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Abstract. This paper discusses the uncertainty in the automation of
knowledge building from heterogeneous raw datasets. Ontologies play a
critical role in such a process by providing a well consolidated support
to link and semantically integrate datasets via interoperability, as well
as semantic enrichment and annotations. By adopting Semantic Web
technology, the resulting ecosystem is fully machine consumable. However,
while the manual alignment of concepts from different vocabularies is
reasonable at a small scale, fully automatic mechanisms are required once
the target system scales up, leading to a significant uncertainty.
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1 Introduction

Data integration, defined as "the problem of combining data residing at different
sources, and providing the user with a unified view of these data" [21], can be
considered a classic research field as could witness the myriad of contributions
in literature. Its relevance is determined by the practical implications in the
different applications domains.

In this respect, we rely on an ontological approach to support the data
integration process. The benefits of ontology in the different application domains
are well-known and have been extensively discussed from different perspectives in
several contributions. The knowledge building process, as understood in this paper,
is not limited to data integration but it also includes semantic enrichment and
annotations. By adopting Semantic Web technology, the resulting ecosystem is
fully machine consumable. However, while the manual alignment of concepts from
different vocabularies is reasonable at a small scale, fully automatic mechanisms
are required once the target system scales up, leading to a significant uncertainty.

This paper provides two key contributions:

– the manual knowledge building process is described and implemented by a
tool which systematically supports data integration and semantic enrichment.

– the uncertainty introduced by the automation of the process is discussed.
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2 Related work

The scrutiny of data integration adopting an ontological approach sheds light on
some key issues, to wit data semantics and uncertainty representation.

– Ontological approach to Data Integration: The role of semantic tech-
nology in data integration [21] has been deeply explored during the past
years. The contributions currently in literature clearly show that semantic
technology provides a solid support in terms of data integration and reuse
via interoperability [26]. For instance, [6] proposes an ontological approach to
federated databases; ontology-based integration strategies have been proposed
to a range of real scientific and business issues [15], such as the integration of
biomedical [33] and cancer [39] data, and the integration among systems [25].
Last but not least, ontologies are contributing significantly to an effective
approach to the integration of Web Resources (normally in XML [2]) and to
linked open data [16]. Ontology may be adopted to support different strategies
and techniques [38] and result very effective in presence of heterogeneity [12].
For instance, central data integration assumes a global schema to provide
access to information [15], while in peer-to-peer data integration there is no
global point of control [15].

– Data Semantics: Associating formal semantics to data is a well-known
problem in the fields of artificial intelligence and database management.
Again, ontological structures play a key role [31] and they normally support
an effective formalization of the semantics, which becomes a key asset in
the context of different applications, for instance to interchange information
[1,27] or to improve data quality [22]. In general, the importance of data
semantics to support interoperability is gaining more and more attention
within different communities, for example within the geo-spatial information
[19] and within the medical community [4,20]. Moreover, the analysis of
semantic data may support sophisticated data mining techniques [8,10].

– Uncertainty Representation : Probability theory and fuzzy logic have
been used to represent uncertainty in data integration works [23]. Uncertainty
management works also include possibilistic and probabilistic approaches [14].
A probabilistic approach towards ontology matching was utilized in several
works, where machine learning was utilized in estimating correspondence
similarity measures [14]. To refine the matcher uncertainty and improve the
precision of its alignment, Gal [13] proposed a method to compute top-K
alignments instead of computing a best single alignment, and proposed a
heuristic to simultaneously compare/analyze/examine the generated top-K
alignments and choose one good alignment among them. The best align-
ment is an alignment that optimizes a target function F between the two
schemata. Typical ontology matching methods commit to the best align-
ment which maximizes the sum (or average) of similarity degrees of pairwise
correspondences.
To model the ontology matching uncertainty, Marie and Gal [24] proposed to
use similarity matrices as a measure of certainty. They aim at providing an
answer to the question of whether there are good and bad matchers.
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To represent the inherent uncertainty of the automatic schema matching,
Magnani and Montesi [23] used the notion of probabilistic uncertain semantic
relationship (pUSR), which is a pairwise correspondence defined as a tuple
(E1, E2, R, P ) where E1 and E2 are two elements/entities, R is a set of rela-
tionship types (equivalence, subsumption, disjointness, overlap, instantiation,
etc.), and P is a probability distribution over R. The pUSRs form an uncertain
alignment.
Dong et al. [9] proposed a system that models the uncertainty about the
correctness of alignments by assigning each possible alignment a probability.
The probabilities associated with all alignments sum up to 1. The authors
define a probabilistic schema mapping (alignment) as a set of correspondences
between a source schema and a target schema, where each uncertain map-
ping/alignment has an associated probability that reflects the likelihood that
it is correct.
Po and Sorrentino [30] quantify uncertainties as probabilities. They define the
notion of probabilistic relationship as a couple (〈ti, tj , R〉, P ) where 〈ti, tj , R〉
is a relationship between ti and tj of the type R, and P is the probability
(confidence) value (in the normalized interval [0 − 1]) associated to this
relationship. Within the range [0− 1], they can distinguish between strong
relationships and uncertain relationships (i.e., relationships with a low proba-
bility value). Uncertain relationships could be seen as candidate relationships
that need further confirmation by a human expert.
There are several pairs of entities in different ontologies that are related to each
other but not necessarily with one of the typical well-defined relationships.
However, these correspondences vary in their degree of relatedness. This
information is difficult to formalize. Therefore, Zhang et al. [40] proposed
a new type of relation called Relevance. The latter represents relationships
between entities that are not covered by a strict relation such as equivalence,
subsumption or disjointness, etc. In this context, we think that the relevance
relation is very similar to the overlap relation. The authors also presented
the notion of fuzzy ontology alignment, that uses fuzzy set theory to model
the inherent uncertainty in the alignment correspondences.

3 Knowledge Building by Data Integration

The knowledge building process is ideally composed of two sequential steps that
we refer to as physical and logical integration:

– Physical integration: the Virtual Table model. As the name suggests,
the physical integration aims to convert data in an interoperable format
that ultimately defines the target data space. By adopting Semantic Web
technology, physical integration is required only if the target dataset is not
already available in a semantic format (e.g. RDF or OWL). The Virtual
Table model (fig. 1) is a simple and intuitive approach to data integration
that assumes the target dataset described as one or more tables according
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to the classical relational model. An external dataset may be mapped into a
virtual table and automatically converted in OWL. Data may be automatically
retrieved from a relational table [29] or inserted manually by users through the
copy&paste functions provided by the user interface as in the tool described
later on in the paper.

{
Relational  

Table

DataSet

Prefix Value

Name

Name/ 
Alias

Name/ 
Alias

Name/ 
Alias

Name/ 
AliasID

Automatic Retrieval 
+ 

Input Parameters
Copy & Paste 

+ 
Input Parameters

Fig. 1: Virtual Table model.

– Logical integration: semantic alignment, internal and external link-
ing.
Logical integration assumes a given data set already imported within the
data space and consists in the consolidation and enrichment of data semantics
by specifying additional relationships, such as semantic equivalences, internal
and external links. Once a data set has been imported within the semantic
data space, it may need to be logically linked to other data and semantically
enriched. We structure our knowledge building process by including three
different kind of semantic enrichment (fig. 2): internal linking, metadata
association and external linking.

DataSet i

DataSet k

Direct Linking

Upper Vocabulary

Indirect  
Linking

DataSet Descriptor  
(Metadata) Semantic Web

Fig. 2: Semantic linking and enrichment.
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Internal linking is an ontology alignment process among the different datasets
which are considered part of the data space. That is a key process to enable the
effective integration at an user level of heterogeneous datasets. For instance,
two attributes belonging to two different datasets may have the same meaning.
Semantic technology provides simple and effective mechanisms to establish
semantic equivalences among classes, instances, relationships and attributes.
As discussed in the following section, these mechanisms may be used in a
relatively easy way, if they properly supported by user-friendly interfaces.
Semantic correspondences among ontology elements may be established
directly or indirectly (fig. 2). Direct linking, namely semantic equivalences
established directly from a dataset to another, is simple from a management
perspective but may result not too much effective in complex environments, i.e.
within collaborative systems, or, more in general, when the scale of the system
in terms of number of linked datasets becomes relevant. On the other side,
indirect linking established through upper vocabularies is well-known and
consolidated techniques that may result in a much more effective approach.
However, it introduces an additional cost from a management perspective.
The semantic infrastructure allows generic linking within the semantic space
or externally. So a dataset or an element belonging to a dataset may be
related with other concepts to define or extend the semantics associated.
For example, a given dataset may be related to a number of keywords, to a
research project or to a scientific paper by adopting the PERSWADE-CORE
vocabulary [28].

A simple example of data integration involving two datasets is represented
in fig. 3. As shown, both target datasets address information related to cities.
Fig. 3a represents dataset in their original format, while fig. 3b depicts the
integrated space as a knowledge graph. The column city is considered like a
Web Resource that in this case is also the primary key for both tables. Although
the two datasets present some redundancies, they provide, in general, different
information about cities. In this case, the integration process will enable the two
original datasets within the semantic data space assuring semantic consistency
among the different fields and concepts. Indeed, from a semantic perspective,
even this simple use case proposes a number of potential issues that have to be
addressed in order to guarantee a correct and effective integration. As shown
in the figure, there are several semantic equivalences among the two datasets
to be represented. They include attributes (columns in the virtual table model)
that have the same name and the same meaning within their original context, as
well as attributes that have different names but the same meaning. For instance,
the attributes "Population" and "Residents" refer to the same concept, namely
the number of people currently living in a given city. Additionally, equivalent
resources have to be semantically related. In the example, "Rome" appears in
both tables. This syntactic equivalence is integrated by a semantic one to properly
address the reference to the city of Rome. OWL provides simple mechanisms to
define equivalences among
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Overall, a simplification of the scenario previously discussed can be rep-
resented by the knowledge graph in fig. 3b that adopts OWL 2 structures.
More concretely, the equivalence among classes is enforced by the OWL rule
OWL:equivalentClass, as well as the equivalences among properties is specified by
OWL:equivalentProperty. Similarly, an OWL statement including OWL:sameAs
applies to instances of classes.

DataSet 1

DataSet 2

City … Population Nickname

Rome … 4.400.000 The Eternal City

City Country Residents …

Rome Italy 4.400.000 …

R

R

Same meaning
Same name

Same meaning
Different name

Equivalent
element

(a) Representation as tables

DataSet1: Rome

DataSet2: RomeDataSet2: City

DataSet1: City

“4.400.000”

“4.400.000”

“Italy”

“The Eternal City”

rdf: type

rdf: type

DataSet1: Population

DataSet2: Residents

DataSet 
Descriptor

DataSet2: Country

DataSet1: Nickname

owl: sameAsowl: 
equivalentClass

owl: 
equivalentProperty

(b) Integrated data space

Fig. 3: An example of integration of two datasets.

3.1 A tool for supervised data integration

Our implementation supports most part of the knowledge building process as
previously presented and discussed. It is based and relies on intuitive user inputs
rather than on strong skills in ontology and Semantic Web technology. However,
it assumes the understanding of basic concepts, i.e. the difference between an
object and an attribute. The primary goal of the tool is to support the systematic
conversion of a given dataset into an independent and self-contained ontology
in OWL. The user interface (fig. 4 allows to directly import a relational table.
Regardless of the method used to import data (based on copy&paste in this case),
the user is asked to characterize the table each column according to one of the
following options:

– ID. It is normally equivalent to the primary key in the relational model.
However, it is assumed to be an unique data field. Therefore, keys composed
by multiple fields cannot be directly used and need to be encoded previously.

– Resource. By using this option, associated data is considered like an object,
namely a Web resource in Semantic Web technology. A Web resource has an
unique identifier and can be further characterized.

– Attribute. It’s a normal data field, e.g. a text or a number.
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Fig. 4: User Interface.

Through the provided interface, users may specifies meta data for the imported
table, such as source. license, description and publisher. Last but not least,
relatively friendly alienation among concepts is supported.

3.2 Semantic representation

The output of the example proposed in fig. 4 is represented as a knowledge graph
in fig. 5a. As shown, the IDs (as previously defined) is associated with a new class
(A in this case) and the instances of ID (ID1 and ID2 ) are also stated as member
of the internal class TableRaw. This last concept identifies rows in the virtual table
TEST_table, which is stated as a member of the class RelationalTable. Resources
(B in the example)are converted in OWL Object properties, while attributes (C
in the example) are converted in OWL data properties. The resulting schema
may be semantically enriched trough concept alignment and external linking
(fig. 5b).

TEST: RelationalTable

TEST: TableRaw

TEST: TEST_table

RDF: type

TEST: A

TEST: ID1 TEST: ID2

TEST: belongsToTable TEST: belongsToTable

RDF: type RDF: type

RDF: type RDF: type

TEST: R1 TEST: R2
TEST: B TEST: B

“A1” “A2”TEST: C TEST: C

(a) Semantic representation

TEST: TEST_table

TEST: A

TEST: ID1

TEST: belongsToTable

RDF: type

TEST: R1
TEST: B

“A1”
TEST: C

owl: equivalentClass

owl: equivalentProperty

owl: equivalentProperty

owl: sameAs

owl: sameAs

owl: sameAs

…
…

…

Annotations

External Link

External Link

External Link

External Link

External Link

External Link

(b) Semantic enrichment

Fig. 5: Semantic representation of the integrated dataspace.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_35

https://dx.doi.org/10.1007/978-3-030-50436-6_35


8 S.F. Pileggi et al.

4 Uncertainty in non-supervised ontology alignment

Uncertain schema correspondence is often generated by (semi-)automatic unsuper-
vised tools and not verified by domain experts. Even in manual or semi-automatic
tools, the users may not understand enough the domain and, thus, provide in-
correct or imprecise correspondences. In some domains, it is not clear what the
correspondences should be [9]. Schema elements (entities) can be ambiguous in
their semantics [30] because entities are close (i.e., related to each other) but
neither synonyms (i.e., completely similar) nor dissimilar (i.e., completely differ-
ent) [17,5]. Therefore, matching systems turn out to be uncertain, since it is not
accurate to declare whether two entities are equivalent or not [40]. In the ontology
domain, ontological entities do not always correspond to single physical entities,
they rather share a certain amount of mutual information [40]. Indeed, real-world
ontologies generally have linguistic, structural and semantic ambiguities, resulting
from their heterogeneous domain conceptualizations [3]. Eventually, ambiguity
and heterogeneity in ontology models/representations are carried in the process
of matching and integrating ontologies [3]. Finally, Uncertain query. is commonly
associated with multiple structured queries generated by the system as candidate
queries reflecting uncertainty about which is the real intent of the user.

Klir and Yuan [18] defined two basic types of uncertainty: (i) Fuzziness which
is the lack of definite or sharp distinctions; and (ii) Ambiguity which is the
existence of one-to-many correspondences that may introduce a disagreement in
choosing among several correspondences.

There are two choices to remove (or at least reduce) the alignment uncertainty
in schema matching processes: either with the support of a user (manually)
or by using a threshold. According to the former approach, aka user feedback,
users can manually select matching and non-matching correspondences from the
alignment, i.e. in semi-automatic matching process when the system requests help
[7]. The latter approach is based on a threshold that can be established in a semi-
automatic manner (i.e. using user feedback cycles) or in an automatic manner
(i.e. using learning approaches) in order to minimize the introduction of false
correspondences. A matcher filters/discards correspondences having a confidence
value that does not reach a certain threshold, assuming that correspondences
with low confidence/similarity measures are less adequate than those with high
similarity measures. However, separating correct from incorrect correspondences
in an alignment is a hard task [14]. To find the optimal/best threshold, many
trials should be made by varying/tuning the confidence value threshold [30].
In addition, different thresholds can be assigned to different applications. For
example, a recommendation system may have relatively low thresholds since false
positives are tolerated, while a scientific application may have high thresholds [40].
As a rule of thumb, the information loss, caused by the removal of uncertainty,
leads to a worsening of the alignment quality [30]. In fact, any selection of a
threshold often yields false negatives and/or false positives. Therefore, the exact
alignment cannot be found by setting a threshold [13].

Generally speaking, the uncertainty generated during the matching process
is lost or transformed into exact one (defuzzification) [23]. Therefore, there
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is a concrete need to incorporate uncertain/inaccurate correspondences and
handle uncertainty in alignments [14], due to the inherent risk of losing relevant
information [23].

Uncertainty Management From a literature review, we have identified two
different levels to deal with uncertainty management in schema matching: some
solutions try to quantify the uncertainty of an entire alignment when there are
many alignments produced for the same matching case; others try to represent
and quantify the uncertainty of the correspondences of a given alignment.

Management of Ontology Alignment Uncertainty A semantic alignment
(aka mapping), denoted as A = {c1, c2, . . . , cn}, is a set of semantic correspon-
dences between two or more matched ontologies. It is the result/output of the
ontology matching process.

The uncertainty of a matcher should be explicitly reflected in an uncertainty
measurement in order to be able to choose good enough alignments [32]. The
work in [9] introduced the notion of probabilistic schema alignments, namely a
set of alignments with a probability attached to each alignment. The purpose
of defining probabilistic alignments is to answer queries with uncertainty about
(semi-)automatically created alignments [32].

Management of Correspondence Uncertainty In general, given two matched
ontologies O1 and O2, a semantic correspondence (aka a relation or a relationship)
is a 4-tuple < eO1

, eO2
, r, n > where eO1

is an entity belonging to O1, and eO2
is

an entity belonging to O2, r is a semantic relation holding (or intended to hold)
between eO1 and eO2 , such as equivalence (≡), subsumption (v/w), disjointness
(⊥), or overlap (G) etc.), and n is a confidence value/measure/probability assign-
ing a degree of trust/reliability/correctness on the identified relation and ranging
typically between [0, 1], where 0 represents no similarity and 1 represents full
similarity. In the equivalence case, n indicates whether both entities have a high
or low similarity measure/degree. The higher the confidence degree, the more
likely the relation holds [11]. A matcher would be inclined to put a similarity
value of 0 for each entity pair it conceives not to match, and a value higher than
0 (and probably closer to 1) for those correspondences that are conceived to be
correct [13]. On the other hand, in the crisp correspondences (composing the
crisp alignments), the confidence values of all correspondences are equal to 1.

Correspondences Generated by a Matcher Aggregation Some matchers assume
that similar entities are more likely to have similar names. Other matchers
assume similar entities share similar domains. Other matchers assume that
similar entities are more likely to have similar neighbors (parents, children,
and siblings). And others assume that similar entities are more likely to have
similar instances [24]. In order to combine principles by which different schema
matchers judge the similarity between entities, the combined matcher aggregates
the outcome (i.e., the output alignment) of all matchers to produce a single
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alignment. It automatically computes the overall similarities of correspondences
by aggregating the similarity degrees assigned by individual matchers. In the
automatic process of matching, it is proven that an ensemble (a combination)
of complementary matchers (e.g., string-based, linguistic-based, instance-based,
and structural matchers, etc.) outperforms the behavior of individual matchers
[30] since they compensate for the weaknesses of each other [24]. In recent years,
many matching tools use schema matcher ensembles to produce better results.
Therefore, the similarity measure of a correspondence is generally the result of
aggregating multiple similarity measures [7], and as the number of such similarity
measures increase, it becomes increasingly complex to aggregate the results of
the individual measures. The generated similarity degrees of correspondences
are dependent to the choice of the weights of individual matchers assigned by
aggregation algorithms for the similarity combination [40]. Therefore, a similarity
degree of a given correspondence represents the "belief" of a matcher in the
correctness of that correspondence [13]. However, the real issue in any system
that manages uncertainty is whether we have reliable probabilities (degrees of
similarity), because unreliable probabilities can lead us to choose erroneous or
not good enough correspondences. Obtaining reliable probabilities for uncertainty
management systems is one of the most interesting areas for future research [9].
Finally, disregarding semantic similarity degrees of the alignment correspondences
may impede the overall integration process [5].

Correspondence Ambiguity An ambiguous alignment [11] is a one-to-many (1 : n),
a many-to-one (n : 1), or a many-to-many (n : n) alignment. This means that
it contains some ambiguous correspondences [11] (i.e., that match the same
entity from one ontology with more than one entity from the other ontology).
An ambiguous correspondence is a correspondence in which at least one entity is
also involved in other correspondences. Contrary to one-to-one (1 : 1) alignments
in which an entity appears in at most one correspondence.

The ambiguous correspondences are generally a source of uncertainty because
they can be interpreted in two ways: (i) A first point of view considers that
only a single ambiguous equivalence correspondence (probably the one that
has the highest confidence value) truly reflects a synonym/alternative entity,
while the remaining ones (having lower confidence values) rather reflect similar,
related or overlapping terms, not strictly denoting equivalent entities [37]; (ii)
A second point of view considers the ambiguous equivalence correspondences as
actually subsumption correspondences, because an entity in one ontology can be
decomposed into several entities in another ontology [13]. This happens in case
where one ontology is more granular (or general) than the other one [37].

Correspondences in Coherent and Conservative Alignments: Consistency Principle
The consistency principle [36] states that the integrated ontology –resulting from
the integration of the input ontologies– should be coherent (i.e., all entities of
the integrated ontology should be satisfiable), assuming that the input ontologies
are also coherent (i.e., the input ontologies also do not contain any unsatisfiable
entities). An unsatisfiable entity (class or property) is an entity containing a
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contradiction in its description, for which it is not possible for any instance to meet
all the requirements to be a member of that entity. In some applications where
the logical reasoning is involved, ensuring coherence is of utmost importance
since the integrated ontology must be logically/semantically correct to be really
useful, otherwise it may lead to incomplete or unexpected results.

Conservativity Principle The conservativity principle [36,34,35] requires that the
original description (especially the is-a structure/class hierarchy) of an input
ontology should not be altered after being integrated. Hence, the introduction
of new semantic relations between entities of each matched ontology is not
allowed, especially new subsumption relations causing structural changes. The
conservativity principle aims that the use of the new integrated ontology –resulting
from the integration of the input ontologies– does not affect the original behavior
of the applications already functioning with the input ontologies (that were
integrated).

Example 1 (Coherence/Conservativity Violation). Suppose that we have a class
A in O1, two disjoint classes (B and C) in O2, and two correspondences c1 and
c2 stating that A is a subclass of B and C. Formally,

O1 = {A} O2 = {B ⊥ C}
A = {c1, c2} c1 =< A v B > c2 =< A v C >

If a reasoning process is applied on the integrated ontology O3, then A will
be an unsatisfiable class since it will become a subclass of two disjoint classes.

Now if we consider the following two ontologies: O1 has two classes A and B,
and O2 has two classes A′ and B′ where B′ is a subclass of A′. Formally,

O1 = {A,B} O2 = {B′ v A
′}

A = {c1, c2} c1 =< A ≡ A
′
> c2 =< B ≡ B

′
>

If the ontology matching generates two correspondences c1 and c2 stating
that A is equivalent to A′, and B is equivalent to B′, then the original structure
of O1 will change in the integrated ontology O3 because of the addition of a new
subsumption linking A and B.

Whenever an unsatisfiable entity or a conservativity violation is identified
in the integrated ontology, then an alignment repair algorithm first identifies
the correspondences causing these problems. The identified correspondences
may actually be erroneous correspondences, but may also be correct correspon-
dences introducing violations because of the incompatible conceptualizations of
the matched ontologies. A human expert can then be notified and pointed to
manually check and specify his/her opinion on these correspondences, to give
his/her contribution to the matching process [23]. Otherwise, the alignment re-
pair system can resolve these violations by automatically removing the identified
correspondences and generating a repaired (coherent and conservative) output
alignment. In a text annotation application, it is not necessary to ensure the
coherence of the integrated ontology. However, in other applications, e.g., query
answering, logical errors in the integrated ontology may have a critical impact in
the query answering process. Similarly, in some cases, the conservativity principle
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is no longer required, since the integrated ontology will be used by another
specific application, i.e. not by the applications already using the ontologies that
were integrated. Therefore, there is a need to represent/express correspondences
causing (consistency and conservativity) violations in the forthcoming integrated
ontology, and model them in the Alignment format [23]. The Alignment3 format,
(aka the RDF Alignment format), is the most consensual ontology alignment
format used for representing simple pairwise alignments. In this format, we can
not differentiate between a normal correspondence and a repaired one (involved
in integration violations and identified by alignment repair systems). Therefore,
there is a representation problem in the ontology alignment repair area.

5 Conclusions and Future Work

This paper presented a simple approach for knowledge building from raw datasets
by adopting rich data models (ontologies). The tool developed proposes some
automatic features to import data, which is mapped on virtual tables. Neverthe-
less, we need to automate the key mechanism to enforce semantic consistence
among the different datasets is supposed. It becomes unrealistic once the scale of
the system becomes significant or in presence of heterogeneity. Future work will
be oriented to the automation of the whole process by particularizing existing
techniques to the specific case of datasets mapped on virtual tables. Furthermore,
we will include an additional virtual structure to support multi-dimensional data
based on the RDF Data Cube Vocabulary4.
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