carbon content
plays an essential role in all crops. The change in bulk density and soil organic
carbon has a more significant impact on spring barley yields than on other in-
dicators. Almost all the difference in soybean yield is due to the change in the
soil clay fraction. The yield of sugar beet depends on the content of soil clay and
bulk density, which coincides with real data, since beets are demanding to water
nutrition, and clay content and bulk density can affect water regime. The values
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Fig. 5. First-order, second-order and total Sobol’ sensitivity indices’ for the six soil
parameters and three crops: sugar beet (2011, 2014, 2017), spring barley (2012) and
soybean (2015).

Si and STi
for soil pH and carbon-nitrogen ratio in soil organic matter were

almost equal to zero. It seems strange that they did not affect the crop yield.
Considering that pH condition of soil determines the availability of nutrients for
plants, and carbon to nitrogen ratio shows the quality of organic matter, it could
influence the activity of soil microbial community. We plan to provide a more
detailed analysis of corresponding MONICA submodels in our future research.

To represent second-order effects we employ diagrams in Figure 5. It shows Si,
Sij and STi

for different crop rotations, where gray lines describe interactions
between soil parameters, black and white circles denote first-order and total
sensitivity indices, respectively. There are total SI values for sand content and
organic matter for soybean, which indicates the importance of the interactions
of these parameters for yield. The figure demonstrates that clay, soil organic
carbon, and bulk density are the parameters that have the highest value of first-
order SI for the majority of years. As the first-order SI measures the fractional
contribution of a single parameter to the output variance, we conclude that
these parameters have the most significant impact on yield in our case. Second-
order sensitivity indices in the figure show which parameter interactions play
the biggest role in yield prediction. The soybean yield is affected by second-
order interactions between almost all indicators. In contrast, spring barley yield
is affected only by the coupled effect of soil density and organic matter content.
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From Figure 5 we also see that the importance of SOC parameter and values of
the second-order Sobol’ indices change in time due to the transformation of soil
organic matter during the crop rotation.

4 Conclusions

In this research, we investigated the importance of different soil parameters in
MONICA crop simulation model. For this purpose, we used a variance-based sen-
sitivity analysis method developed by Sobol’. For successful convergence of the
algorithm it requires numerous runs of simulations, and to tackle this problem,
we applied high throughput computing. Our results indicate that for each stud-
ied crop a different set of soil parameters affects the yield. The transformation
of organic matter in the soil during the crop rotation modifies the importance of
this parameter for sugar beet productivity. The results show the presence of col-
lective influence of model input parameters on crop productivity. Moreover, for
the selected region of study the C:N ratio and pH parameters could be excluded
from MONICA, or corresponding submodels should be updated accordingly. The
source code and the results are freely available at our GitHub repository1.
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