Modeling and Automatic Code Generation Tool
for Teaching Concurrent and Parallel
Programming by Finite State Processes

Edwin Monteirol0000-0002-9623-3233] 'K olvinn Pereiral0000-0003—2900-0728] 4
Raimundo Barretol0000—0001—8494—4225]

Federal University of Amazonas, Institute of Computing, Brazil
{edwin, kdsnp, rbarreto}@icomp.ufam.edu.br

Abstract. Understanding concurrent and parallel programming can be
a very hard task on first contact by students. This paper describes the
development and experimental results of the FSP2JAVA tool. The pro-
posed method starts from concurrent systems modeling through Finite
State Processes (FSP). After that, the method includes an automatic
code generation from the model. This goal is achieved by a domain-
specific language compiler which translates from the FSP model to Java
code. The FSP2JAVA tool is available for free download in the github
site. We argue that this tool helps in teaching concurrent systems, since
it abstracts all complex languages concern and encourages the student
to be focused at the fundamental concepts of modeling and analysis.

Keywords: FSP - concurrent programming - code generation - teaching.

1 Introduction

Concurrent programming is a paradigm used in building programs that make use
of the simultaneous execution of multiple tasks that can be implemented as sep-
arate programs or as a single program that triggers multiple threads in parallel.
The main advantage of using concurrent programming is the increased perfor-
mance since it is possible to increase the number of tasks performed over a given
period of time. The major challenge of concurrent programming is resource shar-
ing, communication, and interaction between programs that run concurrently.
The reason for this challenge is that parts of a program can now execute in
an unpredictable order. Therefore, errors can occur depending on the order of
execution of each task. However, usually such errors are difficult to find.

There are several examples of concurrent issues reported in the literature.
One of them is Therac—25, which caused massive radiation overdoses. Another
example was the case of Knight Capital Group, which lost $460 million in 45
minutes as presented in Kirilenko et al. [6]. In both cases, the systems program-
ming had few revisions and there were no checks to certify that the software had
been developed correctly. Taking care of developing concurrent systems should be
present from the initial training of professionals. However, teaching this paradigm

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

2 E. Monteiro et al.

is a major challenge in undergraduate classes since students have a hard time
understanding the theory behind a problem. They usually do not take the time
to think of effective solutions to problems. Instead, usually they go directly to
programming attempting to get a possibly correct solution, which may lead to
undetected programming errors. The problem of taking it a step further may be
justified by the fact that the student deals with a complex level of programming
never seen before and unrelated to the problem itself. According to [3], this may
be mainly affected by the following factors: (i) a new mindset required by pro-
gramming multithread; (ii) the behavior of a multithreaded program is dynamic,
which makes the debugging task very difficult; and (iii) synchronization is more
difficult than expected.

This paper presents FSP2JAVA, a tool for modeling concurrent systems
through Finite State Processes (FSP) introduced in [8]. The goal is to prevent
students to be in contact with the coding at an early time. Thus, the main aim
is to facilitate the understanding of the fundamental concepts of concurrent pro-
gramming in order to make the coding step easier. For methodological purposes,
the high level code is shown only at the end of the modeling stage.

This paper is organized as follows. Section 2 reviews related work. In Section
3 we introduce the concepts of Finite State Process. Sections 4 and 5 detail the
FSP2JAVA tool. Section 6 presents the planning and execution of experiments.
Finally, Section 7 discusses the final considerations and future work.

2 Related Works

Learning the concepts of concurrent programming is essential for computer sci-
ence students. The most common method of concurrent programming is one
that adopts multithreaded programming. However, changing it from sequential
paradigm causes significant problems for students, as concurrent programming
interfaces are often more complex than necessary, causing students to spend time
learning system details rather than the fundamentals as reported in [3].

Among the modeling tools found for teaching distributed systems, we can
mention: (a) SPIN, (b) SCML, (c) LTSA and (d) FSP2JAVA. SPIN is an efficient
verification system for distributed software system models. It was used to detect
design errors in applications ranging from high-level descriptions of distributed
algorithms to detailed code to control switchboards [4]. SCML is a tool that can
be used to simulate a system of concurrent processes that communicate through
shared variables. Mechanisms for defining non-determinism, atomic actions, and
process synchronization are supported. In addition, SMCL includes a prototype
for verifying basic security properties, such as mutual exclusion and deadlocks,
using the model check technique [2]. The LTSA tool [7] is used at numerous
universities around the world along with the book by Magee and Kramer [8]. The
LTSA tool compiles the FSP specifications on a state machine and resembles the
non-deterministic finite automaton. LTSA also features viewing and animating
labeled transitions through graphical interfaces. Both FSP and LTSA are widely
used.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

Modeling and Automatic Code Generation Tool 3

The proposed tool is called FSP2JAVA. It was developed by [11] and im-
proved by [12]. This tool receives a model in FSP and checks if the modeling
is properly specified. If the model is correct, the second step is automatic code
generation which consists of transforming the FSP language into Java language.

3 The Finite State Process (FSP)

The Finite State Process [9] is a formal language based on process algebra [1]
to model the behavior of concurrent systems. The FSP notation is derived from
the process algebra CSP and can represent a system by primitive processes (a
single thread) or a composition of processes (multithreaded).

3.1 Primitive Process

The primitive process characterizes the execution of a sequential program. The
term primitive is related to the basic structures of a programming language,
such as the choice, guard condition, recursion, and alphabet extension. The main
operations are described below:

Action Prefix (a—->P): Describes a process that performs the a action, and
then behaves exactly as specified in the P process. Practically, the action prefix
defines a transition between states.

Choice (a->P | b—>Q): Process behavior is defined by a or b. After an
action is performed, subsequent behavior is described by P if the first event was
a, or by Q if the first event was b.

Process STOP: Sometimes it is necessary to finish the execution of a pro-
cess. When STOP is called, no further action is evaluated.

Alphabet Extension +{a,b, ..., z}: A process can behave only through
the actions contained in its alphabet, although the opposite is not valid. In cer-
tain situations the alphabet may be extended with actions not previously defined
in the modeling. This inclusion is very common to prevent another process from
performing a particular action.

Guarded Action (when B a—>P): Actions of type are eligible only when
Boolean condition B is satisfied, otherwise a is not a valid action.

Indexing P = (input[i:0..9]->output[1i]->P). Allows the writing
of processes and actions that assume multiple finite values in a simplified manner.

3.2 Composite Processes

Processes are concurrent and can perform actions in parallel. These actions may
or may not be shared.

Parallel Composition (P || Q): Expresses the parallel execution of pro-
cesses P and Q. Thus, actions are merged as they are executed. If two or more
actions are shared, then the processes that contain them are synchronized. The
| | operator is the parallel composition operator.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

4 E. Monteiro et al.

Process Instances (a:SWITCH || b:SWITCH): Operation applied to
differentiate distinct instances (in this case a and b) from the same process
(in this case, SWITCH).

Set Labeling {ai,...,an}::P Add a prefix to all actions belonging to the
alphabet of P. If {x,y, z} belongs to the alphabet, then the operation results
in {a;.x,a2.y,as.z}.

Re-labeling /{new;/0ldi,...,newn/oldn}: This operation is applied to
ensure that composition of processes synchronize specific actions. Although com-
mon in composite processes, the operation can be applied to primitive processes.

4 FSP to Java Method

This paper extends the works presented in [8] and [11]. Therefore, the goal re-
mains to evaluate an FSP model, interpret its behavior, and ultimately generate
Java code from the transformation rules described later. In addition, this re-
search increases the FSP instruction set accepted by the tool and facilitates
interaction with users, as the entire process that starts at the modeling stage
and ends at the code generation stage is focused exclusively on the tool.

4.1 Translation

Consider the model described below in FSP:

COIN=(toss—->HEADS|toss—->TAILS),

HEADS= (heads->COIN),

TAILS=(tails—->COIN) .
It models the tossing of a coin that assumes two states, heads or tails. Note that
the choice occurs non-deterministically, since the same action implies distinct
processes. In FSP models, according to the specification proposed in [8], the
processes are written in uppercase and actions in lowercase. The simple distinc-
tion in writing allows us to establish the basic rule of language transformation:
processes and actions are transformed into classes and methods, respectively.
The following example illustrates applying this rule to generate the Java code
corresponding to the COIN model:

public class COIN{
public void toss_0() {
System.out.println("toss");

}
public void heads_0 () {
System.out.println ("heads");

}
public void tails_0() {
System.out.println("tails");

b}

Since they are syntactically distinct languages, some adaptations are required
during the transformation. For instance, FSP algebra allows an action to be

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

Modeling and Automatic Code Generation Tool 5

duplicated in the same process or in a new process. Thus, transforming an action
into a method adds an identifier to the method name. This is done to allow
the distinction between actions of the same name because in Java there are no
duplicate methods that have exactly the same behavior. To represent the state
transition, that is, when an action is reached in FSP, the respective methods
contain the Println function that prints the name of the action associated
with the method. This was the strategy adopted to simulate the sequence of
actions FSP achieved during the execution of the respective transformed code.
Another adaptation consists of local processes, for example, HEADS and TAILS
are not transformed into classes. However, their methods are incorporated into
the COIN class that corresponds to the main process. This identifier strategy
is adopted in actions with the same name in different processes, this includes
the actions of local processes, since everything will be put together to the same
class.

4.2 Transformation Rules

Primitive Processes: These are transformed into classes that implement the
Runnable interface. Thus, each class must contain an attribute of the class
Thread. This is justified because Java does not contain multiple inheritance,
so the class Thread is used without the need for inheritance. In addition to
implementing the Runnable interface, the process class must contain the imple-
mentation of the run method that allows concurrent execution of the processes.
The following example illustrates the transformation rule of primitive processes:

FSP:p = (a —> P).

Java:

public class P implements Runnable{
Thread threadP;
P() {threadP = new Thread(this);
threadP.start () ;

}
public void a_0() {
System.out.println("a");

}

public void run () {
try{
while (true) {
Thread.sleep(1000);
a_0¢();
}
}catch (Exception e) {}

H}
STOP: It is analogous to the process described above with the difference that
there is no infinite loop. If the STOP process is selected during model interpre-
tation, then the Java equivalent code is represented by an interrupt method call

after the last action a in this example. Then two statements are inserted before
the end of the run method:

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

6 E. Monteiro et al.

System.out.println ("STOP");
threadP.interrupt () ;

Indexed Processes: In the case of indexed processes, the name of each method
of the class, in addition to containing the action name FSP, also contains the
unique action identifier and index of the respective indexed process. The follow-
ing example illustrates the Indexed Processes transformation rule:

FSP:

const N = 1
P = P[0],
P[1:0..N] = (a —> P[0] | b —> P[1]).

Java:

public class P implements Runnable{
public void a_0_0 () {
System.out.println("a");
}
public void b_0_0() {
System.out.println ("b");
+}

P[1:0..N] is equivalent to writing N distinct P processes that communicate
with each other from recursive calls determined by the process index that is
triggered by an action. This index acts as the process selector. In the actions, the
first digit represents the action identifier (this allows differentiating actions with
the same name in a modeling) as explained earlier. The second digit characterizes
which process the action belongs to. For example, the P process starts with the
index 0, so if the first action is b, then the action will be called b_0_0. From
b_0_0 process P receives the index 1. If a is selected then the action name is
in the form a_1_1 because this action a is associated with P[1]. Note that for
each indexed process, there is a constant amount of associated actions (in this
case there are two).

Indexed Actions: The methods created from indexed actions, in addition
to printing the action name, also print their index in square brackets.

FSP:

const N = 2
BUFF = (in[i:0..N]->out [1i]->BUFF).

This type of indexing allows the creation of a large number of distinct actions
in a few rows. Each action is named together with a value of variable i in
the range 0..N. The code generation is similar to that presented for indexed
processes, but what changes is the print of each method. For instance, consider
the following code: System.out.println("in[0]"). In this case, there is
an action that takes the form in[0] or out [0] for each indexed action such
that 0 is any value in the i..N range. Unlike the previous indexing example,
there is a single process and N actions so that the ith action in[i] is succeeded
by the ith action out [i]. Thus, the run method will always have an in action
followed by an out action of the same index.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

Modeling and Automatic Code Generation Tool 7

Parallel Composition: A new class is created with the same name as the
parallel composition model. This class instantiates and executes all primitive
processes previously modeled in parallel composition. Consider a practical ex-
ample of the roller coaster problem where the car’s Mth passenger is controlled
by a turnstile that allows exactly 3 passengers at a time. As long as there is room
in the car, passenger boarding is cleared. When M = 3, the car starts rolling
down and up, and a new M-capable car arrives to board new passengers. The
modeling below represents the problem described in FSP:

const M = 3

TURNSTILE = (passenger —> TURNSTILE).

CONTROL = CONTROLI[O],

CONTROL[i:0..M] = (when (i<M) passenger—>CONTROL[i+1]
| when (i==M) depart->CONTROL[O0]
) .

CAR = (depart—->CAR).

| IROLLERCOASTER = (TURNSTILE || CONTROL || CAR).

In Java the ROLLERCOASTER process model is adapted to the following
class:

public class ROLLERCOASTER({

public static void main(String args[]) {
Monitor passenger_shared = new Monitor (4);
Monitor depart_shared = new Monitor(2);
TURNSTILE obj_turnstile = new
TURNSTILE (passenger_shared) ;
CONTROL obj_control = new
CONTROL (passenger_shared, depart_shared);
CAR obj_car = new CAR(depart_shared);

}

The ROLLERCOASTER is the main class, because it is from it that the
communication between the processes begins. Due to passenger dispute over
access to the car, only three passengers are allowed to access the car at a time. To
manage the seats available in the car, two monitors are created, one for passenger
control and one for starting the car (releasing the car to new passengers). This
release simulates the availability of a new car. The other processes, TURNSTILE,
CONTROL, and CAR are instantiated in this main class. For each instance is
passed a parameter of type Monitor corresponding to each process. For example,
the turnstile deals with passengers. Therefore, only the passenger_shared monitor
is passed as a parameter.

The TURNSTILE process is defined in terms of the following class:

public class TURNSTILE implements Runnable(
Thread threadTURNSTILE;
Monitor passenger_shared;
TURNSTILE (Monitor passenger_shared) {
this.passenger_shared = passenger_shared;

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

8 E. Monteiro et al.

threadTURNSTILE = new Thread(this);
threadTURNSTILE.start () ;
}
public synchronized void passenger_0 () throws
InterruptedException{
passenger_shared.dec () ;
if (passenger_shared.inc()) {
System.out.println("passenger");
}
}
public void run{() {
try{
while (true) {
Thread.sleep (1000);
passenger_0();
Thread.sleep (1000);
passenger_0();
Thread.sleep(1000);
passenger_0 () ;
Thread.sleep (1000);

}
}catch (Exception e) {}

H}

As defined in FSP, this process occurs in parallel with CONTROL and CAR,
so it implements the Runnable interface to run concurrently. A thread type
object is defined to concurrently execute with other model actions. In addition,

a monitor type attribute is set to receive from the monitor that was passed by
parameter through the class constructor (as shown in ROLLERCOASTER).

The passenger action described in the above model is defined in passen-
ger_0 method. As shown, this method uses the keyword synchronized in order
to ensure that this method is executed by only one thread at a time. The pas-
senger_shared.inc() condition assumes two values: True or False. If True, the car
contains the maximum number of passengers, so all passengers accessed the fea-
ture. If false, there is still room for more passengers in the car. For each passenger
who has gained access to the car, the method prints the name “passenger” to
simulate the behavior of the FSP model. Finally the run method is responsible
for executing the request of M passengers. Like most FSP models, this model
works continuously and never leaves the loop. The number of times a method is
called on the loop run is related to the depart of a car and the arrival of a new
one. For this example only one car departed, so there are 3 calls to the passenger
method.

The transformation rule to the CAR and CONTROL processes is analogous
to the adaptation made for TURNSTILE. It is worth noting that CONTROL
will have two methods, as its constructor receives two monitors for passenger
and depart actions as presented above.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

Modeling and Automatic Code Generation Tool 9

5 The FSP2JAVA Tool

The FSP2JAVA (Fig. 1) is a tool designed to model real systems through the
FSP language that abstracts the complexity and effort to master high level lan-
guages during the transition from sequential to concurrent paradigm. Note that
the tool is available for use in the GitHub repository [12]. Based on feedback
obtained from users using the previous version of the [11] tool, the current ver-
sion of FSP2JAVA has a integrated user-friendly graphical interface that allows
you to model, to analyse and to generate a concurrent Java code. This version
also has the user manual, warning screen and error messages, interactive model
interpreter and automatic code generation menu. All of these features will be
described below.

Animator - x

File Help

Student Name: [Bob

Student iD: 12345678

Editor Output | Help

constM =3

TURNSTILE = (passenger -> TURNSTILE).

CONTROL = CONTROL[0],

CONTROL[i:0..M] = (when(i<M) passenger->CONTROL[i+1]
| when(i==M) depart->CONTROL[0]
)

CAR = (depart->CAR).

||ROLLERCOASTER = (TURNSTILE || CONTROL || CAR).

Compile Tracing

Fig. 1. FSP Modeling Screen.

5.1 FSP2JAVA Components

The FSP2JAVA tool contains two windows: Animator and Trace. The first of
these contains the components below.

File: This menu allows to create, save or edit an FSP model. There are three
options available in the File menu:

— New: Clears all content present in the modeling area.
— Save: Saves current edit area to a file with the extension “.fsp”.
— Open: Opens a new text file.

Help: This menu provides a tool user manual in a new tab next to Output.
Editor tab: This tab is a text editing area, in which the user writes codes
in FSP that are later converted to code in Java.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

10 E. Monteiro et al.

Output tab: This tab (see Fig. 2) serves to alert if the compilation of the
code was successful or not. If syntax errors occur, the error location indicating
the row, column and the error itself are shown.

Animator - x

File Help

Student Name: [Bob

Student iD: 12345678

Editor Output Help

-- line 3 col 25: "->" expected
-- line 8 col 43: invalid choice
-- line 13 col 49: "." expected

Compile Tracing

Fig. 2. The ROLLERCOASTER example containing a syntax error

Compile button: Allows the compilation of FSP code present in the edit-
ing area of the Editor tab. When compilation succeeds, the Tracing button is
enabled.

Tracing button: The Tracing button is only available when compiling a
model has been successful. In this case, the button opens the Trace window
where the interactively selected actions are later added to the generated code.
The tool always generates code with valid execution traces.

The components in the Trace window (see Fig. 3) are described below:

Trace History: A text area that shows all the traces produced so far.

Trace - =

passenger
passenger
passenger [passenger
depart depart

Generate

View Code

Fig. 3. The Trace window with the successfully compiled ROLLERCOASTER code.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

Modeling and Automatic Code Generation Tool 11

Checkboxes: The checkboxes correspond to the actions coming from the
FSP code that was compiled. Whenever an action is eligible, the box allows its
selection.

Generate button: It allows the generation of Java code according to the
actions selected so far.

View Code button: It opens all Java code generated in the system’s default
text editor according to the actions selected in the checkbox. The View Code
button is available only when the Generate button is clicked.

6 Experiment Planning and Application

The experiment was carried out with two undergraduate students from Software
Engineering and Computer Science courses at the Federal University of Ama-
zonas (UFAM). Although few students, they presented different profiles. One
student already known about concurrent programming, while the other had no
knowledge of the subject. This feature was essential, since the collection of opin-
ions at the end of the experiment could contribute significantly to the improve-
ment of the tool. The purpose of the experiment was to evaluate the contribution
of FSP2JAVA as a mediator tool for concurrent programming teaching. In order
to be able to perform the experiment, a class was taught on the topic of concur-
rent systems modeling by finite state processes. During the explanation of the
concepts, some exercises were applied and solved in the FSP2JAVA tool with
the intention of making the students more comfortable with the tool.

The FSP2JAVA experimentation took place in two steps as follows:

a) Modeling and analysis of the tool. For this purpose, the classic roller
coaster problem was proposed as an exercise. In this problem, passengers arriv-
ing at the boarding platform must be registered at the roller coaster controller
by a turnstile. Thus, the controller allows the car to depart only when there are
enough passengers on the platform so that the car is occupied until its max-
imum passenger capacity M is reached. This problem was chosen because it
adopts multiple threads with synchronization. Thus, all the features of the tool
could be evaluated. To solve the problem, students were given one hour to use
the FSP2JAVA tool without consulting the other candidate or instructor. After
modeling, the students executed and evaluated the code generated by the tool.

b) Filling questionnaire - Two questionnaires were applied to gather students’
perception of the tool. The first was related to the generated model, and the
second to Java-generated code by FSP2JAVA. Both were applied at the end of
the use of the tool. In this context, the model proposed by [10] was adapted
to evaluate the motivation of the use of modeling tools based on the following
aspects: intention to use, ease of use, correctness, reliability, satisfaction and
usefulness. Tables 1 and 2 present the aspects evaluated by the participants,
where they should report their degree of agreement by choosing the options
presented in a 6-point Likert scale [5]: strongly disagree, widely disagree, partially
disagree, neutral, partially agree and totally agree.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

12 E. Monteiro et al.

Table 1. Items taken into consideration when evaluating modeling.

Item Correctness Reliability Facility Quality Satisfaction| Utility
I am I would
When I use the The support| The support satisfied use the
support tool, I trust the tool is easy tool is with the | support tool
Description it works correctly|validation of the| to use useful for validation when I
to model model by the | to model a modeling of the model | wanted to
a distributed support tool. | distributed | distributed by the model quality]
system. system. |quality systems.| support distributed
tool. systems.

Table 2. [tems taken into account to evaluate code generation.

Item Correctness Reliability Facility Quality Satisfaction Utility
When I I would use
The support tool | The support tool .
use the support . . I am satisfied the support
. I trust the is easy to is useful .
tool, it works M . with the code tool when I
e code generated use to for generating
Description| correctly to generated by wanted to
by the generate code code for
generate code . - the support generate code
s support tool. for a quality distributed
for distributed distributed system system tool. for a

system. Y v distributed system.

In addition to these questionnaires, some open questions were applied for
the collection of perception, possible difficulties, problem detection and sugges-
tions for improvement: (a) “What is your opinion on the tool’s feedback to
support your learning/performance when modeling concurrent systems?”; (b)
“What made it difficult to use the supporting tool to create Finite State Process
based models?”; (¢) “What would you change about using the support tool to
improve your learning/performance when modeling concurrent systems?”; (d)
“What is your opinion on the feedback of the tool to support your learning/per-
formance when generating code from concurrent systems?”; (e) “What made
it difficult to use the backup tool to generate Java source code from concur-
rent systems?”; and (f) “What would you change about using the support tool
to improve your learning/performance when generating code from concurrent
systems?”.

The results obtained from the experiment indicate that the tool has great
potential to be adopted in the teaching of concurrent programming. The data
obtained, see Fig. 4, on the use of the tool for teaching concurrent system mod-
eling point to a broad agreement on all items in the Table 1. Students believe in
the correct functioning of the tool and are satisfied with validating their models
so that they would use it again to model concurrent systems. With respect to
code generation, Fig. 5 allows us to understand that there is complete agreement
on all items questioned in the Table 2.

From the experiments results, it can be noted that the tool worked correctly
for the designated purpose so that the students were safe and confident about
its use. The analysis also allows us to conclude that the generated code behaves
as expected, because the result generates satisfaction to the students regarding
the use of the tool in critical situations where it is necessary to generate quality
concurrent code.

In order to understand which aspects had a positive or negative impact on
the students’ evaluation regarding the use of FSP2JAVA, the open questions

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

Modeling and Automatic Code Generation Tool 13

Modeling tool performance
Correctness |- N
Reliabilty |-]
. B Strongly Disagree B Widely Disagree
Facility |-] nely Di
[Partially Disagree W Neutral
Quality |- - |H Partially Agree B Totally Agree
Satisfaction |- 2
Uttty | 1

Fig. 4. Student evaluation considering the modeling aspects of FSP2JAVA.

Tool performance for code generation

Correctness - N
Reliabilty |- .
. B Strongly Disagree E Widely Disagree
Facility |-] ogly Di
[Partially Disagree B Neutral
Quaity |- 1 |m Partially Agree B Totally Agree
Satisfaction | .
ittty | 1

Fig. 5. Evaluation results considering the FSP2JAVA automatic code generation.

in the questionnaire were analyzed to obtain feedback and identify facts that
justified the degree of agreement on the items evaluated.

The following are some positive and negative comments, where Pi corre-
sponds to the i-th participant:
“Fasy to remember, to identify things (buttons, desktop, features in general), it
has a friendly interface” — Positive (P02).
“T would add some examples of FSP in the user manual” — Negative (P02).
“I would improve feedback on syntax errors generated or suggested by the system,
thus helping the user to determine syntaz errors faster.” — Negative (P01).

7 Final Considerations

This paper introduced FSP2JAVA | an automatic modeling and code generation
tool for concurrent systems. The purpose of this research was to facilitate the
teaching of programming for early classes of this paradigm from a tool that
abstracts all the concern with complex languages and encourages the student
to master the fundamental concepts of this subject. The information obtained
through the questionnaires and open questions corroborated the effectiveness of
the tool in teaching concurrent programming. However, the responses collected
indicate that feedback needs to be improved, as reported, so that students un-
derstand modeling errors more intuitively to allow for a growing learning curve.

Due to the fact that FSP2JAVA experimentation was performed with few stu-
dents, the resuWlts obtained cannot be generalized. Therefore, in future works,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

14 E. Monteiro et al.

it is intended: (i) to improve tool feedback; (ii) to add examples of FSP model-
ing and transformation rules to the manual; (iii) to apply new experiments with
more students with different levels of knowledge; (iv) to observe the impact of
using the tool depending on the lesson plan covered; (v) to add code generation
in other programming languages such as C/C++ and Python; (vi) to make the
tool accessible on the web; and (vii) to propose metrics for code quality analysis
for distributed systems.

Therefore, it can be concluded that FSP2JAVA has great potential to be
a mediator between students and teachers interested in learning and teaching
concurrent programming in an effectively way.

Acknowledgments. This research, in accordance with Article 48 of Decree n®
6.008/2006, was funded by Samsung Electronics of Amazonia Ltda, under the
terms of Federal Law n® 8.387/1991, through agreement n°® 003, signed with
ICOMP/UFAM.

References

1. Baeten, J., van Beek, D.A., Rooda, J.: Process algebra. Handbook of Dynamic
System Modeling pp. 19-1 (2007)

2. Ben-Ari, M.: Teaching concurrency and nondeterminism with spin. In: ACM
SIGCSE Bulletin. vol. 39, pp. 363-364. ACM (2007)

3. Carr, S., Mayo, J., Shene, C.K.: Threadmentor: a pedagogical tool for multi-
threaded programming. Journal on Educ. Resources in Computing 3(1) (2003)

4. Holzmann, G.J.: The SPIN model checker: Primer and reference manual, vol. 1003.
Addison-Wesley Reading (2004)

5. Jamieson, S., et al.: Likert scales: how to (ab) use them. Medical education 38(12),
1217-1218 (2004)

6. Kirilenko, A.A., Lo, A.W.: Moore’s law versus murphy’s law: Algorithmic trading
and its discontents. Journal of Economic Perspectives 27(2), 51-72 (May 2013).
https://doi.org/10.1257 /jep.27.2.51

7. Lang, F., Salaiin, G., Hérilier, R., Kramer, J., Magee, J.: Translating fsp into lotos
and networks of automata. Formal Aspects of Computing 22(6), 681-711 (2010)

8. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley Pub-
lishing, 2nd edn. (2006)

9. Magee, J., Kramer, J., Giannakopoulou, D.: Analysing the behaviour of distributed
software architectures: a case study. In: Proc. 6th IEEE Computer Society Work-
shop on Future Trends of Distributed Computing Systems. pp. 240-245 (1997)

10. Martinez-Torres, M.R., Toral Marin, S., Garcia, F.B., Vazquez, S.G., Oliva, M.A.,
Torres, T.: A technological acceptance of e-learning tools used in practical and
laboratory teaching, according to the european higher education area. Behaviour
& Information Technology 27(6), 495-505 (2008)

11. Monteiro, E., Rivero, L., Barreto, R.: Uma ferramenta de suporte ao ensino de mod-
elagem de sistemas distribuidos criticos: Uma experiéncia pratica (in portuguese).
In: Brazilian Symposium on Computers in Education. vol. 29 (2018)

12. Nunes, K., Monteiro, E., Barreto, R.: FSPTOJAVA: A modeling and automatic
code generation tool. https://github.com/kelvinnpereira/pibic-fsp (2019)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_44 |

https://dx.doi.org/10.1007/978-3-030-50436-6_44

