APE: A Command-Line Tool and API for
Automated Workflow Composition

Vedran Kasalical0000—0002—0097—-1056] 414 Anna-Lena
Lamprecht[0000—0003—1953-5606]

Department of Information and Computing Sciences
Utrecht University, 3584 CC Utrecht, Netherlands
{v.kasalicala.l.lamprecht}@uu.nl

Abstract. Automated workflow composition is bound to take the work
with scientific workflows to the next level. On top of today’s compre-
hensive eScience infrastructure, it enables the automated generation of
possible workflows for a given specification. However, functionality for
automated workflow composition tends to be integrated with one of the
many available workflow management systems, and is thus difficult or
impossible to apply in other environments. Therefore we have developed
APE (the Automated Pipeline Explorer) as a command-line tool and
API for automated composition of scientific workflows. APE is easily
configured to a new application domain by providing it with a domain
ontology and semantically annotated tools. It can then be used to synthe-
size purpose-specific workflows based on a specification of the available
workflow inputs, desired outputs and possibly additional constraints. The
workflows can further be transformed into executable implementations
and/or exported into standard workflow formats. In this paper we de-
scribe APE v1.0 and discuss lessons learned from applications in bioin-
formatics and geosciences.

Keywords: scientific workflows - computational pipelines - workflow
management systems - automated workflow composition - workflow ex-
ploration

1 Introduction

Computational pipelines, or workflows, are central to contemporary computa-
tional science [5]. The international eScience community has created a com-
prehensive infrastructure of tools, services and platforms that support the work
with scientific workflows. Numerous scientific workflow management systems ex-
ist [1,29], some of the currently most popular being Galaxy [10], KNIME [6] and
Nextflow [7]. While these systems free their users from many technicalities that
they would have to deal with when conventionally programming workflows, the
identification of suitable computational components and their composition into
executable workflows remains a manual task.

The idea of automated workflow composition is to let an algorithm perform
this process. Based on a loose specification of the intended workflow (for example

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

2 V. Kasalica, A.L. Lamprecht

in terms of available workflow inputs and desired outputs, or principal steps to
take), it would automatically generate suitable, executable workflows. It has been
shown that program synthesis [11] and AI planning techniques [8] can be used to
implement such functionality [20, 22, 23]. Some workflow management systems,
such as jJORCA /Magallanes [15], jJABC/PROPHETS [24,21] and WINGS [9],
provide automated workflow composition functionality based on such techniques.
However, the tight integration with the respective workflow systems makes it
difficult or even impossible to use this functionality in other environments.

Therefore we have developed APE! (the Automated Pipeline Explorer) as a
command-line tool and API for automated workflow composition. It is designed
to be independent from any concrete workflow system, and thus ready to be
used in other workflow management systems, tool repositories or workflow shar-
ing platforms as needed. Internally, APE uses a SAT-based implementation of
a temporal-logic process synthesis method, inspired by the approach behind the
PROPHETS framework [21,27] and described in detail [17]. In a nutshell, the
framework uses an extension of the well known Linear Temporal Logic (LTL) to
encode the workflow specification. This specification is translated into a propo-
sitional logic formula that can be processed by an off-the-shelf SAT solver, with
the resulting solutions representing possible workflows for the specification.

In this paper, we introduce APE v1.0 from an application point of view.
Section 2 describes how to set it up for use by providing a semantic domain
model. Section 3 focuses on the automated composition of workflows based on the
domain model and custom workflow specifications. Section 4 describes how APE-
composed workflows can further be transformed into executable implementations
and/or exported into standard workflow formats. Section 5 discusses lessons
learned from applications of APE in bioinformatics and geosciences. Section 6
concludes the paper.

2 Domain Model

The semantic domain model constitutes the knowledge base on which APE re-
lies for the automated composition of workflows. It comprises a domain ontology
and a collection of semantically annotated tools. The domain ontology provides
taxonomic classifications of the data types and operations in the application
domain, as a controlled vocabulary of technical terms. Tools in the domain
model are semantically annotated with their inputs, outputs and operations,
using terms from the ontology. Additionally, the domain model might include
(temporal-logic) constraints to express further domain knowledge or rules.

For example, Figure 1 and Table 1 show fragments of a bioinformatics do-
main model from a recent case study on automated workflow composition in
proteomics [25]. The domain ontology (see Figure 1) was directly derived from
the popular bioinformatics data and methods ontology EDAM [12]. Table 1
shows a few tool annotations from the same case study. Each tool is semanti-
cally annotated with the operation(s) it performs and its input and output data

! https://github.com/sanctuuary/ape

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

APE

Operation
Peptide
indentification Data
handling
Formatting
Peptide

database
protk

xml2tsv

Format (by
type of data)
Document
format

Mass
' | spectometry
data format

Image
format

[mzxmL |

Molecular
property
Amino acid
property

Amino acid
index

Experimental
mesurement

Mass
spectometry
data

idconvert

search
msconvert

CompassXport

Retention time
prediction

Validation of
peptide-spectrum

mathces " Aminoacid | Mass
index spectometry
ProteinProphet i rt4 (hydropathy) | | spectra | | PNG
PeptideProphet SSRCalc

Fig. 1. Fragment of a bioinformatics domain ontology.

Table 1. Fragment of an annotated set of bioinformatics tools [14].

Comet Peptide database Mass spectrum Peptide identification
search mzML or mzXML pepXML

msconvert Formatting Mass spectrum Mass spectrum
Filtering MGF or mzXML or mzML [MGF or mzXML or mzML

Peptide Peptide identification|Peptide identification Peptide identification

Prophet Statistical modelling |pepXML or mzIdentML pepXML

rtd Retention time Peptide property Amino acid index (hydropathy)
prediction TSV or pepXML TSV or XML

Kml2tsy Conversion Peptide identification Peptide identification

mzldentML TSV

SSRCale Retention time Peptide property Amino acid index (hydropathy)

prediction Textual format or TSV Textual format

types and formats, using terms from the respective taxonomies. These annota-
tions were directly derived from the bio.tools registry [14, 13], a large collection
of EDAM-annotated bioinformatics tools. Note that in this example, two di-
mensions (type and format) are used for the annotation of the input and output
data. Other applications need only one (e.g. format), and yet others have more
than two required dimensions. Hence, APE supports the use of multiple disjoint
taxonomy trees to represent the required dimensions of data characterization.

Technically, we rely on existing and (de facto) standard formalisms for the
representation of the domain model. APE loads the domain ontology from a file
in Web Ontology Language (OWL) format. The tool annotations are represented
in JavaScript Object Notation (JSON) format, following the schema that is used
in the bio.tools registry [2].

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOIJ 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

4 V. Kasalica, A.L. Lamprecht

Input Output Constraints:

Thermo RAW,) e — 1. Use operation peptide identification
I H 9 % Use operation validation of peptide-spectrum matches

Use operation retention time prediction

WORKFLOW
SYNTHESIS
Solution 1:
msConvert ‘ Comet PeptideProphets ‘ rt
Mass spectrum Mass spectrum Peptide identif. Peptide identif. Amino acid inde:
Solution 2:

‘ SSRCale

1 msConvert I ‘ Comet ‘ PeptideProphets ‘ xml2tsv ‘
Thermo RAW, mzML, pepXML, pepXML, TSV,
Mass spectrum Mass spectrum Peptide identif. Peptide identif. Peptide identif.

Fig. 2. Automated composition of a proteomics workflow.

plain text format,
Amino acid index

3 Automated Workflow Composition

Once the domain model has been configured, APE is ready to be used for au-
tomated workflow composition. Therefor the user specifies the workflow inputs,
intended outputs and additional constraints that the workflow has to fulfill. In-
ternally the constraints are expressed in a formal (temporal) logic, but the APE
interfaces expose them in the form of intuitive natural-language templates. For
example (as illustrated in Figure 2), one workflow specification from the pro-
teomics case study consists of “Mass spectrum” type in “Thermo RAW format”
as input, “Amino acid index (hydropathy)” (in any format) as output, and con-
straints specifying to use tools that perform the operations “peptide identicifa-
tion”, “validation of peptide spectrum matches” and “retention time prediction”
(constraint template “Use operation X”). These operations are abstract terms
from the ontology, known to scientists from the domain. This shows that for-
mulating such constraints does not require knowledge of all available tools that
fit the description. Based on the given specification APE synthesizes workflows
that fulfill the specification by construction. Figure 2 shows two of many possible
workflow solutions for the example specification.

Automated workflow composition with APE can be performed through its
command line interface (CLI) or its application programming interface (API).
While the CLI provides a simple means to interact and experiment with the
system, the API provides more flexibility and control over the synthesis process.
It can also be used to integrate APE’s functionality into other systems.

3.1 Command Line Interface (CLI)

When running APE-<version>.jar from the command line, it requires a con-
figuration file as a parameter and executes the complete automated workflow
composition process accordingly. This JSON-based configuration file provides
references to all therefor required information:

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

APE 5

1. The domain model (as described in Section 2), provided as a pair of a well-
formatted OWL and JSON files,

2. the workflow specification, provided as a list of workflow inputs/outputs and
template-based workflow constraints, and

3. parameters for the synthesis execution, such as the number of desired solu-
tions, output directory, system configurations, etc.

APE then writes the synthesized workflows into the defined output directory.
Each solution consists of a text file that describes the steps of the workflow, a
graphical representation, and a shell script that implements the workflow (de-
pending on the availability of suitable shell commands in the tool annotations).

3.2 Application Programming Interface (API)

Like the CLI, the APE API relies on a configuration file that references the
domain ontology, tool annotations, workflow specification and execution param-
eters. However, the API allows to edit this file programmatically, and thus for
instance add constraints or change execution parameters dynamically. This is
useful, for instance, for providing more interactive user interfaces or for system-
atically exploring and evaluating workflow synthesis results for varying specifi-
cations and execution parameters.

JSONObject apeConfig = Utils.generateGeneralConfiguration();
apeConfig.put("ontology_path", "./EDAM.owl");
apeConfig.put("tool_annotations_path", "./biotools.json");

APE apeFramework = new APE(apeConfig);

JSONObject runConfig = Utils.parseJson("./runConfig.json");
List<SolutionWorkflow> solutions = apeFramework.runSynthesis(runConfig);
apeFramework.writeSolutionToFile(solutions);
apeFramework.writeDataFlowGraphs (solutions) ;

Listing 1.1. APE API calls used to synthesize workflows and save solution.

Listing 1.1 shows a small example of using the APE API for synthesizing
a set of workflows similar to the example in Figure 2. First, the paths to the
domain ontology and tool annotation files are added to the APE configuration
object. Then a new instance of the APE framework is created based on the con-
figuration, and the workflow synthesis algorithm is executed with the provided
run configuration. The result of the synthesis run is a list of solutions obtained
from the SAT solver, which are written into the output directory in textual and
graphical (data-flow) format.

The APE API provides further functionality, allowing for a more fine-grained
interaction with the APE framework. Figure 3 outlines the API, for brevity fo-
cusing on the most relevant fields and functions. The ConstraintFactory and
Constraint classes allow for the retrieval of constraint templates and for adding
new or removing existing constraints, thus further constraining or loosening the
specification, respectively. As shown in the example code above, the APE class

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

6 V. Kasalica, A.L. Lamprecht

ConstraintFactory APE APEConfig
constraints:Map<ID, Constraint> # domain configuration: APEConfig # domainOntologyPath: String
+ getConstraint(ID): Constraint . # constraintGenerator: ConstraintFactory . ! # toolAnnotationsPath: String
' + addConstraint(Constraint): void # maxNumberOfSolutions: int
* getConstraintTemplates(): Templ + runSynthesis: List<SolutionWorkflow> + setWorkflowInputs(DataType)
! + writeSolutions ToFile(List<SolutionWorkflow>) + setWorkflowOutputs(DataType)

+ writeDataFlowGraphs(List<SolutionWorkflow>)
+ writeExecutables(List<SolutionWorkflow>)
1

Constraint

Module
modulelD: String

#ID: String ~ # description: String

params: List<TaxonomyLabel>

- . # moduleLabel: String
. . . ~ g
+ getEncoding(): String - . ; # moreAbstractModules: Set<Module>
mappings: AtomMappings
solutionsFound: List<SolutionWorkflow> + getRequiredInputs(): List<Type>
Type # CNF encoding: String ... + getRequiredOutputs(): List<Type>
typelD: String + synthesisEncoding(); void + getExecutableCommand(): String
g i) 1
typeLabel: String + synthesisExecution(): List<SolutionWorkflov
1

moreAbstractTypes: Set<Type>

1

‘L_‘ SolutionWorkflow ModuleNode
[—

1

TypeN‘ode + getModuleNodes(): List<ModuleNode> + getUsedModule(): moduleObject
+ getWorkflowlnputs(): List<TypeNode> + getNextModule(): ModuleNode
* gefType(): Type + getWorkflowOutputs(): List<TypeNode> + getPrevModule(): ModuleNode
* getCreatedByModule(): ModuleNode + getDataFlowFig(): Image + getinputTypes(): List<TypeNode>
* gellsedByModules) ListsModuleNode> + getControlFlowFigure(): Image + getOutputTypes(): List<TypeNode>

+ getExecutableScripi(): String

Fig. 3. Fragment of the APE APIL.

constitutes the main interface for interaction with the framework. It is used to
define the execution parameters as well as the output formats. Once the library
has generated the solutions, they are provided as a list of Solution Workflows.
Each solution is represented as a directed graph that comprises type and tool
nodes (internally named modules). The interface for working with the workflow
solutions (further elaborated in the next section) is provided by the classes So-
lution Workflow, TypeNode (representing type instances) and ModuleNode (rep-
resenting tool instances).

4 Workflow Implementation

As mentioned above, APE provides functionality for exporting the synthesized
workflows as textual representations, in the form of (data-flow and control-flow)
graphs and as executable shell scripts. In practice it is often desirable to imple-
ment workflows in one of the languages used by popular workflow management
systems, in order to be able to execute them with the respective workflow en-
gines. Given the large number of existing workflow languages, it is however not
feasible for APE to provide ready-to-use export functionality for all of them.
Instead, the information contained in APE’s own workflow representation can
be used to create workflows in other languages. In the following we describe
the APE workflow format and demonstrate how the contained information can
be used to create corresponding workflows in the Common Workflow Language

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DO1{10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

APE 7

(CWL) [4]. This feature is going to be integrated to the APE API in the near
future. The mapping process described in this paper can furthermore serve as a
template for the translation of APE results to other workflow formats, such as
NextFlow [7], SnakeMake [19] or the Workflow Description Language (WDL) [3].

4.1 APE workflow format

""""""""" class: Workflow
| Workflow INPUT cwlVersion: v1.2-devl

2. workflow_in iinputs:

hid .
£ E kflow_in_1:

Thermo RAW, mzidentML, wer ty;:T“F‘Ile

Massspec{um Peptidslidentir format: http://edamontology.org/format 3712 (Thermo RAW)
1

workflow_in_2:
type: File
format: . "mzldentML."
steps:
msconvertl:
in:

msConvert

1 p
mzML, MGF,
Mass spectrum Mass spectrut
1 B class: Operation
- inputs:
msconvert_in_1:
type: File
format: http://edamontology.org/format 3712 (Thermo RAW)

Y msconvert_in_2:

type: File
epXML, w "
tool_info - orNa I n=Idan D
hints:
SoftwareRequirement:
packages:
msconvert: [https://bio.tools/msconvert]
intent: [http://edamontology.org/operation 3695,
http://edamontology.org/operation 0335]

msconvert_in: workflow_in
: [msconvert out]

1

A 4
PeptideProphets [«
- outputs:
msconvert_out_1:
Peptide identif. format: http://edamontology.org/format_3244 (mzML)

format: "MGF"

v type: File
rt

.
.
iHOP fomat,
Amino acid index.

1 workflow_out @ outputs:
18 4 : workflow_out_1:

; - : type: File
WorkﬂowOUTPUT format: http://edamontology.org/format 1740 (iHOP)

1

1 msconvert_out_2:
.

1

Fig. 4. Workflow in APE’s native format (left) and corresponding CWL (right).

APE represents the workflow solutions in the form of directed graphs. The
left-hand side of Figure 4 shows an example. Nodes in the graph represent in-
stances of data (depicted as ellipses) and executions of operations (rectangles),
while the edges represent inputs and outputs of these tools, shown as green and
red arrows, respectively. In addition, labels on the edges represent the order in
which they are given as arguments to the tools. This graph provides the trace
information that is needed to create the workflow in another language.

The APE API provides a set of functions to aid the interaction with the
graph structure (see class WorkflowSolution in Figure 3). The workflow inputs

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI|10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

8 V. Kasalica, A.L. Lamprecht

can simply be retrieved using the corresponding function of the Solution Work-
flow class, which returns it as a list of TypeNodes. Generally, each TypeNode
comprises a (possibly empty) tool node that generated it as an output, a (pos-
sibly empty) list of tools that used it as an input, and a concrete data Type
that identifies it. Further, the Solution Workflow class provides a function for
retrieving the tools used in the workflow as list of ModuleNodes (sorted accord-
ing to their order of execution), making it easy to iterate over all tools used
in the workflow. Each ModuleNode provides information about the next and
the previous ModuleNode in the sequence, the TypeNodes used as inputs and
generated as outputs by the tool, as well as information about the actual tool
(executable script, see class Module) that provides the information needed for
its execution. Finally, the workflow outputs are provided in the same format as
the initial inputs. Note that for this example the first proposed solution from
Figure 3 was artificially extended with additional inputs and outputs (depicted
as gray ellipses) for illustrative purposes.

4.2 Translation to CWL

The Common Workflow Language? (CWL) [4] has recently emerged as an open
standard for describing scientific workflows across platforms. It is increasingly
adopted by the scientific community, with CWL support being added to popu-
lar scientific workflow management systems like, for example, Galaxy [10] and
Toil [28]. CWL is a declarative language that focuses on workflows composed
from command line tools. Basically, it describes a set of steps and dependencies
between those steps. CWL has its roots in “make” and similar tools, and like
them it determines the order of execution based on these dependencies between
tasks, i.e. if there is a required order of the operations or if they can even be exe-
cuted concurrently. Conveniently, the main CWL structure is quite similar to the
APE workflow structure. A basic workflow (see right-hand side of 4) comprises a
configuration header, a list of workflow inputs, steps to be performed and work-
flow outputs. The input/output dependencies have to be explicitly defined, again
in line with our data trace workflow representation. The tools in CWL usually
include a command field, explicitly defining the corresponding command line op-
eration. In addition, they can be configured to run tools from Docker containers
automatically, allowing for more flexible and scalable workflow implementations.

However, as the fully automatic configuration for execution is not always fea-
sible, the upcoming CWL version 1.2 will introduce abstract workflows. These
workflows use descriptive containers instead of directly executable operations,
and require additional (manual) configuration to become executable. The ab-
stract containers are represented using the intent label (see Figure 4). Given
that functional description of tools is sufficient for workflow discovery with APE,
the abstract CWL workflows match well with APE’s own workflow representa-
tion. Furthermore, the bio.tools registry used as source for the tool annotations
in the aforementioned bioinformatics case study is a typical example of such a

2 https://www.commonwl .org/

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

APE 9

set of tools. The repository contains the semantic annotations of the tools, but
still might require some additional work from the user in order to execute the
tool itself. Hence APE discovers workflows composed of tools that are not nec-
essarily available on the local system, potentially requiring the installation and
configuration of the tools on the execution system first.

To translate and APE workflow into CWL format, it is sufficient to 1) de-
scribe the original inputs, 2) iterate through the tools in the workflow sequence
and specify the inputs used and outputs generated, and finally 3) specify the
workflow output list. The right-hand side of Figure 4 shows the CWL repre-
sentation of the APE workflow on the left. To create it, first, the list of input
objects is translated into a list of inputs that are annotated using their formats
(see Label workflow_in). This means that some information about the data get
lost in the translation (specifically the type description). However, as at runtime
the format is sufficient to perform the execution, this is not a problem. Second,
each tool in the sequence is described. The description involves a definition of
the inputs, outputs and tool execution specification (mappings are annotated
using labels tool_in, tool_out and tool_info, respectively). The most impor-
tant part of the step is to keep track of the exact source of the tool inputs as
well as to provide sufficient tool description that would allow for its execution.
The input information is already part of the formalism, as APE keeps track of
data flow traces for each data instance. The only requirement is to properly use
the identifiers provided when creating the mappings to CWL. Regarding the
tool descriptions, as long as the provided tool annotation file contains sufficient
information, it can be translated into CWL. Third, the final tool outputs need
to be specified based on the given tool description (see Label workflow _out).

5 Applications and Lessons Learned

The development of APE was accompanied by three concrete application sce-
narios for automated workflow composition: 1) The proteomics case study men-
tioned earlier in this paper [25], 2) a case study on cartographic map genera-
tion [16], and 3) geospatial data transformations in the QuAnGIS project [26,
18]. The experiences from these applications, in particular the feedback from
the involved domain experts, influenced the design decisions that we took dur-
ing the development of the APE CLI and API. While initial versions of all three
application scenarios have been created with PROPHETS, they have meanwhile
been migrated to APE completely and are publicly available®.

Naturally, the quality of the workflows obtained through APE essentially
depends on the quality of the semantic domain model (ontologies and func-
tional tool annotations). Hence it is crucial to involve domain experts in the
domain modeling process, or to rely on sources that have been created by expert
communities, such as the EDAM ontology and bio.tools registry that we use
in bioinformatics applications of APE. Essentially, the idea is that the domain

% nttps://github.com/sanctuuary/APE_UseCases

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

10 V. Kasalica, A.L. Lamprecht

model is provided and maintained by a small group of domain experts, and used
by a larger and broader audience to automatically compose workflows. As a pos-
itive side effect on domain modeling, using APE for the systematic generation
and evaluation of workflows from varying specifications proved to be helpful to
revise and improve ontologies and annotations.

Initially we used a tabular format for the tool annotations, like the one shown
in Table 1, because spreadsheets are easy to discuss with collaborators, and
the corresponding CSV files easy to process programmatically. However, this
approach quickly turned out to be insufficient to adequately capture non-trivial
tool annotations. In the proteomics case study, we annotated tools’ inputs and
outputs with both data type and format terms from EDAM. As the tools have
varying numbers of inputs and outputs, however, they could not be properly
annotated in the tabular format with a fixed number of columns. To increase
the expressiveness of APE’s tool annotation template, but at the same time
reuse an existing formalism, we decided to adopt the JSON-based tool annotation
schema used in the bio.tools registry [2], which includes a well-defined and flexible
mechanism for functional tool annotation. This has of course extremely simplified
the setup of bioinformatics domain models based on bio.tools, but it has also
shown to be easy to use in the other application domains.

The APE CLI and API aim to be easy-to-use, but clearly target a tech-
savvy audience with a certain level coding and/or scripting confidence. To reach
a broader audience, an intuitive interface that can be used without technical
experience or specific training is required. As a proof of principle, we recently
developed Burke (a Bio-tools and edam User interface foR automated worK-
flow Exploration?). Preconfigured to the domain model of the proteomics case
study, it provides the automated workflow composition functionality of APE
through a browser-based graphical interface. Users can select input and output
data types and formats, as well as constraint templates and their instantiations,
from drop-down menus that are filled with the relevant EDAM terms. They can
configure and run APE’s synthesizer from the interface, and subsequently in-
spect the results, which are presented in a convenient tabular format. Feedback
on Burke by APE novices has been very positive, hence we plan to develop a
more sophisticated web interface for APE in the scope of future work on the
framework.

A graphical interface has also the potential to overcome another limitation
of the framework: Currently it is a tedious process to compare the different pos-
sible workflows generated by APE. This is however needed to make an informed
decision about which of the potentially many possible workflows to select for
implementation and execution. A graphical interface provides more possibilities
for dynamically filtering, aggregating and displaying workflow candidates ac-
cording to different criteria. Which criteria would actually provide meaningful
information for workflow selection is currently an open question. This is another
challenge that we are going to work on in the future.

4 https://github.com/sanctuuary/Burke_Docker

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

APE 11

6 Conclusion

We believe that automated workflow composition will take the work with scien-
tific workflows to the next level. On top of today’s comprehensive eScience infras-
tructure, it enables the automated generation of possible workflows for a given
specification. In this paper we introduced APE v1.0 (the Automatic Pipeline
Explorer), a command line tool and API that automates the exploration of sci-
entific workflows. APE is under active development and continuously improving
through the experiences and feedback from applications.

Future work on the APE framework will address different remaining chal-
lenges of usability and scalability. We are going to work on more end user-
oriented interfaces that support better the whole life cycle of specifying, syn-
thesizing, comparing, selecting, implementing and benchmarking computational
pipelines. With growing domain models, the runtime performance of the under-
lying synthesis algorithm is likely to become a bottleneck. We have started to
work on domain-specific search heuristics to improve synthesis performance and
allow the approach to scale.

References

1. Existing Workflow systems, https://s.apache.org/existing-workflow-systems
2. bio-tools/biotoolsSchema (Dec ~ 2019), https://github.com/bio-tools/
biotoolsSchema, original-date: 2015-05-05T15:52:467Z
3. Workflow Description Language (WDL) (Apr 2020), https://github.com/
openwdl/wdl, original-date: 2012-08-01T03:12:48Z
4. Amstutz, P., Crusoe, M.R., Tijanié, N., et al.: Common Workflow Language, v1.0
(Jul 2016)
5. Atkinson, M., Gesing, S., Montagnat, J., Taylor, I.: Scientific workflows: Past,
present and future. Future Generation Computer Systems 75, 216-227 (Oct 2017)
6. Berthold, M.R., Cebron, N.,; Dill, F., Gabriel, T.R., Kétter, T., Meinl, T., Ohl, P.,
Thiel, K., Wiswedel, B.: Knime-the konstanz information miner: version 2.0 and
beyond. AcM SIGKDD explorations Newsletter 11(1), 26-31 (2009)
7. Di Tommaso, P., Chatzou, M., Floden, E.-W., others: Nextflow enables reproducible
computational workflows. Nature Biotechnology 35, 316-319 (Apr 2017)
8. Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting. Cambridge
University Press, New York, NY, USA, 1st edn. (2016)
9. Gil, Y., Ratnakar, V., Kim, J., others: Wings: Intelligent Workflow-Based Design
of Computational Experiments. IEEE Intelligent Systems 26(1), 62-72 (Jan 2011)
10. Goecks, J., Nekrutenko, A., Taylor, J., others: Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research in
the life sciences. Genome Biology 11(8), R86 (Aug 2010)
11. Gulwani, S., Polozov, O., Singh, R.: Program Synthesis, Foundations and Trends
in Programming Languages, vol. 4. now (Jul 2017)
12. Ison, J., Kalas, M., Jonassen, 1., et al.. EDAM: an ontology of bioinformatics
operations, types of data and identifiers, topics and formats. Bioinformatics (2013)
13. Ison, J., Ménager, H., Brancotte, B., Jaaniso, E., Salumets, A., Racek, T., Lam-
precht, A.L., Palmblad, M., Kalag, M., Chmura, P., Hancock, J.M., Schwammle, V.,
Ienasescu, H.I.: Community curation of bioinformatics software and data resources.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

12

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

V. Kasalica, A.L. Lamprecht

Briefings in Bioinformatics (10 2019). https://doi.org/10.1093/bib/bbz075, https:
//doi.org/10.1093/bib/bbz075, bbz075

Ison, J., Rapacki, K., Ménager, H., others: Tools and data services registry: a
community effort to document bioinformatics resources. Nucleic Acids Research
44(D1), D38-47 (Jan 2016)

Karlsson, J., Martin-Requena, V., Rios, J., others: Workflow Composition and
Enactment Using jORCA. In: Leveraging Applications of Formal Methods, Verifi-
cation, and Validation, Lecture Notes in Computer Science, vol. 6415, pp. 328-339.
Springer Berlin / Heidelberg (2010)

Kasalica, V., Lamprecht, A.L.: Workflow discovery through semantic constraints:
A geovisualization case study. In: Computational Science and Its Applications —
ICCSA 2019. pp. 473-488. Springer International Publishing, Cham (2019)
Kasalica, V., Lamprecht, A.L.: Workflow Discovery with Semantic Constraints: A
SAT-Based Implementation (2020), in press.

Kruiger, H., Kasalica, V., Meerlo, R., Lamprecht, A.L., Scheider, S.: Loose pro-
gramming of GIS workflows with geo-analytical concepts. Transactions in GIS
(2020), under review

Késter, J., Rahmann, S.: Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics 28(19), 2520-2522 (Oct 2012)

Lamprecht, A.L.: User-Level Workflow Design - A Bioinformatics Perspective, Lec-
ture Notes in Computer Science, vol. 8311. Springer (2013)

Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: QUATIC 2010, Porto, Portugal. pp. 262-267. IEEE (Sep 2010)
Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based com-
position of EMBOSS services. Journal of Biomedical Semantics 2(Suppl 1), S5
(2011)

Lamprecht, A.L., Naujokat, S., Steffen, B., Margaria, T.: Constraint-Guided Work-
flow Composition Based on the EDAM Ontology. In: Burger, A., Marshall, M.S.,
Romano, P., Paschke, A., Splendiani, A. (eds.) Proceedings of the 3rd International
Workshop on Semantic Web Applications and Tools for Life Sciences (SWATA4LS
2010). vol. 698. CEUR Workshop Proceedings (December 2010)

Naujokat, S., Lamprecht, A.L., Steffen, B.: Loose Programming with PROPHETS.
In: Proc. of FASE 2012, Estonia. LNCS, vol. 7212, pp. 94-98 (2012)

Palmblad, M., Lamprecht, A.L., Ison, J., Schwdmmle, V.: Automated workflow
composition in mass spectrometry-based proteomics (2018)

Scheider, S., Meerlo, R., Kasalica, V., Lamprecht, A.L.: Ontology of core concept
data types for answering geo-analytical questions. JOSIS (2020), https://www.
josis.org/index.php/josis/article/view/555, in press.

Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model
Construction. Tech. rep., Fakultat fiir Mathematik und Informatik, Universitét
Passau (1993)

Vivian, J., Rao, A.A., Nothaft, F.A., Ketchum, C., Armstrong, J., Novak, A.,
Pfeil, J., Narkizian, J., Deran, A.D., Musselman-Brown, A., Schmidt, H., Amstutz,
P., Craft, B., Goldman, M., Rosenbloom, K., Cline, M., O’Connor, B., Hanna,
M., Birger, C., Kent, W.J., Patterson, D.A., Joseph, A.D., Zhu, J., Zaranek,
S., Getz, G., Haussler, D., Paten, B.: Toil enables reproducible, open source,
big biomedical data analyses. Nature Biotechnology 35(4), 314-316 (Apr 2017).
https://doi.org/10.1038 /nbt.3772, http://www.nature.com/articles/nbt.3772
Wikipedia contributors: Scientific workflow system — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Scientific_workflow_
system&oldid=928001704 (2019), [Online; accessed 3-February-2020]

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50436-6_34 |

https://dx.doi.org/10.1007/978-3-030-50436-6_34

