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Abstract. In this work we address the problem of the estimation of the approx-

imation error that arise at a discretization of the partial differential equations. 

For this we take advantage of the ensemble of numerical solutions obtained by 

independent numerical algorithms. To obtain the approximation error, the dif-

ferences between numerical solutions are treated in the frame of the Inverse 

Problem that is posed in the variational statement with the zero order regulari-

zation. In this work we analyse the ensemble of numerical results that is ob-

tained by five OpenFOAM solvers for the inviscid compressible flow around a 

cone at zero angle of attack. We present the comparison of approximation errors 

that are obtained by the Inverse Problem, and the exact error that is computed as 

the difference of numerical solutions and a high precision solution. 

Keywords: approximation error, ensemble of numerical solutions, differences 

of solutions, Inverse Problem, Euler equations, flow around a cone, Open-

FOAM. 

1 Introduction 

An estimation of the approximation (discretization) error is a problem of the high 

current interest due to the need for the verification of software and numerical solu-

tions [1,2,3]. Let us consider the system of the partial differential equations written in 

the operator form 𝐴𝑢̃ = 𝑓 and a discrete algorithm 𝐴ℎ𝑢ℎ = 𝑓ℎ that approximates the 

system on some grid. There are two main approaches to the estimation of the approx-

imation error ∆𝑢 = 𝑢ℎ − 𝑢̃ [3]. A priori error estimation has the appearance ‖∆𝑢‖ ≤
𝐶ℎ𝑛 (h is the step of discretization over space (or time), n is the order of approxima-

tion, C is an unknown constant). It is commonly used at a design and the theoretical 

analysis of the finite-difference or finite element algorithms (mainly from the stand-

point of the convergence order determination). Unfortunately, the approach cannot be 

used in applications due to an unknown constant. A posteriori error estimation has the 

form ‖∆𝑢‖ ≤ 𝐸(𝑢ℎ) and contains some computable error indicator 𝐸(𝑢ℎ) that de-

pends on the previously computed numerical solution 𝑢ℎ. The approach has no un-

known constants and can be easily applied to practical computations. Rather often, it 

has a non-intrusive form of certain postprocessor. The highly efficient technique is 
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developed for a posteriori error estimation in the domain of the finite-element analysis 

[3]. Unfortunately, for the problems of Computational Fluid Dynamics, the progress 

in a posteriori error estimation is limited so far due to irregularity of solutions (shock 

waves, contact surfaces etc). As the main tool for the verification, the standards [1,2] 

recommend the Richardson extrapolation. This method provides the pointwise ap-

proximation of the error field, however, at the cost of the extremely high computa-

tional burden [6]. There exist some computationally efficient approaches for the ap-

proximation error norm estimation, for example [4,5]. However, these approaches do 

not provide the pointwise information on the error. 

Thus, the need for a computationally inexpensive a posteriori estimation of approx-

imation error still exists. By this reason we consider herein the computationally cheap 

approach to a posteriori error estimation that is based on the ensemble of numerical 

solutions obtained by independent methods. By independent methods we mean the 

numerical algorithms with different computational properties (an inner structure or 

the order of the approximation). The approximation error is estimated in the point-

wise approach using the difference of solutions at every grid node separately. For this 

purpose, the Inverse Ill-posed Problem is posed in the variational statement that in-

cludes the Tikhonov zero order regularization [7,8]. We provide the results of the 

numerical tests for compressible Euler equations that demonstrate both the estimated 

error and the exact error (obtained by the comparison of numerical solution with the 

precise solution [9]). These results demonstrate the applicability of the considered 

approach.  

2 The estimation of approximation error using the differences 

of numerical solutions  

The approximation error estimation may be performed by different methods [3-6] 

including the Richardson extrapolation [6] that uses the set of numerical solutions 

obtained for consequently refined grids. In contrast, we consider an ensemble of 

numerical solutions 𝑢(𝑖) = 𝑢̃ + ∆𝑢(𝑖) (i = 1…n), obtained by n independent algo-

rithms on the same grid. Let us note the exact (unknown) solution as 𝑢̃ and the ap-

proximation error (unknown) for i-th solution as ∆𝑢(𝑖). The differences of numerical 

solutions 𝑑𝑖𝑗 = 𝑢(𝑖) − 𝑢(𝑗) = 𝑢̃ + ∆𝑢(𝑖) − 𝑢̃ − ∆𝑢(𝑗) = ∆𝑢(𝑖) − ∆𝑢(𝑗) are computable. 

These differences are equal to the differences of errors and, hence, contain some in-

formation regarding the unknown approximation errors ∆𝑢(𝑖). We get 𝑁 =
𝑛(𝑛−1)

2
 

equations that relate unknown errors and computable differences of numerical solu-

tions 

 

i

j

ij fuD  )(
 ,                                                                            (1) 

 

where 𝐷𝑖𝑗 is a rectangular 𝑁 × 𝑛 matrix, the summation over the repeating index is 

implied starting from this point of the presentation. 

The approximation errors may be estimated as  
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j fDu 1)( )(  .                                                                      (2) 

 

Formally, this system of equations may be resolved for the dimensionality n  that 

is equal or greater three. For 𝑛 = 3 we use the option that follows:  
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The equation (1) for this case has the form  
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We numerically solve Equation (1) for three variables in the form (4) and for five 

variables in the similar form, omitted for brevity, by the method considered in follow-

ing section. 

3 Inverse Problem for the estimation of approximation error  

One may easy see the solution of system (1) to be invariant relatively a shift transfor-

mation ∆𝑢(𝑗) = ∆𝑢̃(𝑗) + 𝑏 (∆𝑢̃(𝑗) is the exact error) for any 𝑏 ∈ (−∞, ∞). It is caused 

by the usage of the difference of solutions as the input data. Thus, the problem 

∆𝑢(𝑗) = (𝐷𝑖𝑗)
−1

𝑓𝑖 is underdetermined and, hence, ill-posed. The steady and bounded 

solution of the ill-posed problems requires a regularization ([7,8]) that we consider as 

the zero order Tikhonov one by the following reasons. It is natural to search for solu-

tions of the minimum shift error |𝑏| (in an ideal, |𝑏| → 0). We consider the search for 

the minimal L2 norm of ∆𝑢(𝑗) that provides restrictions on the absolute value of 𝑏: 

 

2/)~(min2/)(min)min( 2)(2)( buu j
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We consider this expression as the regularizing term in further analysis. 

By accounting  

bbub j
n

j

  )~()( )( ,                                                                (6) 
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one may see that the minimum over 𝑏 occurs at 𝑏 that equals the mean error with the 

opposite sign:  

 

uu
n

b j
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  )(~1
.                                                                    (7) 

 

So, the relation (5) addresses the deviation of the exact error from the mean 

∆𝑢(𝑗) = ∆𝑢̃(𝑗) − ∆𝑢̅ and corresponds the minimum of the error dispersion. Fortunate-

ly, the assumption of 𝛿 minimality (5) ensures the boundedness of 𝑏. Unfortunately, 

the maximum attainable accuracy of ∆𝑢(𝑗) is restricted by the mean error value. 

In accordance with [8] we pose the Inverse Problem for ∆𝑢(𝑗) estimation in the var-

iational statement that assumes both the equation (1) to be valid and ‖∆𝑢‖𝐿2
 to be 

minimal (Eq. 5). This statement implies the minimization of the functional: 
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Herein, the first term of (8) defines the discrepancy of the predictions and observa-

tions, the second term of (8) poses the zero order Tikhonov regularization, 𝛼 is the 

regularization parameter, 𝐸𝑗𝑘 is the unite matrix. Eq. (8) demonstrates the standard 

statement of the variational Inverse Problem [8] that unify the observations and the a 

priori information (in present case, the information regarding the boundedness of 

solution). 

To obtain the solution that minimize the functional we use the gradient based ap-

proach: 

 

  mjmj uu ),(1),(
.                                                                             (9) 

 

In this expression 𝑚 is the number of the iteration. In the numerical tests that fol-

low the gradient is obtained by the direct numerical differentiation. The iterations stop 

at small enough value of the functional 𝜀 ≤ 𝜀∗ (in these tests 𝜀∗ = 10−8). This optimi-

zation method is very primitive one (although quite operational) and easily may be 

replaced by any more advanced algorithm. 

The solution of Eq. (8) is dependent on the regularization parameter 𝛼. The func-

tion |∆𝑢(𝑗)(𝛼)| is not bounded at 𝛼 = 0, so, it is not acceptable. At 𝛼 → ∞ the asymp-

totics |∆𝑢(𝑗)(𝛼)| → 0 occurs that is not acceptable also. However, there exists a range 

of 𝛼 where the weak dependence of the solution on 𝛼 exhibits. In this range of the 

regularization parameter, the solution ∆𝑢(𝑗)(𝛼) is close to the exact one ∆𝑢̃(𝑗) and 

may be accepted [8]. 
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4 The test problem 

We consider the approximation error estimation for the test problem governed by two 

dimensional compressible Euler equations. The flowfield around cone at zero angle of 

attack α = 0° (Fig. 1) in the uniform supersonic flow of ideal gas is analyzed. The test 

problem statement is very close to one described by [5] from the gasdynamics view-

point, and the same solvers are used. 

The precise solution by [9] is used for estimation of the exact error. 

 

 

 

Fig. 1. Flow scheme 

The cone of the half angle β= 20° is considered with the Mach number 2. 

 

 

5 OpenFOAM solvers 

The following solvers from the OpenFOAM software package [10] were used 

similarly to [5]: 

 rhoCentralFoam (rCF), based on a central-upwind scheme, which is a combination 

of central-difference and upwind schemes [11,12]. The essence of the central-

upwind schemes consists in a special choice of a control volume containing two 

types of domains: around the boundary points, the first type; around the center 

point, the second type. The boundaries of the control volumes of the first type are 

determined by means of local propagation velocities. The advantage of these 

schemes is the possibility to achieve a good resolution for discontinuous solutions 

in gas dynamics, using the appropriate technique for the numerical viscosity reduc-

ing. 
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 sonicFoam (sF), based on the PISO algorithm (Pressure Implicit with Splitting of 

Operator) [13]. The basic idea of the method is the application of two difference 

equations to calculate the pressure for the correction of the pressure field obtained 

from discrete analogs of the equations of moments and continuity. This approach  

takes to account that the velocities changed by the first correction may not satisfy 

the continuity equation, therefore, a second corrector is introduced, which enables 

us to calculate the velocities and pressures satisfying the linearized equations of 

momentum and continuity. 

 rhoPimpleFoam (rPF), based on the PIMPLE algorithm, which is a combination of 

the PISO and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) al-

gorithms. In this method, an external loop is added to the PISO algorithm, due to 

which the method becomes iterative one and allows to count with the Courant 

number greater than 1. 

 pisoCentralFoam (pCF), which is a combination of a Kurganov-Tadmor scheme 

[11] with the PISO algorithm [14]. 

 QGDFoam (QGDF), which is based on the implementation of quasi-gas dynamic 

equations [15]. 

All these solvers have the same approximation order, however, their inner structure 

is quite different. This circumstance engenders the hope that the exact approximation 

errors ∆𝑢̃(𝑗) are independent and the mean error ∆𝑢̅ =
1

𝑛
∑ ∆𝑢̃(𝑗)𝑛

𝑗  has the acceptable 

magnitude and decays as the ensemble of solutions expands. 

6 Numerical results 

6.1 Initial and boundary conditions 

The computational domain and boundaries are provided in Fig. 2 similarly to [5].  

 

 

Fig. 2. Computational domain and boundaries 
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On the upper boundary (“top”) the zero gradient condition for the gas dynamic 

functions is specified. The same conditions are set on the right border (“outlet”). On 

the left border (“inlet”), the inflow parameters are set for Mach number 2M : 

pressure P = 101325 Pa, temperature T = 300 K, speed U =694.5 m/s. On the cone 

surface, the condition of zero normal gradient is posed for the pressure and the tem-

perature, and the condition “slip” is posed for the speed, corresponding to the non-

penetration condition.  

The special “wedge” condition is used for the front (“front”) and back (“back”) 

borders to model the axisymmetric geometry in the OpenFoam package. The Open-

Foam package also employs the special “empty” boundary condition. This condition 

is specified in cases when calculations in the given direction are not carried out. In 

our case, this condition is used for the “axis” border. 

 

6.2 Solvers settings 

In the OpenFOAM package, there are two options for approximating differential op-

erators: directly in the solver's code or using the fvSchemes and fvSolution configura-

tion files. In order the comparison to be correct, we used the same parameters, where 

possible. The parameters are the same as in [5]. In the fvSchemes file: ddtSchemes – 

Euler, gradSchemes – Gauss linear, divSchemes – Gauss linear, laplacianSchemes – 

Gauss linear corrected, interpolationSchemes– vanLeer. In the fvSolution file: solver 

– smoothSolver, smoother symGaussSeidel, tolerance – 1e-09, nCorrectors – 2, 

nNonOrthogonalCorrectors – 1. 

6.3 The results of the approximation error estimation in comparison with the 

exact error 

For the estimation of approximation error, we minimize the functional (8) using itera-

tions described by the Expression (9) for all flow parameters {𝜌, 𝑢, 𝑣, 𝑝} separately at 

every grid point. Below, we present the results mainly for pressure, as the most im-

portant and expressive gas-dynamic function for inviscid flows with shock waves. 

Fig. 3 presents the pressure error estimation ∆𝑝(𝐼𝑃) obtained by the Inverse Prob-

lem for the numerical solution computed by rCF [11,12]. 

Fig. 4 presents the “exact error” for the pressure calculated as the difference of 

numerical solution, computed by rCF, and the precise solution by [9] ∆𝑝(𝑟𝐶𝐹) =
𝑝(𝑟𝐶𝐹) − 𝑝(𝑝𝑟𝑒𝑐𝑖𝑠𝑒). 

The comparison of Figs. 3 and 4 demonstrate the satisfactory proximity of error es-

timates to the exact error.  
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Fig. 3. The error of the pressure estimated by the Inverse Problem (for the flowfield, 

computed by rCF) 

 

 

Fig. 4. The exact error of the pressure (for the flowfield, computed by rCF) 

 

The Fig. 5 presents the piece of vectorized grid function of total pressure error 

(computed by rCF) obtained by the Inverse Problem (using five solutions) in compar-

ison with the exact error. The index along abscissa axis 𝑖 = 𝑁𝑥(𝑘𝑥 − 1) + 𝑚𝑦 is de-
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fined by indexes along 𝑋(𝑘𝑥) and 𝑌(𝑚𝑦). The periodical jump of solution variables 

corresponds the transition through the shock wave. One may see that the error at the 

shock wave remains underestimated. This behavior is expected since the error at a 

shock tends to be singular at the mesh refinement. The scales in Figures 3 and 4 are 

chosen to be smaller if compare with Figure 5 in order to increase the visibility. 

 

 

Fig. 5. The comparison of the pressure error (rCF), estimated by the Inverse Problem, 

with the exact error 
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Fig. 6. The comparison of the density error (rCF), estimated by the Inverse Problem, with 

the exact error. IP-3 corresponds 3 solutions, IP-5 - five solutions 

 

The Fig. 6 presents the piece of vectorized grid function of density error (for the 

solution computed by rCF) obtained by Inverse Problem in comparison with the exact 

error for the ensembles of solutions containing three and five samples. Herein, IP-3 

corresponds three solutions (pCF, QGDF, rCF), IP-5 corresponds all five solutions. 

In accordance with [3], the global quality of a posteriori error estimation may be 

described by the effectivity index that equals the relation of the estimated error norm 

to the exact error norm: 
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In the contrast to above used pointwise (scalar) variables, the vectors 

∆𝜌⃗(𝑘), ∆𝜌⃗̃(𝑘) ∈ 𝑅𝑀  (𝑀 is the number of grid nodes) in this relation denote the grid 

functions. Thus, the norms, herein, average the pointwise errors over the total flow-

field. 

To provide the reliability of the error estimation, this index should be greater the 

unit. On the other hand, the estimation should be not too pessimistic, so the value of 

the effectivity index should be not too great. According [3], the range 1 ≤ 𝐼𝑒𝑓𝑓 ≤ 3 is 

acceptable for the finite elements in the domain of elliptic equations. The solutions for 

the supersonic Euler equations (of hyperbolic type), considered herein, are less 

smooth (contain shock waves), so the acceptable range of the effectivity index may be 

greater and should be determined in numerical experiments. In the applications, the 

error of some valuable functionals may be of the primal importance. So, additional 
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efforts should be made to estimate the bounds of the effectivity index from the view-

point of the error of valuable functionals. However, this subject is far away from the 

scope of present paper. Some information on the relation of the approximation error 

and the uncertainty of valuable functionals may be found in [16]. 

The corresponding values of the effectivity index are provided in the Table 1 for 

the sets of 3 and 5 solutions. L2 norm of the global error (averaged over the total grid) 

is computed for the effectivity index calculation. To ensure the reliable error estima-

tion (𝐼𝑒𝑓𝑓 ≥ 1) certain safety coefficient (about three) may be used.  

One may expect the improvement of the error estimation quality as the number of 

solutions increases. This assumption is partly supported by the comparison of the 

effectivity index values for three and five solutions presented in the Table 1.  

 

Table 1. Effectivity indexes of error estimation for different solutions 

 𝐼𝑒𝑓𝑓
𝑝𝐶𝐹

 𝐼𝑒𝑓𝑓
𝑄𝐺𝐷𝐹

 𝐼𝑒𝑓𝑓
𝑟𝐶𝐹 𝐼𝑒𝑓𝑓

𝑟𝑃𝐹 𝐼𝑒𝑓𝑓
𝑠𝐹  

five solutions 0.35 0.37 0.38 0.39 0.26 

three solutions 0.24 0.29 0.26 - - 

7 Discussion 

Unlike the computationally cheap estimation of the error norm [4,5], also based on the 

set of numerical solutions, the above discussed approach provides the pointwise error 

estimation. 

Certainly, this approach is less accurate if compared with the Richardson extrapo-

lation due to the presence of the irremovable error, proportional to the mean error 

over the ensemble of solutions. Nevertheless, in contrast to the Richardson extrapola-

tion, the considered postprocessor is much more computationally inexpensive since it 

implies only single grid computations (without a mesh refinement). Additionally, it 

has some natural parallelization properties since the solutions are obtained by the 

independent codes. 

It should be noted that the calculations of the set of solutions for the flow around 

the cone were carried out using the approach of the generalized computational exper-

iment [17,18]. This approach is based on the parallel solution (in the multitask mode) 

of the same problem for the ensemble of input data corresponding a variation of the 

determining parameters. This allows one to analyze a solution as the element of some 

ensemble engendered by the class of problems, which is set by the choice of deter-

mining parameters. The problem at hand can be considered as the generalized compu-

tational experiment, where the choice of a solver plays the role of a determining pa-

rameter.  

The OpenFOAM algorithms are considered herein as independent ones from the 

standpoint of their logics and inner structure, however, the independence from the 

viewpoint of the mean error decay at the ensemble enhancement (important from the 

viewpoint of irremovable error diminishing) needs for a further analysis. 
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8 Conclusion 

The Inverse Problem is stated for the estimation of the point-wise approximation error 

occurring at a discretization of the Partial Differential Equations. The differences 

between solutions, obtained by independent numerical algorithms, are used as the 

input data. The variational statement with the zero order regularizing term is consid-

ered for the problem. 

The numerical tests demonstrate the feasibility for the estimation of the point-wise 

approximation error via the ensemble of numerical solutions obtained using the 

OpenFOAM software package. 

The minimal number of numerical solutions that is necessary for the error estima-

tion is equal to three. Five solutions provide a bit better results from the viewpoint of 

effectivity index. 

The considered approach is less accurate in comparison with the Richardson ex-

trapolation. However, the proposed approach is much more computationally cheap 

and ensures the satisfactory accuracy. 
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