
Supporting education in algorithms of computational
mathematics by dynamic visualizations using computer

algebra system

Włodzimierz Wojas1[0000−0002−1194−7342] and Jan Krupa(�)1[0000−0001−5967−6417]

Warsaw University of Life Sciences (SGGW), Department of Applied Mathematics, ul.
Nowoursynowska 159, 02-776 Warsaw, Poland {wlodzimierz wojas,jan krupa}@sggw.pl

Abstract. Computer algebra systems (CAS) are often used programs in universi-
ties to support calculations and visualization in teaching mathematical subjects. In
this paper we present some examples of dynamic visualizations which we prepared
for students of Warsaw University of Life Sciences using Mathematica. Visual-
izations for simplex algorithm and Karush-Kuhn-Tucker algorithm are presented.
We also describe a didactic experiment for students of the Production Engineering
Faculty of Warsaw University of Life Sciences using dynamic visualization of the
network flow problem.
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1 Introduction

The development of computational mathematics techniques, technologies and tools in
recent decades has created new educational challenges in teaching mathematics and IT
subjects in higher education. On the other hand, the development of computational math-
ematics technology has created new educational perspectives based on the possibility of
using new computational and visualization tools in education. CAS such as wxMax-
ima, Mathematica, Maple, Sage, and others are often used to support calculations and
visualization in teaching mathematical subjects [6,7,10,11,9]. In teaching mathematical
algorithms in the field of mathematical analysis, mathematical programming or graph
theory, the possibility of symbolic calculations and visualizing the algorithm steps seems
useful from an educational point of view. This allows a better and deeper understanding
of the topic. In this paper we present two examples of dynamic visualizations which we
prepared for students of the Faculty of Informatics and Econometric of Warsaw Uni-
versity of Life Sciences using Mathematica [8,12] within the course of Mathematical
Programming. We present dynamic visualizations for simplex algorithm for linear pro-
gramming (LP) problem [2,5] and for nonlinear programming (NLP) problem which
we solve using Karush-Kuhn-Tucker (KKT) algorithm [3,5]. A didactic experiment for
students of the Production Engineering Faculty of Warsaw University of Life Sciences
using dynamic visualization of the network flow problem will also be discussed.
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2 Visualization of primal simplex algorithm steps – 3D example

In this example the authors present some new complex approach to visualization of sim-
plex method steps.

The authors propose to use for visualization expanded Simplex Tableau which con-
tains for each simplex step: current simplex table for this step, graph of feasible region
for canonical form of LP problem with current corner point and „simplex path”, level
sets of goal function (hyperplanes : lines in 2D, planes in 3D), axis with current value
of objective function for this step.

Let us solve the following LP problem:

Example 1.

Maximize z = 4x1 + x2 +6x3

Subject to x1 ≤ 9
x2 ≤ 5

− x2+5x3 ≤ 15
−2x1−3x2+3x3 ≤ 3

5x1− x2+5x3 ≤ 45
xi ≥ 0 for i = 1,2,3.

Corresponding to it canonical form is:

Maximize z = 3x1 +2x2

Subject to x1 + x4 = 9
x2 + x5 = 5

− x2 +5x3 + x6 = 15
−2x1−3x2 +3x3 + x7 = 16

5x1− x2 +5x3 + x8 = 45
xi ≥ 0 for i = 1,2, . . . ,8

Let S be feasible region for this LP problem (in standard form). S is presented in each
Figure 1–5. It is convex polyhedral set with vertices at: v1 = (0,0,0),v2 = (9,0,0),v3 =
(9,5,0),v4 =(0,5,0),v5 =(0,0,1),v6 =(3,0,3),v7 =(6,0,3),v8 =(9,5,1), v9 =(6,5,4),
v10 =(0,5,4),v11 =(0,5/2,7/2). In each Figs. 1–5 we present expanded Simplex Tableaus
for subsequent vertices of simplex path. The current vertex of simplex path and level set
are in red and the previous ones are in blue. The dynamic versions of the Figs. 1–5 can
be found in the Electronic supplementary material:
https://drive.google.com/open?id=1vgBC1ij7Z9mNL8 nmhVgrwi3qFRzzhYN
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Fig. 1: First expanded Simplex Tableau.

Fig. 2: Second expanded Simplex Tableau.
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Fig. 3: Third expanded Simplex Tableau.

Fig. 4: Forth expanded Simplex Tableau.
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Fig. 5: Fifth expanded Simplex Tableau.

Finally we get that zmax = z(6,5,4) = 53.
The above example and also another 2D and 3D examples, were presented students

of Informatics and Econometrics Faculty of Warsaw University of Life Science in the
framework of the course of Mathematical Programming. These were introductory ex-
amples illustrating the simplex algorithm steps. Using the expanded Simplex Tableau
allows students to trace the steps of simplex algorithm in quite comprehensive man-
ner - taking into account both computational and geometric aspects of the algorithm.
From Figures 2–4 we can see the the planes: 4x1 + x2 + 6x6 = 6, 4x1 + x2 + 6x6 = 30,
4x1 +x2 +6x6 = 42 are not supporting planes of the feasible region for this LP problem
S, but from Figure 5 we can see that the plane 4x1+x2+6x6 = 53 is supporting plane of
S (this can be better seen in the the dynamic versions of the Figs. 1–5 in the Electronic
supplementary material). So we may conclude independently that zmax = z(6,5,4) = 53.
We cannot find analogical approach to present simplex algorithm steps in available lit-
erature.

3 Karush-Kuhn-Tucker necessary conditions

We will consider NLP problems in the following form:

minimize/maximize
(x1,x2,...xn)

f (x1,x2, . . . ,xn)

subject to: gi(x1,x2, . . . ,xn)≥ 0, i = 1,2, . . .m,

(x1,x2, . . . ,xn) ∈ X ,

(P)
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where n and m are positive integers, X is a subset ofRn and f ,gi are real-valued functions
on X with at least one function of f ,gi (i= 1,2, . . . ,m) being nonlinear. A feasible region
of the NLP problem is defined as a set of all possible points that satisfy all the problem’s
constraints.

We start with the following theorem ([3]):

Theorem (Karush-Kuhn-Tucker Necessary Conditions). Let X be a nonempty open
set in Rn, and let f : Rn 7→R and gi : Rn 7→R for i = 1, . . . ,m. Consider the Problem (P)
to minimize f (x) subject to gi(x) ≥ 0 for i = 1, . . . ,m. Let x̄ be a feasible solution, and
denote I = {i : gi(x̄) = 0}. Suppose that f and gi, for i = 1,2, . . .m are differentiable at x̄.
Furthermore, suppose that ∇gi(x̄) for i ∈ I are linearly independent. If x̄ solves Problem
(P) locally, there exist scalars λi, for i = 1,2, . . .m such that:

∇ f (x̄)−
m

∑
i=1

λi∇gi(x̄) = 0 (1)

λigi(x̄) = 0 for i = 1,2, . . .m (2)
λi ≥ 0 for i = 1,2, . . .m. (3)

Example 2. Using KKT necessary conditions we determine global minimum and max-
imum function f (x,y) = y2− x subject to: 5− x− y≥ 0,xy−4≥ 0,x−1≥ 0 and next
we visualise the solution graphically using dynamic plots.

Formally, KKT necessary conditions require an independent solution of two tasks -
one for minimum and one for maximum. We first solve the NLP problem for minimum
and next the NLP problem for maximum.
a) Consider the following problem:

minimize
(x,y)∈R2

y2− x

subject to: 5− x− y ≥ 0,
xy−4 ≥ 0,
x−1 ≥ 0.

(4)

Let g1(x,y) = 5− x− y, g2(x,y) = xy−4 and g3(x,y) = x−1.
∇ f (x,y) = λ1∇g1(x,y)+λ2∇g2(x,y)+λ3∇g3(x,y) is equivalent to:
[−1,2y] = λ1[−1,−1]+λ2[y,x]+λ3[1,0]. So we must solve the following system:

−1 = −λ1 +λ2y+λ3
2y = −λ1 +λ2x

5− x− y ≥ 0
xy−4 ≥ 0
x−1 ≥ 0

λ1(5− x− y) = 0
λ2(xy−4) = 0
λ3(x−1) = 0

(5)

where λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0.
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Case 1. Let g1(x,y)= 0, g2(x,y)= 0 and g3(x,y)= 0. Hence 5−x−y= 0, xy−4= 0
and x = 1. So x = 1 and y = 4 hence −1 = −λ1 + 4λ2 +λ3 and 8 = −λ1 +λ2, hence
−9 = 3λ2 +λ3 contradicts nonnegativity of λ2,λ3.

Case 2. Let g1(x,y) = 0, g2(x,y) = 0 and g3(x,y) > 0. Hence 5− x− y = 0 and
xy−4= 0 and λ3 = 0. So x= 4 and y= 1 hence−1=−λ1+λ2 and 2=−λ1+4λ2 hence
λ2 = 1 and λ1 = 2. ∇g1(4,1) = [−1,−1], ∇g2(4,1) = [1,4] are linearly independent.

Case 3. Let g1(x,y) = 0 and g2(x,y)> 0 and g3(x,y) = 0. Hence λ2 = 0, x = 1 and
y = 4, but g2(1,4) = 0 contradicts assumption in current Case 3 g2(x,y)> 0.

Case 4. Let g1(x,y) = 0 and g2(x,y)> 0 and g3(x,y)> 0. Hence λ2 = λ3 = 0 hence −1 =−λ1
2y =−λ1

5− x− y = 0.
(6)

It follows that λ1 = 1. Hence y =−1/2 and x = 11/2. g2(11/2,−1/2) =−11/4−4 < 0
contradicts assumption in current Case 4 g2(x,y)> 0.

Case 5. Let g1(x,y)> 0 and g2(x,y) = 0 and g3(x,y) = 0. Hence λ1 = 0 and x = 1
and y = 4, hence−1 = 4λ2+λ3 and 8 = λ2. So λ3 =−33 < 0 contradicts nonnegativity
of λ3.

Case 6. Let g1(x,y)> 0 and g2(x,y) = 0 and g3(x,y)> 0. Hence λ1 = λ3 = 0 hence
−1 = λ2y and 2y = λ2x hence λ 2

2 =− 1
x < 0 contradiction because x > 1.

Case 7 and 8. Let g1(x,y)> 0 and g2(x,y)> 0 and g2(x,y)≥ 0. Hence λ1 = λ2 = 0,
hence −1 = λ3 a contradiction.

From Cases 1,2,3,. . . 8 it follows that the only point which satisfies KKT conditions
is (4,1), λ1 = 2, λ2 = 1 and λ3 = 0.

We solve this problem also using Mathematica procedures. We present the solution
below:

Listing 1.1: Mathematica code for point a):

In [1]:= (∗ min ∗)
{ f = y2− x,g2 = xy−4,g1 = 5− y− x,g3 = x−1,F = f −λ1 ∗g1−λ2 ∗g2−λ3 ∗g3}
Out[1]= {−x+ y2,−4+ xy,5− x− y,−1+ x,−λ3(−1+ x)− x−λ1(5− x− y)+ y2

−λ2(−4+ xy)}
In [2]:= {F1 = D[F,x],F2 = D[F,y]}
Out[2]= {−1+λ1−λ3−λ2y,λ1−λ2x+2y}
In [3]:= r1 =
Solve[{F1 == 0,F2 == 0,λ1 ∗g1 == 0,λ2 ∗g2 == 0,λ3 ∗g3 == 0,λ1 >= 0,λ2 >= 0,

λ3 >= 0,g1 >= 0,g2 >= 0,g3 >= 0},{x,y,λ1,λ2,λ3},Reals]
Out[3]= {{x−> 4,y−> 1,λ1−> 2,λ2−> 1,λ3−> 0}}
In [4]:= f/.r1
Out[4]= {−3}
In [5]:= Minimize[{y2− x,g1 >= 0,g2 >= 0,g3 >= 0},{x,y}]
Out[5]= {−3,{x−> 4,y−> 1}}
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b) Consider the following problem:

maximize
(x,y)∈R2

y2− x

subject to: 5− x− y ≥ 0,
xy−4 ≥ 0,
x−1 ≥ 0.

(7)

Let g1(x,y) =−x2−4y2 +1, g2(x,y) =−1+ x+2y and g3(x,y) = x−1.
−∇ f (x,y) = λ1∇g1(x,y)+λ2∇g2(x,y)+λ3g3(x,y) is equivalent to:
[1,−2y] = λ1[−1,−1]+λ2[y,x]+λ3[1,0]. So we must solve the following system:

1 = −λ1 +λ2y+λ3
−2y =−λ1 +λ2x

5− x− y ≥ 0
xy−4 ≥ 0
x−1 ≥ 0

λ1(5− x− y) = 0
λ2(xy−4) = 0
λ3(x−1) = 0

(8)

where λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0.
Case 1. Let g1(x,y) = 0 and g2(x,y) = 0 and g3(x,y) = 0. Hence 5− x− y = 0 and

xy−4 = 0 and x = 1. So x = 1 and y = 4 hence 1 =−λ1+4λ2+λ3 and−8 =−λ1+λ2.
Let λ2 = λ1−8 hence λ3 = 1+λ1−4λ1 +32 = 33−3λ1 hence 8 ≤ λ1 ≤ 11. We can
choose λ1 = 8 than λ2 = 0 and λ3 = 9. ∇g1(1,4) = [−1,−1], ∇g3(1,4) = [1,0], are
linearly independent.

Case 2. Let g1(x,y) = 0 and g2(x,y) = 0 and g3(x,y) > 0. Hence 5− x− y = 0
and xy− 4 = 0 and x > 1 and λ3 = 0. So x = 4 and y = 1 hence 1 = −λ1 + λ2 and
−2 =−λ1 +4λ2 hence λ2 =−1 < 0 contradicts nonnegativity of λ2.

Case 3. Let g1(x,y) = 0 and g2(x,y)> 0 and g3(x,y) = 0. Hence λ2 = 0, and x = 1
hence  1 = −λ1 +λ3

−2y =−λ1
5− x− y = 0.

(9)

Hence y = 4 and λ1 = 8 and hence λ3 = 9 (Case 1).
Case 4. Let g1(x,y)> 0 and g2(x,y) = 0 and g3(x,y) = 0. Hence λ1 = 0 and x = 1

and y = 4, hence 1 = 4λ2 +λ3 and −8 = λ2- a contradiction.
Case 5. Let g1(x,y) = 0 and g2(x,y)> 0 and g3(x,y)> 0. Hence λ2 = λ3 = 0 hence

λ1 =−1- a contradiction.
Case 6. Let g1(x,y)> 0 and g2(x,y) = 0 and g3(x,y)> 0. Hence λ1 = λ3 = 0 hence

1 = λ2x and −2y = λ2x. λ2 must be nonzero, so y = 1
λ2

hence λ 2
2 = − 2

x < 0 because
x > 1- a contradiction.

Case 7 and 8. Let g1(x,y)> 0 and g2(x,y)> 0 and g3(x,y)≥ 0. Hence λ1 = λ2 = 0,
hence 1 = λ3 and y = 0 hence g2(x,0) =−4 < 0 contradicts assumption in current Case
7 and 8 g2(x,y)> 0.
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From Cases 1,2,. . . , 8 it follows that the only point which satisfies KKT conditions
is (1,4), λ1 = 8, λ2 = 0 and λ3 = 9.

f (1,4) = 15, f (4,1) =−3.
The set D is compact and f is continuous on it so finally we get: the greatest value

15 and smallest value−3 of f on D are attained corresponding at points (1,4) and (4,1)
respectively.

Fig. 6: Graphical method for Example 2 using dynamic plots

In Figure 6 we present the solution of the above NLP problem graphically using
dynamic plots. We solve the problem from Example 2 using graphical method. In the
Figure 6 we present Mathematica dynamic plot for the Example 2. The level sets is a
family of parabolas y2− x = c.
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The dynamic versions of the Fig. 6 can be found in the Electronic supplementary
material:
https://drive.google.com/open?id=1vgBC1ij7Z9mNL8 nmhVgrwi3qFRzzhYN

Global maximum of the function f (x,y) = y2− x at point (1,4) we can determine
graphically from the level set: y2− x = 15. Similarly, global minimum of the function
f at point (4,1) we can determine graphically from the level set: y2− x =−3.

This example and also another 2D and 3D examples, were dedicated students of
Informatics and Econometrics Faculty of Warsaw University of Life Science within the
course of Mathematical Programming. These were introductory examples illustrating
the KKT method. Even relatively simple NLP problems with three or four constraints
can lead to the need to consider many subcases, what is rather not suitable for hand
calculations in class. The presented example shows that calculations are possible to do
in class with support of computer programs such as Mathematica. Visualization presents
graphical way of reaching the optimal solution of the NLP problem (for min and for max
respectively) with graphical interpretation of KKT necessary conditions for Example
2 a). In the Fig. 6 we see that: vector ∇ f (4,1) is a linear combination of the vectors
∇g1(4,1) = [−1,−1], ∇g2(4,1) = [1,4] with coefficients λ1 = 2,λ2 = 1 (λ3 = 0 and
we see in Fig. 6 that the constraint g3 ≥ 0 is not active) which means that ∇ f (4,1) =
[−1,2] = 2[−1,−1]+1[1,4]. For graphical interpretation of KKT necessary conditions
for Example 2 b) see Fig. 6 in Electronic supplementary material:
https://drive.google.com/open?id=1vgBC1ij7Z9mNL8 nmhVgrwi3qFRzzhYN.

4 The didactic experiment with dynamic visualization of network
flows

This experiment was carried out in the form of a mathematics test on a group of 41 first-
year students of the Production Engineering Faculty of Warsaw University of Life Sci-
ences within the course of Higher Mathematics II. Students were after a semester course
of Higher Mathematics I which included differential and integral calculus of functions
of one variable. These students have not encountered the topic of network flows before.
The experiment consisted of five parts. In the first part, students were introduced to the
basic definitions of networks and flows in networks [1,4]). The following definitions
were presented:

Definition 1. A directed graph is a pair (N,A) where N is a finite set and A is a set of
ordered pairs (v,w) such that v,w∈N. Elements of the set N we call nodes, and elements
of the set A we call directed arcs.

Most often directed graph is presented as a set of points representing nodes con-
nected by arcs with arrows.

Definition 2. A directed path in directed graph (N,A) from node v1 to node v2 is a se-
quence of nodes and arcs: v1−k1−v2−k2− . . .−vn−1−kn−1−vn without any repetition
of nodes where ki = (vi,vi+1) ∈ A for i = 1,2, . . . ,n−1 and vi ∈ A for i = 1,2, . . . ,n.

Definition 3. A pure network is a triple (N,A,u) such that (N,A) is a directed graph
and u : A→ [0,∞) is a function of an upper bound of capacity.
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We define sets: A(v) = {(v,w) : w ∈ N,(v,w) ∈ A}, B(v) = {(w,v) : w ∈ N,(w,v) ∈
A}. For a pair of functions (F, f ) such that: F, f : A→ R, we define a divergence of
node v by: div(F, f )(v) = ∑k∈A(v)F(k)−∑k∈B(v) f (k). In the case of F = f we denote:
div f (v) = ∑k∈A(v) f (k)−∑k∈B(v) f (k).

Definition 4. A flow in a pure network (N,A,u) from source s ∈ A to the sink t ∈ A is a
function f : A→ [0,∞) which satisfies the following conditions:
1) 0≤ f (k)≤ u(k) for all k ∈ A,
2) div f (s)≥ 0,
3) div f (v) = 0 for all v ∈ N \{s, t}.

A number V = div f (s) we call the value of a flow f . A flow in pure network is also
called static flow.

s=1 1 t=55

2

3

4

Fig. 7

s=1 1 t=55

2

3

4

Fig. 8

s=1 1 t=55

2

3

4

Fig. 9

The definitions were discussed by the lecturer on the example of a simple network
(Figure 7) drawn on a table with simple examples of flows in this network. The numerical
values of flows on the arcs were recorded above the arcs. The first part lasted about 25
minutes. In the second part, students were given the first task to solve. It was based on
giving an example of flow in the network (Figure 8) from source s to the sink t with the
value of flow V = 5. Students received 10 minutes of time to solve this task. In the third
part, two dynamic visualizations of flows in network were presented to the students:
Example 3 and Example 4 presented in the subsection 4.1. These visualizations were
discussed during the presentation by the lecturer. The presentation of the visualization
together with the discussion lasted about 10 minutes. In the fourth part, students were
again given a task to solve. It consisted, as before, of giving an example of flow in the
network (Figure 9) from source s to outlet t with the value of flow V = 4. Students
were given 10 minutes of time to solve this task. In the fifth part, students answered the
question - to what extent dynamic flow visualizations were useful in solving the task in
the fourth part. They chose one of four options: a) they were not helpful, b) they were
a bit helpful, c) they were helpful, d) they were very helpful. We received the following
experiment results: only 24% of students presented the correct solution to the task in the
second part of the experiment, 66% of the students presented the correct solution to the
task in the fourth part of the experiment (after seeing dynamic visualizations), 5% of the
students chose the answer a), 19% answer b), 54% answer c) and 22% answer d).
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4.1 Dynamic visualization of static flow

For directed graph (N,A) presented below we define: s = 1, t = 7,V = 5,u(k) = 3 for
all k ∈ A. We present two different static flows: static flows 1, static flows 2 in the pure
network (N,A,u).

Example 3. (static flow 1)

Fig. 10: Dynamic visualizations of static flow 1 in pure network (N,A,u)

Example 4. (static flow 2)
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Fig. 11: Dynamic visualizations of static flow 2 in pure network (N,A,u)

The dynamic versions of the Figs. 10 and 11 can be found in the Electronic supple-
mentary material:
https://drive.google.com/open?id=1vgBC1ij7Z9mNL8 nmhVgrwi3qFRzzhYN

A standard method of graphical presentation flows in networks presented in many
academic books, is to note the flows values near the arcs of directed graph using one
or several figures. This method can be called a static visualization of network flow (for
example [1, page 79, Figure 3.9a]; [4, pages 142–143, Figures 9.2–9.4]). In the Example
3 we present another - dynamic approach to visualize flows in networks where flows in
network have a form of dynamic animations. Full form of animation for Example 3 is
presented in electronic supplement. In Figures 10 and 11 we present only two single
frames of the animation.

5 Summary and conclusions

This article presents visualizations for two algorithms: simplex algorithm for LP prob-
lem and KKT algorithm for NLP problem which we have prepared for students of In-
formatics and Econometrics Faculty of Warsaw University of Life Sciences. The visu-
alizations were prepared using Mathematica. In Example 1 we demonstrate some new
didactic proposition - expanded simplex tableau. The expanded simplex tableau contains
for each algorithm step: current simplex table in traditional form for this step, graph of
feasible region for canonical form of LP problem with current corner point and current
simplex path, level sets of goal function (hyperplanes : lines in 2D, planes in 3D), axis
with current value of objective function for this step. In our opinion, using such visu-
alization allows students to better understand the steps of the simplex algorithm and its
geometric interpretation. In Example 2 we solve the NLP problem using KKT method.
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We demonstrate dynamic visualization of graphic method of obtaining the optimal so-
lution in this example. In general, computer support ((e.g. by CAS) in solving tasks by
KKT method seems very useful due to the need to consider sometimes a large number
of subcases difficult to consider by hand calculations. The visualizations presented in
this example, seem very useful to us in a better understanding of solving NLP problems
graphically. This article also presents the result of the didactic experiment carried out
on a group of 41 first-year students of the Production Engineering Faculty of Warsaw
University of Life Sciences. In this experiment dynamic visualizations for two examples
of network flows were presented to these students. This had a significant impact on the
result of the test consisting in the construction of flow in the given network. The number
of correct solutions increased more than 2.5 times compared to the number of correct
solutions of the analogous task before presenting this visualizations. Over 75% of stu-
dents said that these visualizations were helpful or very helpful in solving the second
task (after seeing dynamic visualizations).

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: theory, algorithms, and applica-
tions. Prentice Hall, 2nd edn. (1993)

2. Bazaraa, S.M., Shetty, C.M.: Linear Programming and Network Flows. John Wiley and Sons,
2nd edn. (1979)

3. Bazaraa, S.M., Shetty, C.M.: Nonlinear programming. Theory and algorithms. John Wiley
and Sons, 2nd edn. (1979)

4. Ford, L., Fulkerson, D.: Network Flows. John Wiley and Sons, 2nd edn. (1979)
5. Griva, I., Nash, S., Sofer, A.: Linear and nonlinear optimization. SIAM (2009)
6. Guyer, T.: Computer algebra systems as the mathematics teaching tool. World Applied Sci-

ences Journal 3(1), 132–139 (2008)
7. Kramarski, B., Hirsch, C.: Using computer algebra systems in mathematical classrooms. Jour-

nal of Computer Assisted Learning 19, 35–45 (2003)
8. Ruskeepaa, H.: Mathematica Navigator: Graphics and Methods of applied Mathematics. Aca-

demic Press, Boston (2005)
9. Wojas, W., Krupa, J.: Familiarizing Students with Definition of Lebesgue Integral: Examples

of Calculation Directly from Its Definition Using Mathematica. Mathematics in Computer
Science 11, 363–381 (2017), http://doi.org/10.1007/s11786-017-0321-5

10. Wojas, W., Krupa, J.: Some remarks on Taylor’s polynomials visualization using Mathemat-
ica in context of function approximation. Springer Proceedings in Mathematics and Statistics
198, 487–498 (2017)

11. Wojas, W., Krupa, J.: Teaching Students Nonlinear Programming with Computer Algebra
System. Mathematics in Computer Science 13(1-2), 297–309 (2019)

12. Wolfram, S.: The Mathematica Book. Wolfram Media Cambridge University Press (1996)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_47

http://doi.org/10.1007/s11786-017-0321-5
https://dx.doi.org/10.1007/978-3-030-50436-6_47

