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Abstract. While scheduling problems in deterministic models are quite
well investigated, the same problems in an uncertain environment require
very often further exploration and examination. In the paper we consider
a single machine tabu search method with block approach in an uncertain
environment modeled by random variables with the normal distribution.
We propose a modification to the tabu search method which improves
the robustness of the obtained solutions. The conducted computational
experiments show that the proposed improvement results in a much more
robust solutions than the ones obtained in the classic block approach.

Keywords: single machine scheduling, uncertain parameters, normal
distribution, tabu search, block approach

1 Introduction

Uncertainty occurs in many production processes and has a direct impact on
their smooth execution. For instance it is important in construction domain to
deliver goods with no delays, but it is not easy to meet this requirement as the
transportation time depends on many external factors like weather conditions,
traffic jams, driver’s condition and many others. Moreover, effective solving prac-
tical problems and taking the best approach requires also thorough knowledge
of the process or production system and values of all parameters. For example
an uncertain data of the duration of activities (operations) can be measured
and in result: approximated as deterministic ones in case the variance is small
enough, modeled by an appropriate probabilistic distribution or determined the
membership function for the fuzzy representation. So, as in practice it is difficult
to clearly determine the process parameters, quite often safe ones are taken (e.g.
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assume longer transportation time) what is an opportunity for further improve-
ments.

Research on scheduling problems carried out for many years is related pri-
marily to deterministic models where the key assumption is that parameters are
well defined. For those, mostly belonging to the class of strongly NP -hard prob-
lems, a number of very effective approximate algorithms have been developed.
Solutions determined by these algorithms are very often only slightly worse from
the optimal ones. In practice, however, as already mentioned, some parameters
(e.g. operation times) may differ during the process execution from the initially
assumed values. This can cause that the actual cost of execution is much big-
ger than expected what leads to either losing optimality or even acceptability
(feasibility) of solutions.

In order to close that gap in recent years more and more research has been
conducted on developing methods which find more robust solution resistant to
data disturbance. Uncertain parameters are usually represented by random vari-
ables or fuzzy numbers and extensive review of methods and algorithms for
solving optimization problems with random parameters is presented by Vondrák
in monograph [12] and newer of Soroush [10], Xiaoqiang et al. [14], Urgo and
Vancza [11], Zhang et al. [15] and Bożejko et al. [4] and [6].

In this paper we consider a single machine scheduling problem with due dates
in two variants where either job execution times or due dates are represented
by independent variables with normal distribution. We also present some prop-
erties of the problem (so-called block elimination properties) accelerating the
review of neighborhoods in local search algorithms. The main goal is to compare
the robustness of the block-based tabu search algorithm in the classic and the
proposed random model and show the superiority of the latter one.

2 Deterministic scheduling problem

Let J = {1, 2, . . . , n} be a set of jobs to be executed on a single machine. At
any given moment a machine can execute exactly one job and all jobs must be
executed without preemption. For each task i ∈ J let pi be a processing time,
di be a due date and wi be a cost for tardy jobs.

Every sequence of jobs execution can be presented as a permutation π =
(π(1), π(2), . . . , π(n)) of items from the set J .

Let Π be the set of all permutations of the set J . For every permutation
π ∈ Π we define

Cπ(i) =

i∑
j=1

pπ(j)

as a completion time of a job π(i).
The cost of jobs’ execution determined by the permutation π is as follows

n∑
i=1

wπ(i)Uπ(i). (1)
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where

Uπ(i) =

{
0 for Cπ(i) 6 dπ(i),

1 for Cπ(i) > dπ(i).

We consider the optimization problem where the goal is to find a permutation
π∗ ∈ Π which minimizes the cost of jobs’ execution:

W (π∗) = min
π∈Π

(
n∑
i=1

wπ(i)Uπ(i)

)
.

3 Probabilistic jobs times

In order to simplify the further considerations we assume w.l.o.g. that at any
moment the considered solution is the natural permutation, i.e. π = (1, 2, . . . , n).
Moreover, if X is a random variable, then FX denotes its cumulative distribution
function.

In this section we consider a TWT problem with uncertain parameters. We
investigate two variants: (a) uncertain processing times and (b) uncertain due
dates.

3.1 Random processing times

Random processing times are represented by random variables with the normal
distribution p̃i ∼ N(pi, c · pi)), i ∈ J . Other parameters, i.e. due dates di and
costs wi are deterministic. Then completion times C̃i are random variables:

C̃i ∼ N
(
p1 + p2 . . .+ pi, c ·

√
p21 + . . .+ p2i

)
(2)

and delays are random variables

Ũi =

{
0 dla C̃i 6 di,

1 dla C̃i > di.
(3)

For each permutation π ∈ Π the cost in the deterministic model is defined as
W (π) =

∑n
i=1 wπ(i)Uπ(i) (see (1)). A corresponding cost in the random model is

defined as the following random variable:

W̃ (π) =

n∑
i=1

wiŨi. (4)

In order to compare the costs of permutations from the set Π we introduce the
following comparison function to calculate the value:

W(π) = wiE(Ũi) (5)

where E(Ũi) is the expected value of the random variable Ũi.
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3.2 Random due dates

Random due dates are represented by random variables with the normal distri-
bution d̃i ∼ N(di, c · di)), i ∈ J . Other parameters, i.e. processing times pi and
costs wi are deterministic. Delay indication is a random variable

Ũi =

{
0 dla Ci 6 d̃i,

1 dla Ci > d̃i.
(6)

In this variant of the problem we apply the comparison function (5) defined in
the previous section.

The TWT problem in both variants (i.e. with random processing times and
random due dates) is to find a permutation for which the comparison function
(5) is minimal in the set Π. We denote the probabilistic version of the problem
as TWTP. As the deterministic version, the problem belongs to the class of
NP -hard problems.

4 Blocks in random model

4.1 Random processing times and due dates

Each permutation π ∈ Π is decomposed into m (m 6 n) subpermutations
B̃1, . . . , B̃m, called random blocks for π, which satisfy the following criteria:

1. B̃k = (sk, sk + 1, . . . , lk − 1, lk), lk−1 + 1 = sk 6 lk, k = 1, . . . ,m, l0 = 0,
lm = n.

2. All jobs j ∈ Bk satisfy either the condition

P (d̃j > C̃lk) > 1− ε (7)

or the condition
P (d̃j 6 S̃sk + p̃j) > 1− ε. (8)

3. B̃k is maximal subsequence of π where all the jobs satisfy either (7) or (8).

We distinguish two types of blocks:

– E-Random Blocks, denoted as B̃
E

k , the ones satisfying condition (7),

– T-Random Blocks, denoted as B̃
T

k , the ones satisfying condition (8).

Theorem 1. Let π be a permutation with a distinguished random block B̃, i.e.
π = (1, 2, ..., sk, sk + 1, . . . , lk − 1, lk, . . . , n) where A = (1, . . . , sk − 1), B =
(sk, . . . , lk) and C = (lk+1, . . . , n). Estimated value of comparison function can
be calculated as follows:

WABC =WA +WB +WC

=

sk−1∑
i=1

wiE(Ũi) +

lk∑
i=sk

wiE(Ũi) +

n∑
i=lk+1

wiE(Ũi)

=
∑
i∈π

wiE(Ũi).
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Now let B be a set of all permutations of B = (sk, . . . , lk) and for each B′ ∈ B
we define WAB′C =WA +W ′B +WC in the same way as WABC .

Then we have the following

a) if B is a random E-block, then for each B′ ∈ B W ′B 6
∑lk
i=sk

wi · ε,
b) if B is a random T -block, then for each B′ ∈ B W ′B >

∑lk
i=sk

wi · (1− ε)

what in result gives as that for each B′ ∈ B there is a fixed upper bound for
WAB′C .

Proof. Let’s consider the following 2 cases.
A. B is random E-block. Then we have:

WB =

lk∑
i=sk

wiE(Ũi) =

lk∑
i=sk

wiP (C̃i > d̃i) =

lk∑
i=sk

wi(1− P (C̃i 6 d̃i)).

Applying our assumption that B fulfills (7) (i.e. B is a random E-block) as well
as by definition of C̃i and the problem formulation where every realization of C̃i
will be less or equal than realization of C̃lk we obtain that

P (C̃i 6 d̃i) 6 P (C̃lk 6 d̃i)

for all i ∈ B̃k. Having that we can proceed as follows:

WB =

lk∑
i=sk

wi(1− P (C̃lk 6 di)) 6
lk∑
i=sk

wi(1− 1 + ε) =

lk∑
i=sk

wi · ε

what leads us to the conclusion that for each permutation B′ ∈ B we have

W ′B 6
lk∑
i=sk

wi · ε.

B. B is random T -block. Then we have:

WB =

lk∑
i=sk

wiE(Ũi) =

lk∑
i=sk

wiP (C̃i > d̃i).

By definition of Ssk and C̃i (i ∈ B) we can easily observe the following:

C̃i = S̃sk + p̃sk + p̃sk+1 + p̃sk+2 + . . .+ p̃i > S̃sk + p̃i.

Having that and applying our assumption that B fulfills (8) (i.e. B is a random
T -block) we obtain that

P (d̃i < C̃i) > P (d̃i < Sk + pi) > 1− ε

what implies that
P (d̃i < C̃i) > 1− ε
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for all i ∈ B̃k. Having that we can proceed as follows:

WB =

lk∑
i=sk

wiP (C̃i > d̃i) >
lk∑
i=sk

wi(1− ε)

what leads us to the conclusion that for each permutation B′ ∈ B we have

W ′B >
lk∑
i=sk

wi · (1− ε).

That concludes the proof.

The above theorem also holds in case where we consider only random pro-
cessing times or only random due dates and each case the proof is analogous.

4.2 Improving robustness by applying the derived theorem

It is easy to show the following. For the variant with random processing times
p̃i we have:

E(Ũπ(i)) = P (C̃π(i) > dπ(i)) = 1− FC̃π(i)
(dπ(i)).

and for the variant with random due dates d̃i we have:

E(Ũπ(i)) = P (Cπ(i) > d̃π(i)) = Fd̃π(i)
(Cπ(i)).

Combining the above with assumptions expressed in (7) and (8) and adapted
to respective variants, we apply the following rules to modify the base tabu search
method. For the variant with random processing times p̃i:

a) if B is a random E-block, then WB =
∑lk
i=sk

wi · (1− FC̃π(i)
(dπ(i))),

b) if B is a random T -block, then WB =
∑lk
i=sk

wi · FC̃π(i)
(dπ(i)).

For the variant with random due dates d̃i:

a) if B is a random E-block, then WB =
∑lk
i=sk

wi · Fd̃π(i)
(Cπ(i)),

b) if B is a random T -block, then WB =
∑lk
i=sk

wi · (1− Fd̃π(i)
(Cπ(i)).

5 Computational experiments

In this section we present the results of the robustness property comparison
between the tabu search method with blocks and the tabu search method with
blocks and theorem applied in a way described in Section 4. All tests are executed
with a modified version of tabu search method described in [1]. The algorithm
has been configured with the following parameters: π = (1, 2, . . . , n) is an initial
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permutation, n is the length of tabu list and n is the number of algorithm
iterations where n is the tasks number.

Both methods have been tested on instances from OR-Library ([8]) where
there are 125 examples for n = 40, 50 and 100 (in total 375 examples). For each
example and each parameter c = 0.02, 0.04, 0.06 and 0.08 (expressing 4 levels of
data disturbance) 100 randomly disturbed instances were generated according to
the normal distribution defined in Section 3.1 (in total 400 disturbed instances
per example). The full description of the method for disturbed data generation
can be found in [5].

All the presented results in this section are calculated as the relative coeffi-
cient according to the following formula:

δ =
W −W ∗

W ∗
· 100% (9)

which expresses by what percentage the investigated solution W is worse than
the reference (best known) solution W ∗. Details of calculating robustness of the
investigated methods can also be found in [5].

An algorithm without applied theorem we denote by AD and the one with
applied theorem by AP.

5.1 Results

In Tables 1 and 2 we present a complete summary of the computational ex-
periments results. Values from columns AD and AP in both tables represent
a relative distance between solutions established by a respective algorithm and
the best known solution. The distance is based on (9) and it is an average of all
solutions calculated for the disturbed data on a respective disturbance level ex-
pressed by the parameter c. Value from column IF (what stands for improvement
factor) expresses the relative distance (also based on (9)) between the results
obtained by AD and the results obtained by AP.

Table 1. Relative distance between robustness coefficient of algorithm AD (or re-
spectively AP) and the reference value for random pi on different disturbance levels
(0.02–0.08)

N 40 50 100
c AD AP IF AD AP IF(%) AD AP IF

0.02 757.9 25.6 2863% 820.6 24.3 3275% 3625.5 11.5 31558%
0.04 1776.3 24.6 7112% 2132.2 25.8 8177% 5146.6 12.2 41952%
0.06 2442.4 26.8 9022% 3013.2 25.4 11762% 6488 13.5 47831%
0.08 2821.2 29.4 9509% 5656.3 28.7 19627% 7957.5 14.8 53661%
Avg 1949.5 26.6 7233% 2905.6 26.0 11060% 5804.4 13.0 44525%
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Table 2. Relative distance between robustness coefficient of algorithm AD (or re-
spectively AP) and the reference value for random pi on different disturbance levels
(0.02–0.08)

N 40 50 100
c AD AP IF AD AP IF(%) AD AP IF

0.02 3000.2 70.8 4136% 4661.6 31.8 14547% 11812.1 20.1 58795%
0.04 4719.2 124.9 3678% 7948.9 181.8 4273% 17830.2 141.3 12517%
0.06 6303.4 271.6 2220% 8191.3 284.6 2777% 15180.5 264 5649%
0.08 5654.6 341.6 1555% 8109.1 511.8 1484% 7235.6 322.2 2145%
Avg 4919.3 202.2 2332% 7227.7 252.5 2762% 13026.2 186.6 6880%

We can easily observe that applying the theorem into the method improves
results very significantly for all the investigated cases. We can also observe that
robustness coefficients for random di are generally worse than ones for random pi
what can be explained by the fact that for random di there are more fluctuations
in disturbed data than for random pi what is implied by the disturbed data
generation method. The other observation is related to the results on different
disturbance levels (parameter c). With the bigger value of c we might expect the
worse robustness coefficient. Surprisingly, we can observe a difference between
results for random pi and random di. For random pi the rule generally works both
for AD and AP, only for AP there is a swap between c = 0.02 and c = 0.04 for
N = 40 and a swap between c = 0.04 and c = 0.06 for N = 50, nevertheless those
values are all very close to each other, so those swaps are actually meaningless.
For di the situation is different. The rule still works for AP, but for AD we are
not able to observe any trend. That can be considered as an advantage of AP
as it behaves in a more predictive and stable way than AD does.

Fig. 1. Comparison of the robustness level with reference to the main methods

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_39

https://dx.doi.org/10.1007/978-3-030-50436-6_39


9

Fig. 2. Comparison of the robustness level with reference to the main methods

It is also worth noting the difference of trends for random pi and random di
of the comparison between AD and AP (column IF ) on different disturbance
levels which are visualized on Figures 1 and 2. While for random pi we can see
that with the increase of the parameter c the gap between AD and AP is also
increasing, for random di we can observe exactly the opposite. On the other
hand the order of magnitude of improvement factor (IF ) is the same for both
random pi and random di what shows that the level of improvement introduced
by the presented Theorem works similarly in both considered scenarios.

5.2 Parallelization consideration

The tabu search method is well paralleling. According to the classification pro-
posed by Voß [13], four models of the parallel tabu search method can be consid-
ered: SSSS (Single Starting point Single Strategy), SSMS (Single Starting point
Multiple Strategies), MSSS (Multiple Starting point Single Strategy), MSMS
(Multiple Starting point Multiple Strategies). They refer to the classic classifi-
cation of Flynn’s parallel architectures [7]. In the version proposed in this paper
where block approach is applied it is natural to use MSSS or MSMS diversifi-
cation strategies, because the block mechanism is quite easily parallelized (each
block can be considered separately [3]). The use of ’tree’ strategies using the
same start solution is also possible provided the fact that the process of search-
ing the solution space at a later stage is diversified (e.g. by using different tabu
length for individual threads or through a mechanism of dynamic tabu list length
change [1]).

6 Conclusions

In the paper we considered a single machine tabu search method with block ap-
proach in an uncertain environment modeled by random variables with the nor-
mal distribution. We proposed a theorem which allows to modify the base tabu
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search method in a way which improves the robustness of calculated solutions.
Computational experiments conducted on disturbed data confirmed substantial
predominant of the method after applying the proposed theorem.
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