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Abstract. The pricing of financial options is usually based on statisti-
cal sampling of the evolution of the underlying under a chosen model,
using a suitable numerical scheme. It is widely accepted that using low-
discrepancy sequences instead of pseudorandom numbers in most cases
increases the accuracy. It is important to understand and quantify the
reasons for this effect. In this work, we use Global Sensitivity Analysis in
order to study one widely used model for pricing of options, namely the
Heston model. The Heston model is an important member of the fam-
ily of the stochastic volatility models, which have been found to better
describe the observed behaviour of option prices in the financial mar-
kets. By using a suitable numerical scheme, like those of Euler, Milstein,
Kahl-Jäckel, Andersen, one has the flexibility needed to compute Euro-
pean, Asian or exotic options. In any case the problem of evaluating an
option price can be considered as a numerical integration problem. For
the purposes of modelling and complexity reduction, one should make
the distinction between the model nominal dimension and its effective
dimension. Another notion of “average dimension” has been found to
be more practical from the computational point of view. The definitions
and methods of evaluation of effective dimensions are based on comput-
ing Sobol’ sensitivity indices. A classification of functions based on their
effective dimensions is also known. In the context of quantitative finance,
Global Sensitivity Analysis (GSA) can be used to assess the efficiency
of a particular numerical scheme. In this work we apply GSA based on
Sobol sensitivity indices in order to assess the interactions of the various
dimensions in using the above mentioned schemes. We observe that the
GSA offers useful insight on how to maximize the advantages of using
QMC in these schemes.

1 Introduction to option pricing under the Heston
stochastic volatility model

Financial options are instruments which allow their holder to obtain certain
payout, which depends on the price of the underlying security. While the payout
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of European options only depends on the price at the time of expiration, there
are options that depend on the evolution of the price throughout certain time
period in a complex way. A Monte Carlo method for determining the prices
of options would be obtained by sampling paths for the price of the underlying
following a chosen stochastic model. In such case the price of the financial option,
whose payout is defined as a function of the evolution of the price: F ({St}Tt=0)
would be evaluated as the average of the (discounted) value of a function F ′
over the sampled paths, where F ′ uses only values of the price at certain points,
determined by the discretisation used. It is obvious that such a method will have
both stochastic and deterministic components of the error, i.e., the estimate
would be biased.

The more sophisticated models involve also the evolution of the volatility,
which is not directly observable. This evolution can be deterministic or following
a stochastic process It is widely accepted that stochastic volatility models can
better explain the observed behaviours in financial markets, but pose numerical
difficulties. One of the most popular stochastic volatility models is the model
of Heston. The evolution of the Heston model is described by the following two
equations:

dSt = rStdt+
√
vtStdWs

dvt = κ (θ − vt) dt+ σv
√
vtdWv,

where St is the price and vt is the volatility, while dWs and dWv are two Brownian
motions that are correlated with a coefficient ρ. The parameters of the model
are κ, θ, σ, S0, V0, ρ, r. The determination of these parameters is out of scope of
this paper. One can read more about the Heston model in [9]. The Monte Carlo
numerical schemes are based on choosing a time step for discretization and then
sampling the path of the underlying and the volatility. Brody and Kaya [7]
demonstrated how it is possible to sample from the exact distributions of the
price and volatility at the expense of more computational power requirements. In
practice other numerical schemes require less computations and achieve sufficient
accuracy when the time step is small enough. In this work we considered the
schemes of Euler - Maruyama (see, e.g., [12]), Kahl-Jäckel [10], Milstein ([8])
and Andersen [5]. We denote them by the letters A,B,C,D respectively. For the
scheme of Euler-Maruyama we apply the Lord’s truncation method [11].

Under these schemes each time step requires the sampling of two random
variables. Usually the inverse function method is used and thus we can assume
that only random number uniformly distributed in (0, 1) are used. Thus the
constructive dimensionality of the algorithm in the sense, defined by Sobol’, is
2n, where n is the number of time steps. The practitioners in Mathematical
Finance also need to compute various derivatives of the option price, which are
generally known as Greeks. For example, the Delta of an option is the derivative
of the price with respect to the (initial) price of the underlying, while the Theta is
the derivative with respect to the remaining time to expiration. Such quantities
can be estimated by introducing a small number ε and computing the option
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price also for values of the corresponding parameter with added ±ε and using a
formula for approximate computation of the derivative.

The Global Sensitivity Analysis methodology allows to assess the importance
of each variable and quantify the various interactions between variables. In the
next section we shall describe how this can be applied in our problem.

2 Computation of global sensitivity indices in the context
of the numerical schemes for the Heston model

The Global Sensitivity Analysis is based on the computation of the Sobol‘ sen-
sitivity indices, which quantify the contribution of the various terms of the
ANOVA decomposition of a function f :

f(x) = f0 +

d∑
i=1

fi(xi) +

d∑
i=1

d∑
j=i+1

fij(xi, xj) . . .

towards it’s overall variance D. Sobol’ defined the coefficients

Si1,...,ik = Di1,...,ik/D,

so that one can evaluate the sensitivity of the function to subsets of variables,
where Di1,...,ik denotes the variance of the corresponding term in the ANOVA
decomposition.

These coefficients sum to 1. There are substantially different algorithms for
computing them. In our work we followed the approach proposed in [1], where
formula (15) leads to efficient Monte Carlo and consequently quasi-Monte Carlo
method for computing the indices. The total sensitivity indices are also impor-
tant to consider, since they can be computed efficiently with a similar formula,
while providing a numerical estimation for the total contribution of a variable
to the variance of the function, summing all the coefficients where it is part of
the subset. Various works establish the way to use the Sobol‘ sensitivity indices
in order to compute other useful measures, for example, the mean dimensional-
ity in [3] or the effective dimensions in [1]. In [4] one can see how GSA can be
used to improve option pricing. Since the Heston model has stochastic volatility,
one has to deal with a more complex numerical schemes and consequently more
heterogenious distribution of the uncertainty.

All the numerical schemes for the Heston model that we consider in this
work are built upon sampling two random variables for each time step. In most
cases these variables are normally distributed, while the Andersen scheme is
more complex. In practice one would use a pseudorandom number generator
or a generator for a low-discrepancy sequence and then use the inverse function
method in order to obtain the appropriate normally distributed number. Initially
we used the natural ordering of the variables, so that each time step uses one odd
and one even coordinate. In this way the sampling of a path with n steps requires
2n pseudorandom numbers or 2n coordinates of a low-discrepancy sequence.
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Later on we shall discuss how, based on the results obtained from the GSA, one
may reorder the variables in order to improve the accuracy of the computation.

Because of the constraints on the available compute power, in our analysis
of these numerical schemes we limited ourselves to compute only coefficients
and total coefficients of orders one and two, which already give idea about the
behaviour of the schemes. The method we use requires us to effectively double
the number of coordinates used. It is a well known fact that there is substantial
advantage in using low-discrepancy sequence for such kinds of problems, but
using Global Sensitivity Analysis we quantify the contribution of the different
dimensions and obtain suggestions about possible re-orderings of the variables in
order to improve the accuracy of the computation, when using low-discrepancy
sequences.

3 Numerical results and discussion

First of all we compared pure Monte Carlo method for computing the price of an
option using the above schemes with a quasi-Monte Carlo method which utilizes
either modified Halton (see,e.g., [6]) or Sobol‘ sequences. The results cover the
calculation of the price of an Asian option. The payout of an Asian option is
defined as

max

(
1

N

N∑
i=1

Xi −K, 0

)
.

The parameters of the Heston model are r = 3.19%, κ = 6.21, θ = 0.019, σv =
0.61, ρ = −0.7, S0 = 100, V0 = 0.010201. One can see that with the increase in
number of time steps the accuracy of the quasi-Monte Carlo method improves
significantly more than that of the Monte Carlo method. In order to obtain the
results in Table 1 the number of steps is fixed at 12 (corresponding to the number
of months in the year). The scheme used is the Euler - Murayama scheme with
the Lord full-truncation.

N MC Sobol Halton

256 0.60 0.23 0.13

512 0.23 0.18 0.08

1024 0.13 0.09 0.04

2048 0.08 0.01 0.02

Table 1. Error from computation with 12 time steps, scheme A

For the computations in Table 2 the number of steps is fixed at 32, where
the results for the price are on the left and the results for the delta are on the
right. It is obvious that the accuracy for the delta is smaller. This time the more
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complex Andersen scheme (scheme D) is used. The parameters are

r = 0.%, κ = 1.0606, θ = 0.0733, σv = 0.3918, ρ = −0.3456,

S0 = 100., V0 = 0.0222,K = 100.

N MC Sob. Hal. MC Sob. Hal.

256 0.61 0.12 0.40 1.02 .66 0.85

512 0.53 0.06 0.20 .75 0.44 0.59

1024 0.31 0.07 0.12 0.45 0.50 0.44

Table 2. Error from computation with 32 steps (nominal dimension 64), price (left)
and delta (right), scheme D

These results show the substantial advantage of using low-discrepancy se-
quences with these schemes. However, in such case we have the option to reorder
of dimensions of the low-discrepancy sequence in order to position the first co-
ordinates of the generated points to sample the most important variables. The
importance of the variables is quantified by the Sobol sensitivity indices. Our
first goal was to compute Sobol‘ one-dimensional sensitivity indices for the price
under the different schemes. All the examples consider the same Heston model,
with the following parameters: time steps - 52, time to expiration - 1, κ = 1.0606,
interest rate r = 0., starting volatility θ0 = 0.0222, long-term mean volatility
θv = 0.0733, ρ = 0.3456, volatility of volatility ε = 0.3918. The starting price is
S0 = 1. and we consider an Asian option with strike K = 1. We also considered a
knock out-option with a knock out level 1.2K, so that the owner receives payout

max (XN −K, 0)

only if all Xi < 1.2K, otherwise the payout is zero.

On Figure 1 one can see the one-dimensional Sobol’ sensitivity indices for
the Asian option under the different schemes.
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Fig. 1. One-dimensional Sobol’ sensitivity indices for the price of an Asian option under
the Heston model
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We observe how three of the schemes lead to similar indices, while the Milstein
scheme has substantially different behaviour. In all cases the indices decrease
with the number of timesteps, which suggests that the leading dimensions of
the low-discrepancy sequences should be used to sample the first timesteps. It is
also noticeable how the even dimensions have much larger coefficients than the
odd dimensions. Since this is the case for all schemes under considerations, the
logical suggestion is to reorder the coordinates of the low-discrepancy sequence
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so that the first half of the coordinates are used to sample the odd coordinates
and the second half of the coordinates are used to sample the even dimensions.
We remind that two numbers are used for each timestep. These computations
were carried out using the scrambled Sobol’ sequence, with direction numbers
provided by [2]. We used 4×52 = 208 dimensions and 218 points. For the price of
the knock-out option we make the same observation with regards to the odd and
even dimensions (see Figure 2). However, the last few coordinates have slightly
increased importance, while also the accuracy of the computation of the indices
is not as good as in the case of the Asian option.

Fig. 2. One-dimensional Sobol’ sensitivity indices for the price of a knock-out option
under the Heston model
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The accuracy improves when using the total Sobol’ sensitivity indices. As
we can see in Figure 3, the Milstein scheme (scheme B) is again substantially
different from the other 3 schemes in the observed behaviour of the indices. It
seems that there is decreasing importance of the dimensions and the difference
between odd and even dimensions is not so prounounced, except for the Milstein
scheme. It would be logical to reorder the variables according to their importance
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as measured with the total Sobol’ sensitivity indices, since they take into account
the non-linear interactions.

Fig. 3. One-dimensional Sobol’ total sensitivity indices for the price of a knock-out
option under the Heston model
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The computation of sensitivity indices for the various “Greeks” is achieved
by introducing a small parameter ε and using numerical differentiation formu-
lae. Although we can expect decreased accuracy because of the differentiation,
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we can see in the next figure, showing the one-dimensional Sobol’ sensitivity
indices for the Delta of an Asian option, that sufficient accuracy is achieved
and the conclusions with regards to the optimal use of the coordinates of the
low-discrepancy sequence are similar to the case for the price (see Figure 4).

Fig. 4. One-dimensional Sobol’ sensitivity indices for the Delta of an Asian option
under the Heston model.
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It is also possible to compute Sobol’ sensitivity indices for larger subsets of
variables. Unfortunately, this increases the computational complexity substan-
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tially. That is why we only show results obtained for pairs of variables. In this
case, only the results for the Euler-Murayama scheme with the Lord’s truncation
(scheme A) are shown (see Figure 5).

Fig. 5. Sobol’ sensitivity indices for pairs of variables, when computing the price of an
Asian option under the Heston model.

We show the interactions between indices for odd and even dimensions in 3
surfaces. As it can be expected, the highest importance is for pairs of indices
that both correspond to even dimension. There is also visible decrease of the
importance when increasing the index of the coordinate.

4 Conclusions

The various numerical schemes used for option pricing via the Heston model
can benefit from use of low-discrepancy sequences. The Sobol’ sequence with
Owen scrambling and the modified Halton sequences proved to be effective. By
studying the Sobol’ sensitivity indices we can quantify the contribution of the
various dimensions and their interactions to the overall variance, which gives us
ideas on how to reorder the coordinates in order to increase the accuracy. Once
it has been determined how much each variable contributes to the final result of
the simulation, it becomes possible to optimise the parameters of the Sobol’ or
Halton sequences jointly with respect to a measure of quality of distribution that
is weighted according to the compu. In a future work we plan to demonstrate
how this approach improves the accuracy.
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