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Abstract. We consider a new simple stochastic single-species population dynam-
ics model for understanding the flow-regulated benthic algae bloom in uncertain 
river environment: an engineering problem. The population dynamics are subject 
to regime-switching flow conditions such that the population is effectively re-
moved in a high-flow regime while it is not removed at all in a low-flow regime. 
A focus in this paper is robust and mathematically rigorous statistical evaluation 
of the disutility by the algae bloom under model uncertainty. We show that the 
evaluation is achieved if the optimality equation derived from a dynamic pro-
gramming principle is solved, which is a coupled system of non-linear and non-
local degenerate elliptic equations having a possibly discontinuous coefficient. 
We show that the system is solvable in continuous viscosity and asymptotic 
senses. We also show that its solutions can be approximated numerically by a 
convergent finite difference scheme with a demonstrative example.  

Keywords: Regime-switching stochastic process; Model uncertainty; Environ-
mental problem; Viscosity solution 

1 Introduction 

This paper focuses on a population dynamics modeling of nuisance benthic algae on 
riverbed under uncertain environment: a common environmental problem encountered 
in many rivers where human regulates the flow regimes [1]. Blooms of nuisance benthic 
algae and macrophytes, such as Cladophora glomerata and Egeria densa, in inland 
water bodies are seriously affecting aquatic ecosystems [2-3]. Such environmental 
problems are especially severe in dam-downstream rivers where the flow regimes are 
often regulated to be low, with which the nuisance algae can dominate the others [4-5]. 
 It has been found that the benthic algae are effectively removed when they are ex-
posed to a sufficiently high flow discharge containing sediment particles [6]. Supplying 
sediment into a river environment can be achieved through transporting earth and soils 
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from the other sites, as recently considered in Yoshioka et al. [7] focusing on a case 
study in Japan with a high-dimensional stochastic control model. 

Assume that we could find a way to supply the sediment into a river environment 
where the nuisance algae are blooming. Then, a central issue is to what extent the algae 
bloom can be suppressed in the given environment. Hydrological studies imply that 
river flows are inherently stochastic and can be effectively described using a Markov-
chain [8]. In the simplest case, we can classify river flow regimes into the two regimes: 
a high-flow regime where the nuisance algae can be effectively removed from the riv-
erbed and a low-flow regime where they are not removed from the riverbed at all. In 
this view, the algae population dynamics can be considered as a stochastic dynamical 
system subject to a two-state regime-switching noise. To the best of our knowledge, 
such an attempt has been least explored despite its high engineering importance. 
 We approach this issue both mathematically and numerically. We formulate the al-
gae population dynamics as a system of piecewise-deterministic system subject to a 
Markovian regime-switching noise [9] representing a dynamic river flow having high- 
and low-flow regimes. This is a system of stochastic differential equations (SDEs, 
Øksendal and Sulem [10]) based on a logistic model subject to the detachment during 
the high-flow regime [7] but with a simplification for better tractability. The model 
incorporates our own experimental evidence that a sudden detachment of the algae oc-
curs when the flow regime switches from the high-flow to the low-flow. This finding 
introduces a non-locality into the model. 
 Our focus is not only on the population dynamics themselves, but also on statistical 
evaluation of the dynamics that can also be important in engineering applications. 
Namely, another focus is the evaluation of statistical indices such as a disutility caused 
by the population, which are given by conditional expectations of quantities related to 
the population. Unfortunately, it is usually difficult to accurately identify model param-
eters in the natural environment due to technical difficulties and poor data availability. 
In such cases, we must operate a model under the assumption that it is incomplete and 
thus uncertain (or equivalently, ambiguous). We overcome this issue by employing the 
concept of multiplier robust control [11], which allows us to analyze SDEs having un-
certainty and further to statistically evaluate their dynamics in a worst-case robust man-
ner. This methodology originates from economics and has been employed in finance 
[12] and insurance [13], but less frequently in environment and ecology [14]. With this 
formulation, we demonstrate that the stochastic dynamics having model uncertainty can 
be handled mathematically rigorously as well as efficiently. 
 We show that the robust evaluation of a statistical index related to the population 
dynamics ultimately reduces to solving a system of non-linear and non-local degenerate 
elliptic equations: the optimality equation having a possibly discontinuous source term. 
This is the governing equation of the statistical index under the worst-case. Our goal is 
therefore to solve the equation in some way. We show that solutions to the optimality 
equation are characterized in a viscosity sense [15], and that it admits a continuous 
viscosity solution by a comparison theorem [16]. We present an analytical asymptotic 
estimate of the solution as well. We finally provide a demonstrative computational ex-
ample with a convergent finite difference scheme [5, 14] to show the validity of the 
asymptotic estimate and to deeper comprehend the behavior of the model.  
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2 Mathematical Model 

2.1 System Dynamics 

Let ( ) 0t t
a

³
 be a càdlàg two-state continuous-time Markov chain having a low-flow re-

gime ( 0i = ) and a high-flow regime ( 1i = ). The switching rate from the regimes 0 to 
1 (resp., 1 to 0) is a positive constant 01 0n >  (resp., 10 0n > ). We assume that the re-
gime switching occurs with the prescribed switching rates and some Poisson processes. 
We thus describe the SDE governing temporal evolution of ( ) 0t t

a
³

 as 

{ }
( )

{ }
( )01 10

0 1d d d
t tt t tN Na aa c c
- -= == -  for 0t ³ , { }0 0,1a - Î , (1) 

where Sc  is the indicator function such that 1Sc =  if S  is true and 0Sc =  other-
wise, 

0
limt t ss

a a- -®+
=  and the same representation applies to the other processes, 

( )( )01

0t t
N

³
 and ( )( )10

0t t
N

³
 are mutually-independent standard Poisson processes with 

the switching rates 01n  and 10n , respectively. The switching times from the regimes 0 

to 1 (resp., regimes 1 to 0) are represented by a strictly increasing sequence ( )01
k k

t
ÎN

 

(resp., ( )10
k k

t
ÎN

). We assume a.s. 10 01
k lt t¹  ( ,k l ÎN ) without loss of generality. 

The algae population is represented by a continuous-time variable ( ) 0t t
X

³
, which is 

assumed to be governed by a generalized logistic model having regime-switching co-
efficients. The difference between the regimes 0 and 1 in the context of the population 
dynamics is that the algae detachment occurs only at the regime 1 (high-flow regime). 
We normalize the population tX  to be valued in [ ]0,1 . We set the SDE of ( ) 0t t

X
³

 as 

( ) { } ( )( )1d 1 d
tt t t tX X D X X tq

am c
-- - -== - -  for 0t ³ , [ ]0 0,1X - Î , (2) 

where 1q ³ is the shape parameter, 0m >  is the specific growth rate and 

[ ] [ ): 0,1 0,D ® +¥  is the detachment rate that is assumed to be non-negative and Lip-

schitz continuous in [ ]0,1  and ( )1 0D > . One of our own important experimental find-
ings is that a sudden algae detachment occurs at the initiation of each high-flow event 
when there is an enough sediment supply. From the standpoint of the present model, 
this imposes the additional state dynamics at the switching times ( )01 011

k k
kX z X

t t -
= -  

for k Î N , where ( )k k
z

ÎN  is a sequence of i.i.d. stochastic variables representing the 
sudden detachment of the algae population. We assume that they have the common 
compact range ( )0,1Z Ì , meaning that the sudden decrease of the population does not 
lead to its immediate extinction, which is consistent with the empirical finding [5]. The 
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sequence ( )k k
z

ÎN  is assumed to be independent from ( )01
tN  and ( )10

tN . The probability 

density function generating ( )k k
z

ÎN  is denoted as 0g ³  with ( )d 1
Z

g z z =ò .  

The stochastic nature of the detachment has been justified from our experimental 
results. We found that the amount of sudden detachment is different among the exper-
imental runs even under the same experimental setting (sediment supply and water 
flow). This is considered due to inherently probabilistic nature of the sediment supply 
and microscopic difference of biological conditions (length, density, rock shape, etc.,) 
of the algae population. The same would be true in real river environment.  

The natural filtration generated by ( )( )01

0t t
N

³
, ( )( )10

0t t
N

³
, and ( )k k

z
ÎN  at time t  are 

denoted as tF . Set ( ) 0t t³
=F F . Consequently, the coupled stochastic system dy-

namics to be observed are given as follows ( ) k ÎN : 

{ }
( )

{ }
( )

( ) { } ( )( )
( )01 01

01 10
0 1

01
1

d d d ,  0

d 1 d ,  0,  

1 ,  

t t

t

k k

t t t

t t t t k

k

N N t

X X D X X t t t

X z X k

a a

q
a

t t

a c c

m c t

- -

-

= =

- - -=

-

= - ³

= - - ³ ¹

= - ÎN
, ( ) { } [ ]0 0, 0,1 0,1Xa - - Î ´ .(3) 

 
2.2 Performance Index 

A performance index to statistically evaluate the stochastic population dynamics (3) is 
formulated. To simplify the problem as much as possible, we consider the following 
conditional expectation evaluating the disutility caused by the algae population: 

( ) ( ),

0
, di x s

si x f X e sd+¥ -é ùF = ê úë ûòE , ( ) { } [ ], 0,1 0,1i x Î ´ , (4) 

where ,i xE  is the conditional expectation with ( ) ( )0 0, ,X i xa - - = , 0f ³  is a bounded 

upper-semicontinuous function on [ ]0,1  having at most a finite number of discontinu-

ous points in ( )0,1 . Such a discontinuity naturally arises if there is a threshold above 
which the algae bloom would severely affect the water environment. The performance 
index (4) is the mean value of an infinite-horizon discounted disutility. We write 

( ) ( ), ii x xF = F  if there will be no confusion. 
 The dynamic programming principle [10] formally leads to the governing equation 
of iF  as the system of linear degenerate elliptic equations 

( ) ( )0
0 01 01

d1 d 0
d Z

x x g z z f
x

qd m nF
F - - + D F - =ò , [ ]0,1xÎ , (5) 

( ) ( )( ) 1
1 10 10

d1 0
d

x D x x f
x

qd m nF
F - - - + D F - = , [ ]0,1xÎ  (6) 

with 
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( ) ( ) ( )( )01 0 1, 1x z x x zD F = F - F -  and ( ) ( ) ( )10 1 0x x xD F = F - F . (7) 

2.3 A model with uncertainty 

We consider an uncertain counterpart, where the model uncertainty is assumed due to 
distortions of ( )( )01

0t t
N

³
, ( )( )10

0t t
N

³
, and g . Namely, we focus on hydrological uncer-

tainties. Our formulation is based on the models with uncertain jump processes [11-12] 
with our notations of the parameters and variables. Let P  be the current probability 
measure and Q  be the probability measure under the distortion. Set ( )( ) 0

i
t t

f
³

×  

( 0,1i = ) as positive and strictly bounded F -predictable random fields representing 
model uncertainty. There is no uncertainty when 0 1 1t tf f= =  ( 0t ³ ). Recall that there 
is no jump of tX  at each 10

kt . The new and old probability measures are characterized 

by the Radon-Nikodym derivative 0 1d
d t t= L L
Q
P , where 

( )( ) ( ) ( )( ) ( )( )010 0 0
010 0

exp 1 d ln d d
t t

t s s sZ
z s z N g z zf n fL = - +ò ò ò , (8) 

( ) ( )( )011 1 1
010 0

exp 1 d ln d
t t

t s s ss Nf n fL = - +ò ò  (9) 

under the assumption that the right-hand sides are a.s. bounded for 0t ³ . We thus as-
sume that 0

tL  and 1
tL  are positive and a.s. bounded for 0t ³ . This is true if the pro-

cesses ( )( ) 0
i
t t

f
³

×  ( 0,1i = ) are strictly positive and uniformly bounded. Notice that 1
tf  

is actually a function only of time t , but is represented as ( )1
tf ×  here for convenience. 

Formally, at time t , the jump intensity of ( )01
tN  (resp., ( )10

tN ) is modified from 01n  to 

( ) ( )0
01 dtZ

z g z zn fò  (resp., 10n  to ( )1
10 t zn f ) and the probability density function 

( )g g z=  to ( ) ( )0
tC z g zf  with a constant 0C > . The support of ( ) ( )0

t z g zf  is still 
Z . We impose the following normalization, so that the modified g , which is written 
as *g , is truly a probability density function: 

( ) ( ) ( )
( ) ( )

0
*

0 d
t

tZ

z g z
g z

z g z z
f

f
=

ò
, 0t ³ . (10) 

Under the new probability measure Q , the processes ( )01
tN  and ( )10

tN  are formally re-

placed by the new Poisson processes ( )01
tN  and ( )10

tN  having the jump intensities 

( ) ( )0
01 dtZ

z g z zn fò  and 1
10 tn f , respectively, both of which are assumed to be strictly 

positive and bounded. Now, the transformed system dynamics are ( ) k ÎN : 
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{ }
( )

{ }
( )

( ) { } ( )( )
( )01 01

01 10
0 1

01
1

d d d ,  0

d 1 d ,  0,  

1 ,  

t t

t

k k

t t t

t t t t k

k

N N t

X X D X X t t t

X z X k

a a

q
a

t t

a c c

m c t

- -

-

= =

- - -=

-

= - ³

= - - ³ ¹

= - ÎN
, ( ) { } [ ]0 0, 0,1 0,1Xa - - Î ´ (11) 

The performance index J  is then extended to a worst-case uncertain counterpart, 
with which the observer can evaluate the disutility subject to an entropic penalization 
for the deviations between the true and distorted models: 

( )
( )( )

( )
01 10

0

01 10

, 
, sup , ; ,

t t t

i x J i x
f f

f f
³

×

F = , ( ) { } [ ], 0,1 0,1i x Î ´  (12)

with 

( ) ( )01 10 , 01 10
0 10

0 1

, ; , di x s
sJ i x f X e s I Id n n

f f
y y

+¥ -é ùæ ö
= - +ê úç ÷

ê úè øë û
òE , (13) 

( ) ( ) ( )( ) ( )0 0 0
0 0

ln 1 d ds
s s sZ

I e z z z g z z sd f f f
+¥ -= - +ò ò , (14) 

( )1 1 1
1 1

ln 1 ds
s s sI e sd f f f

+¥ -= - +ò , (15) 

where 0 0y >  and 1 0y >  are the uncertainty-aversion parameters serving as penaliza-
tion parameters to constrain the allowable difference between the true and distorted 
models. The integrands of (14) and (15) are (discounted) relative entropy between the 
models with respect to 0

tf  and 1
tf , respectively. Each uncertainty-aversion parameter 

modulates the corresponding relative entropy in the way that a larger parameter allows 
for a larger deviation between the true and distorted models, and vice versa. This for-
mulation reduces to the model without uncertainty as 0 1, 0y y ® + . In this way, the 
observer can flexibly presume the potential uncertainty. 

The dynamic programming principle [10] leads to the governing equation of the 
value function iF  subject to model uncertainty as the coupled system of non-linear and 
non-local degenerate elliptic equations in [ ]0,1 : 

( )

( )
( ) ( ) ( ) ( )( ) ( )

0

0
0

0 0 0 0
01 01

0
0

d
1

d
1inf ln 1 d 0

Z

x x f
x

z z z z g z z

q

f

d m

n f f f f
y× >

F
F - - -

ì üæ öï ï+ D F + - + =í ýç ÷
ï ïè øî þ
ò

 (16) 

and 

( ) ( )( ) ( )1

1 1 1 11
1 10 100

1

d 11 inf ln 1 0
d

x D x x f
x

q

f
d m n f f f f

y>

ì üF
F - - - - + D F + - + =í ý

î þ
. (17) 

The minimizations in (16) and (17) are achieved by the worst-case uncertainties as 
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( ) ( )( )0*
0 01, exp ,x z x zf y= - D F  and ( ) ( )( )1*

1 10expx xf y= - D F . (18) 

Substituting (18) into (16) and (17) simplifies them to 

( ) ( )( ) ( )0 01
0 0 01

0

d
1 1 exp d 0

d Z
x x g z z f

x
q n

d m y
y

F
F - - + - - D F - =ò , (19) 

and 

( ) ( )( ) ( )( )101
1 1 10

1

d
1 1 exp 0

d
x D x x f

x
q n

d m y
y

F
F - - - + - - D F - = . (20) 

We formally derive (5)-(6) under 0 1, 0y y ® +  as expected. The quantities in (18) rep-
resent the worst-case uncertainties conditioned on the current observations of a  and 
X . Furthermore, by (10), the probability density function *g  under the distortion is 

( ) ( ) ( )
( ) ( )

0 01*

0 01

exp
,

exp d
Z

g z
g x z

g z z
y

y

- D F
=

- D Fò
 (21) 

with an abuse of notations. The worst-case jump intensities from the regimes 0 to 1 and 
1 to 0, which are represented as ( )* *

01 01v xn=  and ( )* *
10v xn= , are given by 

( ) ( ) ( )*
01 01 0 01exp d

Z
x v g z zn y= - D Fò  and ( ) ( )( )*

10 10 1 10expx v xn y= - D F . (22) 

3 Mathematical Analysis 

3.1 Viscosity solution 

Boundedness and continuity of the value function are analyzed. We firstly prove unique 
solvability of the system (11). 
 
Proposition 1 
The system (11) admits a unique strong solution such that 0 1tX£ £  ( 0t ³ ). 
Proof: A similar contradiction argument to that in the proof of Theorem 2.2 of Lungu 
and Øksendal [17] applies in our case. We can get unique existence of the system hav-
ing coefficients extended to be Lipschitz continuous over R , by Theorem 2.1 of Yin 
and Zhu [9]. With a contradiction argument [17], we obtain that the strong solution to 
this modified problem is bounded in [ ]0,1 . 

□ 
 

By Proposition 1, we get a continuity result of the value function, with which an 
appropriate definition of viscosity solutions to the optimality equation (19)-(20) is 
found. 

 
Proposition 2 
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Assume that f  is Hölder continuous in [ ]0,1 . Then, we get [ ]0,1i CF Î , ( 0,1i = ). 
Proof: Combine the strong solution property and the boundedness result in Proposi-
tion 1 with the Hölder continuity of f . 

□ 
 
Now, we define viscosity solutions. Set the space of upper-semicontinuous (resp., 

lower-semicontinuous) functions in [ ]0,1  as [ ]0,1USC  (resp., [ ]0,1LSC ). 
 
Definition 1 
A pair [ ]0 1, 0,1USCY Y Î  is a viscosity sub-solution if for all [ ]0 0,1x Î  and 

0 0,1i = , and for all [ ]1
0 1, 0,1Cj j Î  s.t. i ij - Y  is locally minimized at 0x x=  and 

0i i=  with ( ) ( )
0 00 0i ix xj = Y , the following hold ((23) for 0 0i = , (24) for 0 1i = ): 

( ) ( )( ) ( ) ( )0 01
0 0 01 *

0

d
1 1 exp d 0

d Z
x x g z z f x

x
q j n

d m y
y

Y - - + - - D Y - £ò , 0x x= ,    (23) 

( ) ( )( ) ( )( ) ( )101
1 1 10 *

1

d
1 1 exp 0

d
x D x x f x

x
q nj

d m y
y

Y - - - + - - D Y - £ , 0x x= .      (24) 

A pair [ ]0 1, 0,1LSCY Y Î  is a viscosity super-solution if for all [ ]0 0,1x Î  and 

0 0,1i = , and for all [ ]1
0 1, 0,1Cj j Î  s.t. i ij - Y  is locally maximized at 0x x=  and 

0i i=  with ( ) ( )
0 00 0i ix xj = Y , the following hold ((25) for 0 0i = , (26) for 0 1i = ): 

( ) ( )( ) ( ) ( )*0 01
0 0 01

0

d
1 1 exp d 0

d Z
x x g z z f x

x
q j n

d m y
y

Y - - + - - D Y - ³ò , 0x x= (25)

( ) ( )( ) ( )( ) ( )*101
1 1 10

1

d
1 1 exp 0

d
x D x x f x

x
q nj

d m y
y

Y - - - + - - D Y - ³ , 0x x= .   (26) 

A pair [ ]0 1, 0,1CY Y Î  is a viscosity solution if it is a viscosity sub-solution as well 
as a viscosity super-solution. 

 
Proposition 3 
Assume that f  is Hölder continuous in [ ]0,1 . Then, the value function is a viscosity 
solution. 
Proof: Apply the Dynkin’s formula and the dominated convergence theorem. 

□ 
Proposition 4 
For any viscosity sub-solution u  and a viscosity super-solution v , v u³  in W . 
Moreover, the optimality equation (19)-(20) admits at most one viscosity solution. 
Proof: Apply a contradiction argument with the help of the monotonicity of the non-
linear terms. [Proof of Proposition 3.3 in 14] and [Proof of Theorem 11.4 in 16]. 
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□ 
 
Notice that the uniqueness result in Proposition 4 holds true for both continuous and 
discontinuous f . A consequence of Propositions 3 and 4 is the next theorem. 
 
Theorem 1 
Assume that f  is Hölder continuous in [ ]0,1 . Then, the value function is the unique 
viscosity solution to the optimality equation (19)-(20). 
 

3.2 Asymptotic solution 

The optimality equation is uniquely solvable, but its exact solution cannot be found 
analytically. Instead, we construct an asymptotic solution that close to the solution for 
small x . The asymptotic solution thus applies to the situation where the population 
is sufficiently small, which would be encountered during a high-flow regime. The 
next proposition can be checked by a direct calculation. The asymptotic worst-case 
uncertainties can also be calculated using this proposition. 
 
Proposition 5 
Assume [ )2 0,i C eF Î  ( 0,1i = ) with 0 1e< < . Assume that for small 0 x e< <  

( ) ( )m mf x x O x u+= +  and ( ) ( )D x d O xu= + , 0d ³ , , 0m u > , 0d >  such that 

( ) ( )( ) ( ) ( )01 01 01 10 1 d 0m

Z
A m m d z g z zd m n d m n n n= - + - - + - - >ò .           (27) 

Then, we have the following asymptotic expansions for small 0x > : 

( ) higher-order terms of m
i ix C x xF = +  ( 0,1i = ), (28) 

with the positive constants 

( ) ( ) ( )01 10
0

1 dm

Z
m d z g z z

C
A

d m n n- - + - +
= ò  and 01 10

1
mC

A
d m n n- + +

= . (29) 

4 Numerical Computation 

We numerically discretize the optimality equation (19)-(20) because it is not analyti-
cally solvable and the asymptotic solution presented in the previous section can be 
utilized only under limited conditions. The employed numerical method here is the 
finite difference scheme with the Newton iteration [5], which can handle the decay 
and first-order differential terms of the degenerate elliptic differential equations. The 
non-linear and non-local terms are handled with the interpolation technique of [14]. 
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This scheme is a version of the non-standard finite difference scheme based on local 
exact solutions to linearized problems [18], with which monotone, stable, and con-
sistent discretization is established. It is thus convergent in a viscosity sense [19]. The 
non-local term is linearized at each iteration step to enhance computational stability. 

The computational condition here is specified as follows. For the sake of simplicity, 
we set 0 1 0y y y= = > . In addition, set ( )D x dx=  and ( ) mf x x=  with , 0d m > . 
The computational domain is discretized into 1,000  cells with 1,001 vertices, and the 
range Z  of the uncertainty into 500  cells. The following parameter values are used 
in the computation: 0.5m = , 2d = , 0.5m = , 1q = , 1d = , 01 0.1v = , 10 1.0v = , 

( ) { }1/3 2/33 zg z c £ £= , and 1 or 20y = . The threshold to terminate the iteration is  

 
( ) ( )

( ){ }
1

12

0,1
max 10

max 1,

n n
i i

ni
i

+

-

=

F - F
<

F
 (30) 

 

Fig. 1. The computed and asymptotic ( )0 xdF  (red) and ( )1 xdF  (blue) with 1y = . Line: 
computed result, Circle: asymptotic result. 

 

Fig. 2. The computed and asymptotic ( )0 xdF  (red) and ( )1 xdF  (blue) with 20y = . Line: 
computed result, Circle: asymptotic result. 
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at all the computational vertices, where the superscript represents the iteration number 
in the Newton iteration. The numerical solution ( )1n

i
+F  with the smallest n  satisfying 

(30) is considered as the numerical solution. Each computation below requires at most 
20 to 30 steps, implying satisfactory efficiency of the scheme. 

In Figs. 1 and 2, the numerically computed value functions (solid lines) are com-
pared with the asymptotic results for 1y =  and 20y = , suggesting their good agree-
ment especially for small x . We can see that the disutility assessed by the more un-
certainty-averse observer (having a larger y ) is evaluated larger. In Figs. 3 and 4, the 

worst-case uncertainties ( ) ( ) ( )* *
0 0 , d

Z
x z x g z zf f= ò  and ( )*

1 xf  are compared for 

1y =  and 20y = , suggesting the decreasing and increasing nature of the former and 
latter, respectively. The magnitude of decrease/increase more sharply depends on the 
population for larger y . The monotone dependence of *

if  shows that the observer 
considers the flood frequency smaller under larger uncertainty-aversion. 

Fig. 5 shows the worst-case probability density functions ( )* ,g z x  for different 
values of x  when 20y = . The computational results clearly show the distortion of 

 

Fig. 3. ( )*
0 xf ( )*

1 xf 1y = The computed  (red) and  (blue) with . 

 

Fig. 4. ( )*
0 xf ( )*

1 xf 20y = The computed  (red) and  (blue) with . 
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g  due to model uncertainty; larger distortion is observed for larger population. The 
worst-case probability density functions are positively-skewed, implying that the 
more uncertainty-averse observer specifies thus sudden detachment of the algae pop-
ulation to be smaller. In addition, their skewness significantly depends on the ob-
served population, suggesting that the more skewed prediction is optimal when the 
population is large: namely, in case of the algae bloom. 

Finally, we demonstrate that the numerical method applies to discontinuous f . We 
set [ ]0.5,1f c= . Figs. 6 and 7 show the computed value function and the worst-case un-

certainties, suggesting that they have been computed successfully without spurious os-
cillations. They seem to be not continuously differentiable at the point of discontinuity 

0.5x = . The worst-case uncertainties are now non-monotone, suggesting qualitatively 
different robust estimations from the previous case with a continuous f . 

5 Conclusions 

A simple stochastic model for the algae bloom under uncertain river environment was 
analyzed both mathematically and numerically. Our framework would provide a math-
ematically rigorous and computationally feasible framework for resolving the engineer-
ing problem. We believe that the framework can also contribute to achieving Sustaina-
ble Development Goals (SDGs) related to water environmental and ecological issues. 

A future topic would be computing the probability density functions and analyzing 
stability of the population dynamics. Such analysis can be carried out using the derived 
or computed worst-case uncertainties as an input. Another topic is a partial observation 
modeling based on the presented model. For example, one can often directly measure 
water flows relatively easily (using machines), but only indirectly the algae population. 

 

Fig. 5. The computed worst-case probability density functions ( )* ,g z x  

( / 100 ( 0,1,2,...,100)x i i= = ) for 20y = : vertical ( *g ) and horizontal axes ( z ).  
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