
Testing Research Software: A Case Study

Nasir U. Eisty1, Danny Perez2, Jeffrey C. Carver1, J. David Moulton2, and Hai
Ah Nam2

1 University of Alabama, Dept. of Computer Science, Tuscaloosa, AL, USA
neisty@crimson.ua.edu, carver@cs.ua.edu

2 Los Alamos National Laboratory, Los Alamos, NM, USA danny perez@lanl.gov,

moulton@lanl.gov, hnam@lanl.gov

Abstract. Background : The increasing importance of software for the
conduct of various types of research raises the necessity of proper testing
to ensure correctness. The unique characteristics of the research software
produce challenges in the testing process that require attention. Aims:
Therefore, the goal of this paper is to share the experience of implement-
ing a testing framework using a statistical approach for a specific type
of research software, i.e. non-deterministic software. Method : Using the
ParSplice research software project as a case, we implemented a testing
framework based on a statistical testing approach called Multinomial
Test. Results: Using the new framework, we were able to test the Par-
Splice project and demonstrate correctness in a situation where tradi-
tional methodical testing approaches were not feasible. Conclusions: This
study opens up the possibilities of using statistical testing approaches for
research software that can overcome some of the inherent challenges in-
volved in testing non-deterministic research software.

Keywords: Research Software · Testing · Software Engineering.

1 Introduction

Research software can enable mission-critical tasks, provide predictive capabil-
ity to support decision making, and generate results for research publications.
Faults in research software can produce erroneous results, which have signifi-
cant impacts including the retraction of publications [8]. There are at least two
factors leading to faults in research software: (1), the complexity of the soft-
ware (often including non-determinism) presents difficulties for implementing a
standard testing process and (2) the background of people who develop research
software differ from traditional software developers.

Research software often has complex, non-deterministic computational be-
havior, with many execution paths and requires many inputs. This complexity
makes it difficult for developers to manually identify critical input domain bound-
aries and partition the input space to identify a small but sufficient set of test
cases. In addition, some research software can produce complex outputs whose
assessment might rely on the experience of domain experts rather than on an

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_33

https://dx.doi.org/10.1007/978-3-030-50436-6_33


2 N. Eisty et al.

objective test oracle. Finally, the use of floating-point calculations can make it
difficult to choose suitable tolerances for the correctness of outputs.

In addition, research software developers generally have a limited under-
standing of standard software engineering testing concepts [7]. Because research
software projects often have difficulty obtaining adequate budget for testing ac-
tivities [11], they prioritize producing results over ensuring the quality of the
software that produces those results. This problem is exacerbated by the inher-
ent exploratory nature of the software [5] and the constant focus on adding new
features. Finally, researchers usually do not have training in software engineer-
ing [3], so the lack of recognition of the importance of the corresponding skills
causes them to treat testing as a secondary activity [10].

To address some of the challenges with testing research software, we con-
ducted a case study on the development of a testing infrastructure for the Par-
Splice3 research software project. The goal of this paper is to demonstrate the use
of a statistical method for testing research software. The key contributions of this
paper are (1) an overview of available testing techniques for non-deterministic
stochastic research software, (2) implementation of a testing infrastructure of a
non-deterministic parallel research software, and (3) demonstration of the use of
a statistical testing method to test research software that can be a role model
for other research software projects.

2 Background

In a non-deterministic system, there is often no direct way for the tester (or test
oracle) to exactly predetermine the expected behavior. In ParSplice (described
in Section 2.1), the non-determinism stems from (1) the use of stochastic differ-
ential equations to model the physics and (2) the order in which communica-
tion between the procedures occurs (note however that even though the results
from each execution depends upon message ordering, each valid order produces
a statistically accurate result, which is the key requirement for the validity of
ParSplice simulations).

In cases where development of test oracles is difficult due to the non-determinism,
some potentially viable testing approaches include metamorphic testing, run-
time assertions, and machine learning techniques [6]. After describing the Par-
Splice project, the remainder of this section explains these techniques along with
their possible applicability to ParSplice.

2.1 ParSplice

ParSplice (Parallel Trajectory Splicing) [9] aims at overcoming the challenge of
simulating the evolution of materials over long time scales through the time-
wise parallelization of long atomistic trajectories using multiple independent
producers. The key idea is that statistically accurate long-time trajectories can

3 https://gitlab.com/exaalt/parsplice

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_33

https://dx.doi.org/10.1007/978-3-030-50436-6_33


Testing Research Software: A Case Study 3

be assembled by splicing end-to-end short, independently-generated, trajectory
segments. The trajectory can then grow by splicing a segment that begins in the
state where the trajectory currently ends, where a state corresponds to a finite
region of the configuration space of the problem. This procedure yields provably
statistically accurate results, so long as the segments obey certain (relatively
simple) conditions. Details can be found in the original publication [9].

The ParSplice code is a management layer that orchestrates a large number of
calculations and does not perform the actual molecular dynamics itself. Instead,
ParSplice uses external molecular dynamics engines. The simulations used in
ParSplice rely on stochastic equations of motion to mimic the interaction of the
system of interest with the wider environment, which introduces a first source
of non-determinism.

A basic ParSplice implementation contains two types of processes: a splicer
and producers. The splicer manages a database of segments, generates a tra-
jectory by consuming segments from the database, and schedules execution of
additional segments, each grouped by their respective initial state. Producers
fulfill requests from the splicer and generate trajectory segments beginning in
a given state; the results are then returned to the splicer. The number of seg-
ments to be scheduled for execution in any known state is determined through a
predictor statistical model, built on-the-fly. Importantly, the quality of the pre-
dictor model only affects the efficiency of ParSplice and not the accuracy of the
trajectory. This property is important because the predictor model will almost
always be incomplete, as it is inferred from a finite number of simulations. The
unavailability of the ground truth model (which is an extremely complex func-
tion of the underlying physical model) makes assessment of the results difficult.
In addition, this type of stochastic simulation is not reproducible, adding to the
difficulty of testing the code. Therefore, in this case study we create a basis for
the ParSplice testing infrastructure using various methodical approaches and
apply the test framework to the continuous integration process.

2.2 Metamorphic Testing

Metamorphic testing operates by checking whether the program under test be-
haves according to a set of metamorphic relations. For example, a metamorphic
relation R would express a relationship among multiple inputs x1, x2,.., xN
(for N > 1) to function f and their corresponding output values f(x1), f(x2),..,
f(xN) [2]. These relations specify how a change to an input affects the output.
These metamorphic relations serve as a test oracle to determine whether a test
case passes or fails. In the case of ParSplice, it is difficult to identify metamorphic
relations because the outputs are non-deterministic. The relationship between
the x ’s and the f ’s is therefore not direct but statistical in nature.

2.3 Run-time Assertion Checking

An assertion is a boolean expression or constraint used to verify a necessary
property of the program under test. Usually, testers embed assertions into the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_33

https://dx.doi.org/10.1007/978-3-030-50436-6_33


4 N. Eisty et al.

source code that evaluate when a test case is executed. Later testers use these
assertions to verify whether the output is within an expected range or if there
are some known relationships between program variables. In this way, a set
of assertions can act as an oracle. In the context of ParSplice, assertions can
be used to test specific functions, but not to test the overall validity of the
simulations, would protect only against catastrophic failures, such as instabilities
in the integration scheme.

2.4 Machine Learning Techniques

Machine learning is a useful approach for developing oracles for non-deterministic
programs. Researchers have shown possibilities of both black-box features (de-
veloped using only inputs and outputs of the program) and white-box features
(developed using the internal structure of the program) to train the classifier
used as the oracle [1] [4]. It is possible to test ParSplice with machine learn-
ing techniques. For example, we could fake the molecular dynamics (MD) engine
with our own model to produce output data to use as a training set and consider
the actual output data as a testing set. Due to the amount of effort required to
use this approach in Parsplice, we determined that it was not feasible.

3 Case Study

To implement the testing framework, the first author spent a summer at Los
Alamos National Laboratory working on the ParSplice project. The testing
framework is based on the Multinomial testing approach (described in Sec-
tion 3.2), implemented using a progress tracking card (PTC) in the Produc-
tivity and Sustainability Improvement Plan (PSIP)4 methodology. The testing
approach is integrated with the CMake/CTest tool for use in the runtime en-
vironment and continuous integration. In this section, we describe the PSIP
methodology, the Multinomial test approach, and results that verify the imple-
mentation of the testing framework.

3.1 PSIP

The PSIP methodology provides a constructive approach to increase software
quality. It helps decrease the cost, time, and effort required to develop and
maintain software over its intended lifetime. The PSIP workflow is a lightweight,
multi-step, iterative process that fits within a project’s standard planning and
development process. The steps of PSIP are: a) Document Project Practices,
b) Set Goals, c) Construct Progress Tracking Card , d) Record Current PTC
Values, e) Create Plan for Increasing PTC values, f) Execute Plan, g) Assess
Progress, h) Repeat.

We created and followed a PTC containing a list of practices we were working
to improve, with qualitative descriptions and values that helped set and track

4 https://betterscientificsoftware.github.io/PSIP-Tools/PSIP-Overview.html

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_33

https://dx.doi.org/10.1007/978-3-030-50436-6_33


Testing Research Software: A Case Study 5

our progress. Our progress tracking card consists of 6 scores with a target finish
date to develop the testing framework. The scores are:

– Score 0 - No tests or approach exists
– Score 1 - Requirement gathering and background research
– Score 2 - Develop statistical test framework
– Score 3 - Design code backend to integrate test
– Score 4 - Test framework implemented into ParSplice infrastructure
– Score 5 - Integrate into CI infrastructure

We were able to progress through these levels and obtain a score of 5 by the end
of the case study.

3.2 Multinomial Test

The Multinomial test is a statistical test of the null hypothesis that the parame-
ters of a multinomial distribution are given by specified values. In a multinomial
population, the data is categorical and belongs to a collection of discrete non-
overlapping classes. For instance, multinomial distributions model the probabil-
ity of counts of each side for rolling a k-sided die n times. The Multinomial test
uses Pearson’s χ2 test to test the null hypothesis that the observed counts are
consistent with the given probabilities. The null hypothesis is rejected if the p-
value of the following χ2 test statistics is less than a given significance level. This
approach enables us to test whether the observed frequency of segments starting
in i and ending in j is indeed consistent with the probabilities pij given as input
to the Monte Carlo backend. Our Multinomial test script uses the output file
of ParSplice as its input and execute the test and post-processes the results by
performing Pearson’s χ2 to assess whether to reject the null-hypothesis.

3.3 Results

A key insight from the theory that underpins ParSplice is that a random process
that describes the splicing procedure should rigorously converge to a discrete
time Markov chain in a discrete state space. In other words, the probability
that a segment added to a trajectory currently ending in state i leaves the
trajectory in state j should be a constant pij that is independent of the past
history of the trajectory. One way to test ParSplice would be to verify that the
splicing procedure is indeed Markovian (memory-less). However, taken alone,
such a test would not guarantee that the splicing proceeds according to the
proper Markov chain. A more powerful test would assess whether the spliced
trajectory is consistent with the ground-truth Markov chain. A key obstacle to
such a test is that this ground-truth model is, in practice, unknown and can only
be statistically parameterized from simulation data.

To address this issue, we replaced the molecular dynamics (MD) simula-
tion backend with a simpler Monte Carlo implementation that samples from a
pre-specified, Markov chain. That is, we replaced the extremely complex model

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_33

https://dx.doi.org/10.1007/978-3-030-50436-6_33


6 N. Eisty et al.

inherent to the MD backend with a known, given model of predefined proba-
bilities. The task then becomes assessing whether the trajectory generated by
ParSplice, as run in parallel on large numbers of cores, reproduces the statistics
of the ground truth model. In this context, this technique is the ultimate test of
correctness, as ParSplice is specifically designed to parallelize the generation of
very long trajectories that are consistent with the underlying model. Statistical
agreement between the trajectory and the model demonstrates that the schedul-
ing procedure is functional (otherwise, the splicing the of trajectory would halt),
the task ordering procedure is correct, the tasks executed properly, the results
reduced correctly, and the splicing algorithm was correct.

The statistical assessment to test ParSplice can be conducted using the Multi-
nomial test approach. Our null hypothesis was that the observed counts gen-
erated by ParSplice are consistent with the probabilities in the model. If the
p-value from the multinomial test is less than 0.05, we reject the null hypothesis
and conclude that the observed counts differ from the expected ones. Conversely,
if the p-value is greater than 0.05, we do not reject the null hypothesis and can
conclude that the test passes. For the sake of verifying our Multinomial test, we
ran ParSplice in different time frames and observed the result. Figure 1 shows
the p-values obtained from running ParSplice for 1, 2, 5, 10, 20, 40, 60, and 90
minutes. We can see that in all cases, the p-values are greater than 0.05, which
indicates that the tests passed during these instances of the execution.

Fig. 1. p-values obtained by executing ParSplice for different times.

4 Conclusion

In this paper, we describe a case study of the ParSplice project in which we
followed the PSIP methodology to develop a testing framework to address the
difficulties of testing non-deterministic parallel research software. We first con-
sidered applying traditional industrial testing approaches. However, the non-
determinism of ParSplice made these approaches unusable. Then we identified
testing techniques specially designed for non-deterministic software. Once again,

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_33

https://dx.doi.org/10.1007/978-3-030-50436-6_33


Testing Research Software: A Case Study 7

those techniques did not fit ParSplice. Finally, we identified a statistical testing
approach, Multinomial Testing, that would work for ParSplice.

The Multinomial Testing approach is ideal for ParSplice given its constraints,
i.e. time, non-determinism, and the existing continuous integration system. The
lessons learned from this case study can be valuable to the larger research soft-
ware community because, like ParSplice, many research software projects have
stochastic behavior which produces non-deterministic results. The approach we
followed to develop the test framework can be a model for other research software
projects. We plan to extend the testing infrastructure in a more methodological
way with as many possible testing techniques installed in the system.

Acknowledgement

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. (LA-UR-20-20082)

References

1. Chan, W., Cheung, S., Ho, J.C., Tse, T.: Pat: A pattern classification approach to
automatic reference oracles for the testing of mesh simplification programs. Journal
of Systems and Software 82(3), 422 – 434 (2009)

2. Chen, T.Y., Tse, T.H., Zhiquan Zhou: Fault-based testing in the absence of an
oracle. In: 25th Annual International Computer Software and Applications Con-
ference. COMPSAC 2001. pp. 172–178 (Oct 2001)

3. Easterbrook, S.M., Johns, T.C.: Engineering the software for understanding cli-
mate change. Computing in Science Engineering 11(6), 65–74 (Nov 2009)

4. Frounchi, K., Briand, L.C., Grady, L., Labiche, Y., Subramanyan, R.: Automating
image segmentation verification and validation by learning test oracles. Inf. Softw.
Technol. 53(12), 1337–1348 (Dec 2011)

5. Heroux, M.A., Willenbring, J.M., Phenow, M.N.: Improving the development pro-
cess for cse software. In: 15th EUROMICRO International Conference on Parallel,
Distributed and Network-Based Processing (PDP’07). pp. 11–17 (Feb 2007)

6. Kanewala, U., Bieman, J.M.: Techniques for testing scientific programs without an
oracle. In: Proceedings of the 5th International Workshop on Software Engineering
for Computational Science and Engineering. pp. 48–57. SE-CSE ’13 (2013)

7. Kanewala, U., Bieman, J.M.: Testing scientific software: A systematic literature
review. Inf. Softw. Technol. 56(10), 1219–1232 (Oct 2014)

8. Miller, G.: A scientist’s nightmare: Software problem leads to five retractions. Sci-
ence 314(5807), 1856–1857 (2006). https://doi.org/10.1126/science.314.5807.1856

9. Perez, D., Cubuk, E., Waterland, A., Kaxiras, E., Voter, A.: Long-time dynamics
through parallel trajectory splicing. Journal of Chemical Theory and Computation
12 (11 2015)

10. Segal, J.: Some problems of professional end user developers. IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC) pp. 111–118 (2007)

11. Segal, J.: Software development cultures and cooperation problems: A field study
of the early stages of development of software for a scientific community. Computer
Supported Cooperative Work (CSCW) 18(5), 581 (Sep 2009)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_33

https://dx.doi.org/10.1007/978-3-030-50436-6_33

