
Boosting Group-level Synergies by Using a
Shared Modeling Framework

Yunus Sevinchan1[0000−0003−3858−0904],
Benjamin Herdeanu1,2[0000−0001−6343−3004], Harald Mack1[0000−0001−7787−9496],

Lukas Riedel1,3,4[0000−0002−4667−3652], and Kurt Roth1,3[0000−0003−2634−8825]

1 Institute of Environmental Physics, Heidelberg University, Germany
{first.last}@iup.uni-heidelberg.de — ts.iup.uni-heidelberg.de

2 Heidelberg Graduate School for Physics, Heidelberg University, Germany
3 Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany
4 Heidelberg Graduate School of Mathematical and Computational Methods for the

Sciences, Heidelberg University, Germany

Abstract. Modern software engineering has established sophisticated
tools and workflows that enable distributed development of high-quality
software. Here, we present our experiences in adopting these workflows
to collectively develop, maintain, and use research software, specifically:
a modeling framework for complex and evolving systems. We exemplify
how sharing this modeling framework within our research group helped
conveying software engineering best practices, fostered cooperation, and
boosted synergies. Together, these experiences illustrate that the adop-
tion of modern software engineering workflows is feasible in the dynami-
cally changing academic context, and how these practices facilitate relia-
bility, reproducibility, reusability, and sustainability of research software,
ultimately improving the quality of the resulting scientific output.

Keywords: Research software · Software quality · Reproducibility ·
Complex systems · Modeling · Scientific computing

1 Introduction

Software has become an integral part of modern research, be it for the control of
experiments, analysis of data, or computer simulations. In recent years, however,
the research community has become aware of issues relating to the reliability and
reusability of software developed and used for scientific purposes [2,6,10]. These
shortcomings are mainly attributed to the unique characteristics of scientific soft-
ware development and a resulting disconnect between the research and software
engineering communities [5]. Ultimately, these issues impede the progress of sci-
entific research. At the same time, the Open-source Software (OSS) community
has grown vigorously and is successfully developing high-quality software. This is
made possible in large parts by platforms like GitHub and GitLab, which greatly
simplify collaboration on software projects, and by the adoption of software en-
gineering workflows which have proven valuable for efficiency of development,
long-term maintainability, and reliability.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://ts.iup.uni-heidelberg.de
https://dx.doi.org/10.1007/978-3-030-50436-6_32


2 Y. Sevinchan et al.

Although OSS development always had a major role in scientific computing,
these approaches are now gaining more traction in the wider scientific commu-
nity [3]. Additionally, several institutions have been formed which aim to coun-
teract the negative effects arising from current practices in the development and
use of research software. For example, to increase the recognition and visibility of
reliable and sustainable research software projects, a number of relatively young
journals like the Journal of Open Research Software and the Journal of Open
Source Software focus solely on publishing high-quality open-source research
software. Furthermore, the extension of FAIR principles to research software is
currently being discussed [8] with the goal to improve the findability, accessibil-
ity, interoperability, and reusability of software used in the scientific context.

When studying complex and evolving systems – the research field in which
we operate –, computer models5 are considered the main research method. Given
the nature of the research questions in this field, models for a huge diversity of
phenomena and ever-changing situations need to be conceived. This is in contrast
to other research fields like weather prediction, oil recovery, and combustion opti-
mization where the challenge is to investigate a specific scenario with the highest
attainable efficiency using numerical simulations of well established systems, like
flow-, transport-, and reaction-equations.

Subsequently, the implementation and analysis of these models often requires
the development of custom software, thus entailing the same challenges as ex-
perienced for other research software. For instance, we observed that code was
frequently written from scratch because the work involved in understanding and
adapting an existing model or simulation tool was higher than writing it anew.
This not only led to redundant implementations but also to the repetition of
mistakes, and overall unreliable and unsustainable code. In effect, software was
written by a single researcher for the purpose of their project and discarded soon
afterwards, missing out on the collaborative aspect of modern research.

In this paper, we present the approaches we took on the level of our research
group to address these issues. The aim was not only to improve the quality
of the software we developed and used, but to also boost synergies within the
group. We did so by collaboratively developing a modeling framework, using it
throughout the group, and creating associated communication structures and
workflows. We perceived such a framework to be the ideal focus point for pro-
moting collaboration. At the same time, we saw this as a way to gain experience
in developing reliable and sustainable software that not only adheres to best
practices in software engineering, but also advocates them to young researchers.

The modeling framework resulting from this effort is called Utopia [12] and
aims to be the central tool in all stages of a modeling-based research workflow,
providing solutions for common problems based on state-of-the-art programming
practices. Utopia is publicly available6 under an open-source license. Since the

5 With the term computer model we denote a conceptualization of a real-world system
that is investigated via computer simulations. When solely the implementation in
code is concerned, we use the term model implementation.

6 https://ts-gitlab.iup.uni-heidelberg.de/utopia/utopia

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://ts-gitlab.iup.uni-heidelberg.de/utopia/utopia
https://dx.doi.org/10.1007/978-3-030-50436-6_32


Boosting Group-level Synergies by Using a Shared Modeling Framework 3

start of the project in early 2018, it formed the basis for more than thirty new
modeling projects in our group and has been used as a teaching tool in graduate
physics courses. In the context of this paper, the specific details of the frame-
work are less relevant than the conceptual role it fulfilled in improving research
software quality and enhancing collaboration within the group: It provided a
platform to work on, a common language to communicate in, and a shared goal
to motivate everyone involved.

As such, other modeling frameworks may fulfill the same role as Utopia did
for us. One example is the NetLogo programming language and development en-
vironment [13], which can be used to study a wide variety of agent-based models.

In the following, we first aggregate the synergies we see arising from shar-
ing a modeling framework (section 2) and outline which software engineering
workflows we regard as feasible to adopt in such a context (section 3). We then
describe the experiences we had in developing Utopia as a group, working with it
as researchers, and using it for academic teaching (section 4). By sharing these
experiences, we hope to contribute to the effort of improving the responsible
development and use of research software.

2 Synergies

Synergies in research environments surely are of a wide variety and depend very
much on the necessities and methods of the respective fields. Here, we focus on
the investigation of complex and evolving systems using computer models, where
common workflows allow the use of a shared modeling framework.

In our experience, a typical workflow in this field can be represented as a
four-stage process:

1. Conceptualize a research question into a model system
2. Implement the model system as a computer model
3. Generate simulation data using the model implementation
4. Analyze the simulation data, extract results, and reflect on the model

The above aims to categorize the workflow into stages that have different qual-
itative demands on the methods, the software tools, and the interaction with
colleagues, and subsequently varying potential for synergies. In practice, such
a workflow is hardly ever sequential, but an iterative and self-referential pro-
cess. Furthermore, the wide diversity of phenomena under investigation requires
a high flexibility in all stages of the workflow, allowing for constant redefining,
redesigning, reimplementation, and analysis. While this formulation originates
from observations within our group and the study of complex and evolving sys-
tems, we believe that scientific research in other areas might be represented in
a similar fashion, especially when working with computer models (e.g., [4]).

We call a framework that covers all the stages of the typical workflow a
comprehensive modeling framework. By modularizing the tools on the level of the
whole research workflow, it abstracts away technicalities and allows researchers
to think on the level of the model system they want to investigate.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


4 Y. Sevinchan et al.

Simulation Infrastructure We identified the following software functional-
ities as common infrastructure during the aforementioned modeling workflow:
(i) storing and managing simulation data, (ii) configuring simulations, i.e., pass-
ing parameters to the simulation, (iii) performing parameter sweeps, (iv) data
processing and analysis routines, and (v) data visualization. In cases where the
typical workflow of the involved researchers is comparable, as sketched above,
sharing these infrastructure tools via a framework becomes beneficial and greatly
reduces the time and effort needed to get operational in all its stages. Impor-
tantly, the framework can provide a more reliable and more sophisticated feature
set, which would not be feasible to be implemented by an individual developer.

One example are parameter sweeps, as are often required for sensitivity anal-
ysis of a model’s behavior. A framework-level implementation can generate the
set of configurations programmatically, based on user input, and can make use
of naive parallelization to speed up the generation of simulation data, while be-
ing completely independent of the model implementation itself. Having such a
feature available as part of a framework is a direct benefit to all framework users.

In situations where more flexibility is required than can be offered by the
framework, the use of open data standards helps avoiding a lock-in effect which
would be detrimental to the use of the software and the researchers’ freedom.

Modeling Techniques The investigation of complex and evolving systems has
generated a number of modeling techniques, the most notable being (i) cellular
automata, which can be used as a representation of spatially extended systems,
(ii) individual- or agent-based models, which represent individual entities with
a varying range of autonomy, agency, and perception, and (iii) network-based
models, which put the focus on these agents’ interactions with each other.

By integrating frequently used modeling techniques into a shared framework,
the knowledge about common pitfalls can be used to avoid the repetition of
mistakes. Furthermore, taking into account the central importance of correctness
and efficiency of these implementations, they can be thoroughly tested, reviewed
by multiple developers, and optimized for performance. We see these aspects as
the key arguments for an implementation on the framework level, thus achieving
a higher reliability, efficiency, and usability compared to software developed in
an uncoordinated manner.

A modeling framework should also allow researchers to leverage the great
variety of research software already available in the scientific field, which often
have been tried and tested for decades and hence attained a quality virtually
unreachable by most individual researchers. These might for example provide
efficient implementations of graph data structures or numerical algorithms. A
tight integration of existing solutions is often desirable, but needs to be such
that particularities are abstracted away to not demand too much additional
knowledge from the user of the framework.

Feature Sharing A shared framework allows to implement new features as
part of the framework rather than in an isolated manner, making them easily

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


Boosting Group-level Synergies by Using a Shared Modeling Framework 5

accessible to other users. Such a framework-level implementation often requires
a higher degree of generality for the feature in order to make it useful for other
users. At the expense of additional work in abstracting the functionality, this
facilitates collaboration with other developers, ultimately improving reliability,
usability, integration, and performance.

A Common Conceptual Language When using the same modeling frame-
work in a research group, not only the code base is shared, but also the concep-
tual language in which discussions and the exchange of ideas take place. This
can be beneficial in multiple stages of the research workflow. For instance, when
designing an implementation of the model system, the modeling techniques pro-
vided by the framework supply a set of abstractions that can be used when
talking about the model, e.g., the concept of what constitutes an entity or the
vocabulary describing a specific algorithm.

Benefits also arise from an easier understanding of code written by other
researchers. The overall amount of code is reduced by the use of the simulation
infrastructure and the framework-level implementations of the modeling tech-
niques. This not only facilitates a closer and more efficient interaction between
researchers on the level of the implementation, but also simplifies reusing model
implementations.

Transparency In a research context, model implementations are typically pri-
vately developed until they are made public alongside a publication. Within a
research group, we see several positive effects of making the source code of model
implementations openly available right from the beginning of development: By
reading the code written by other members of the research group, possible im-
plementation approaches can be exchanged and spark discussions. Furthermore,
members of the research group are encouraged to learn from other developers’
implementations, which pertains not only to modeling ideas but also to soft-
ware engineering practices in general. This openness is an important aspect in a
dynamic environment where people and problems change frequently.

While the transparency brings significant benefits, it also demands a careful
consideration of collateral effects, including premature diffusion of novel ideas
– even within the research group – and the potential for surveillance. We see
a common understanding of intellectual property as a key requirement for this
approach. Consequently, having model implementations visible probably works
well within a research group, but not necessarily in a large community.

3 Adopting Software Engineering Workflows

Developing research software collaboratively allows the use of software engineer-
ing workflows that rely on divided responsibilities and interactions with other
group members. In the following, we highlight the aspects we perceive as partic-
ularly beneficial for the quality of collaboratively developed research software,
while not posing a prohibitively large learning or management overhead.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


6 Y. Sevinchan et al.

Effective Use of Version Control Systems Version control systems (VCS)
are not only valuable to an individual researcher but enable workflows that
form the basis of efficient collaboration. Platforms like GitHub and GitLab go
beyond the mere hosting of VCS repositories: they provide task management
tools, communication channels, contribution workflows, automation services, and
interfaces to other services that allow for custom extensions.

Research software can and should make use of these platform-level tools that
have proven themselves highly valuable to a successful software engineering work-
flow. While such a procedure may pose additional work for a single researcher,
there are considerable gains to be expected for consistent work as a group.

Code Review Code review serves the purpose of improving the quality and
maintainability of software [9]. Reviewers inspect source code changes not only
with respect to potential defects that may not be found through static code
checks, but also suggest improvements to the implementation, its readability, or
its integration into the larger project. Furthermore, such a process can serve to
transfer knowledge about the code base between the authors and the reviewers,
while at the same time strengthening their team identity [1].

When working with VCS and collaborative version control platforms, code
review can be conveniently carried out on so-called Pull Requests or Merge Re-
quests, i.e., on the proposed changes to a code base, prior to merging them into
the main branch of a repository. The platforms usually present the suggested
changes alongside the code they will replace, identify code ownership, and allow
reviewers to comment on the changes and propose improvements. This platform-
assisted code review is already well-established in the OSS community. In the
context of software engineering for research software, the same benefits can be
expected, and would directly address issues like reliability, consistency, and gen-
eral code quality. Given the often heterogeneous software engineering skills in
an academic context, knowledge transfer mediated by code review may also gain
an important role.

Testing & Automation While software testing is a cornerstone of professional
software development, testing of scientific software is intrinsically more difficult.
Kanewala and Bieman [7] identify the challenges of testing scientific software
to be either due to characteristics of the research software itself – like the or-
acle problem –, or to be caused by “cultural differences” between the software
engineering community and scientists. They come to the conclusion that while
some challenges are unique to scientific software, others can be overcome by
incorporating existing testing techniques from software engineering into their
development workflows.

In modeling-based research, tests are required both for the framework code
and the model implementations. When collaboratively developing software, the
importance of both of these can be emphasized, and the implementation of tests
can be simplified to become more accessible to novice developers. At the same
time, techniques that make the testing of model implementations possible can be

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


Boosting Group-level Synergies by Using a Shared Modeling Framework 7

conveyed, while also identifying in which areas further testing techniques would
be required. Putting a larger emphasis on these parts of software development
can also inspire the implementation workflow itself, e.g., by promoting test-
driven development of models.

With growing size of a software project, automation becomes a crucial part
of the development process. The term refers to a set of actions that are automat-
ically carried out, e.g., when pushing code to the remote server or when merging
a feature into the main branch. With these tools being readily available via the
same platform that the software is developed on, automation becomes easily
accessible. Benefits for the development of research software and the individual
model developers are that associated tests are carried out automatically, taking
that burden off the researcher, and making it easier to detect breaking changes
in both the framework and the model implementations.

4 Utopia – Three Case Studies

The context of these case studies is our research group that focuses on the inves-
tigation of complex, chaotic, and evolving environmental systems. Development
of Utopia started early 2018 with a team of four PhD candidates7, two MSc stu-
dents and two BSc students. Utopia has been used in more than thirty projects,
with usual durations of one year and up to fifteen simultaneous projects. Stu-
dents joining our group typically have a physics background and entry-level pro-
gramming experience, mostly in Python, but are unfamiliar with version control,
testing, or other software engineering workflows.

4.1 Developing the Utopia Framework

In this case study, we focus on the experiences from the collective development
of the Utopia framework and the adoption of software engineering workflows
throughout this process.

VCS Workflows & Code Review Utopia was developed in a GitLab project
on a self-hosted GitLab instance. We chose to use the GitHub Flow branching
model that has little management overhead and focuses on the main branch
always being in a working state: Feature branches start off the main branch and
merge back into it. Each feature branch corresponds to the implementation of a
single, well-isolated task, which often is planned in a GitLab Issue.

We adopted a change-based code review process for the Utopia framework.
All code changes require a review by at least one other developer before being al-
lowed to be merged into the main branch. Code review takes place in the GitLab
Merge Request interface, where the author of the request gives a brief descrip-
tion of the changes, why they were necessary, and how they were achieved, and
points out changes which require further discussion. The author then assigns a

7 YS, BH, HM, and LR

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


8 Y. Sevinchan et al.

person for review, typically someone who is already involved in the task or who is
familiar with the affected framework structures. The reviewer then goes through
the changes and may comment directly on the code to discuss the changes or
suggest improvements. Moreover, they may include other developers into the re-
view process. If everybody involved approves of the changes, the Merge Request
is merged and the corresponding Issue is closed automatically.

We perceived the review process as highly beneficial as it considerably im-
proved the resulting code in terms of consistency and reliability. All Merge Re-
quests that included substantial code changes or additions profited from code
review, be it through the detection of potential defects or improvements relating
to the robustness of the implementation. Alongside, the documentation (both of
the code itself and the usage of the overall framework) profited from a thorough
review process because reviewers could use it as a starting point and evaluate
how well the changes could be understood by someone who did not implement
the code. Furthermore, the review process helped conveying knowledge about
Utopia’s structure, inner workings, and agreed-upon guidelines, thus gaining an
important role in increasing maintainability of the project.

These benefits greatly offset the additional time and effort that developers
needed to invest into code review.

Testing & Automation Thorough testing procedures are commonplace in
software engineering and a prerequisite for projects to grow in a sustainable
fashion. Accordingly, we require of all Utopia features to have a corresponding
test implemented that covers the relevant use cases.

We make use of GitLab CI/CD for automated test execution and building of
the framework in different build modes. Furthermore, the pipeline generates a
code coverage report, and deploys a preview of the documentation and a ready-
to-use Docker image of Utopia. All these automations proved highly valuable in
the code review process where another requirement for merge approval is that
the pipeline passes successfully and the code coverage report was inspected.
That way, the pipeline provides a “ground truth” irrespective of the individual
developers’ systems and allows to easily detect regressions in seemingly unrelated
parts of the framework.

While not feasible in all situations, this workflow also allowed test-driven
development approaches which we found helpful when addressing previously un-
detected bugs: the bug can then first be reproduced by a new test case, which
fails initially; subsequently, the code is adjusted such that the test passes.

Partaking in Framework Development Through the focus of the framework
to make the modeling workflow as convenient as possible, exposure to low-level
code was inevitably reduced. Potential contributors thus developed the percep-
tion of not having enough insight into the inner workings of the framework to
suggest changes or improvements to it.

As a counteraction, we organized multiple Coding Weeks which were preceded
by a planning phase with regular meetings. During the planning phase, new

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


Boosting Group-level Synergies by Using a Shared Modeling Framework 9

contributors got to know those parts of the framework that were relevant for a
particular improvement or new feature. Depending on the task, they then worked
alone or in a small group to implement it, add test cases and documentation,
and jointly review all of it. Overall, these events proved to be not only a group-
forming experience, but also very productive, especially when it came to the
coordination and implementation of larger features. One important long-term
effect was that people who took part in a Coding Week were more likely to also
contribute thereafter.

While it needs to be acknowledged that not everyone who is using the frame-
work is also interested in improving it, we think that experience with these
collaborative workflows has value beyond the currently undertaken project. We
currently try to lower initial thresholds for new contributors by keeping every-
one involved in the development of Utopia as much as possible and suggesting
starting points for contributions.

4.2 Using Utopia throughout the Research Group

In this case study, the focus is on usage of Utopia for the implementation and
investigation of models of complex and evolving systems, the synergies that
developed from using the shared modeling framework, and the integration of
software engineering workflows into that process.

Individual model implementations were part of a single, group-internal GitLab
project, separate from the framework project.

Learning Curve To make the entry as easy as possible and thereby facilitate
usage of the shared framework, we put a focus on providing detailed introductory
guides. These were meant especially for students entering the research group for
a BSc or MSc project, which have a typical duration of 3–4 months or about one
year, respectively. The aim was to accustom these young researchers with the
Utopia framework such that they can install it within a day, are capable of using
essential features within a week, and can start with a model implementation
soon after.

While learning to use a new framework may constitute a considerable over-
head, we had positive experiences with the adoption of Utopia in the group
and the speed with which models were implemented or adapted. Despite the
fact that Utopia models are implemented in C++, most newcomers were quick
to setup a new model using the corresponding guides, and subsequently start
to implement the desired model dynamics using the abstractions and modeling
techniques provided by the framework.

While we encouraged newcomers to search the documentation and the GitLab
project in case of questions, some personal assistance was almost always neces-
sary to help resolving particularities in the installation or the setup of models.
Intermittently, this created a substantial additional work load for the more expe-
rienced developers. For reducing this work load, it proved crucial to reflect even
seemingly minor problems in the project documentation and develop a shared
corpus of knowledge among framework users.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


10 Y. Sevinchan et al.

Synergies A central motivation for using a shared modeling framework was
to boost the development of synergies within our research group. For us, this
proved to be a successful and overall beneficial approach, albeit not without
challenges and a certain maintenance cost. For instance, owing to the different
schedules of research projects, we experienced some diffusion of knowledge and
loss of experience. Thus, this approach hinges on a critical mass of users and
developers carrying on the required knowledge to maintain the shared code base
and offer assistance to new group members.

Simulation Infrastructure, Modeling Techniques & Feature Sharing The aim
of eliminating repeated implementation of simulation infrastructure, modeling
techniques, and associated tools was largely achieved and the benefits extended
over the whole modeling workflow, from conceptualization to data analysis and
visualization. Sharing the simulation infrastructure was a very clear benefit, be-
cause the overlap of required software tools was very high within the research
group. Also, some of the more sophisticated features like parameter sweeps with
multi-node cluster support, uniform manager structures for the provided model-
ing techniques, or generalized data post-processing and plotting could not have
been feasibly developed outside such a framework. Having these features imple-
mented into the framework effectively addressed most of the issues we observed
in solitary software development. Especially for the PhD candidates, Utopia im-
proved work efficiency in all stages of the modeling workflow by alleviating points
of friction and providing a flexible, scalable, optimized, and reliable development
environment.

However, in some cases, the generalization of features required considerably
more effort than if these features would have been implemented directly where
they were needed; in that sense, we sometimes fell prey to “premature general-
ization”, thinking that a framework-level feature would always provide a benefit.
Also, discoverability of features proved to be more challenging than expected:
Despite documentation, users sometimes did not associate the functionality they
desired with the description of an already existing feature, which in some cases
led to a redundant implementation by the users.

Common Language & Transparency Having all code openly accessible for ev-
eryone in the group proved to be one important factor for improving collabo-
ration: Group members frequently inspected existing implementations to learn
about representation details and model dynamics. This not only facilitated dis-
cussions, but also provided a means of knowledge transfer, often extending to
programming language features and software engineering best practices. Notably,
a number of projects are under way that build on existing model implementa-
tions. The common conceptual language and the use of the framework made this
process efficient by abstracting away most of the code that relates to simulation
infrastructure and modeling techniques.

Regarding transparency, we observed some reluctance in newcomers to share
model ideas and code with the rest of the group. We ascribe this partly to
the need to learn the corresponding workflows, but also to a certain insecurity

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


Boosting Group-level Synergies by Using a Shared Modeling Framework 11

regarding code quality. This reluctance typically subsided after feeling more in-
tegrated into the group and having experienced the benefits of sharing code with
other group members.

Software Engineering Workflows Aside the synergies developing in the
group, we also wanted to promote software engineering workflows during model
development. Our observations varied for experienced and novice developers.

Experienced model developers profited significantly from the easy availability
of the testing framework and automation, and adopted VCS workflows for their
model implementations, e.g., by working on their models in a task-based fashion
with frequent and granular Merge Requests.

For larger models, the implementation of tests proved indispensable. Here,
the framework assisted mainly by simplifying the implementation of C++ unit
tests and providing an easy-to-use interface to generate and validate simulation
data; these approaches were often viable to assert the expected microscopic and
macroscopic model behavior, respectively. Furthermore, by including all tests
into the GitLab CI/CD alongside the framework, not only the model behavior
was tested automatically but also the effect of framework changes on the models,
which was crucial when working on more intricate parts of the framework.

Unlike for framework code, we did not require in-depth code review for
individual model implementations, mainly due to the high work load such a
policy would generate for reviewers. Nevertheless, experienced developers often
requested code review from others; given the abstractions the framework pro-
vided, this was feasible for smaller Merge Requests or when the author asked for
feedback on specific parts of their implementation. Despite the restrictions, this
proved to be a workable compromise between a researcher’s responsibility for
their model and the work load for others, thus still providing mutual benefits.

For novice developers, our experiences were mixed: the adoption of SE work-
flows by newcomers was not as natural as we had hoped, but the benefits were
typically acknowledged and, in the long run, some of the procedures found their
way into their work with the framework. We observed the adoption to be im-
peded mostly by the learning required to understand the new procedures and
their benefits. With a physics background, many of the workflows are completely
new to MSc- and BSc-level students. Especially in the first weeks and months
of a project, the focus typically is on the scientific literature and the model
formulation and implementation itself, not on software engineering aspects. We
found that adoption increases only once developers become more proficient and
see these methods as solutions to new problems arising during development.

For example, learning to use VCS and GitLab and adapting personal work-
flows to accommodate these was often perceived as a substantial investment
without clear benefits for the students’ own projects. This was despite their ac-
knowledgment that these tools are useful in the development of the framework
or in software development in general. In effect, for new users, a decoupling
from the rest of the repository and group was quite common in the first weeks

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


12 Y. Sevinchan et al.

or months of a project: Once a working setup was achieved, development of-
ten continued on a local feature branch for the new model and with a fixed (i.e.,
outdated) version of the framework. We made similar observations regarding the
implementation of tests: It was generally acknowledged that having tests would
be beneficial, but their implementation was typically not a priority.

For individual model development, we deliberately decided against imposing
strict workflows. Instead, we promoted their benefits and tried to reduce entry
barriers by providing guides, personal assistance, and framework tools that made
adoption easier. Thereby, we aimed at eliciting the motivation to learn and
integrate these tools, rather than enforcing their use. This proved successful
on a longer time scale and with developers becoming more experienced with
Utopia: After the first few months of many MSc projects, the projects were
kept up-to-date, GitLab became more regularly used, and test implementations
became more frequent. We believe that without Utopia, many novice developers
would not have considered adopting these software engineering techniques and
would not have reached the same level in their actual research. Utopia not only
promoted the utility of these tools, but also reduced the barrier of using them.

Currently, we aim to improve group-level interactions through having regular
meetings for questions and discussions on the framework and model implemen-
tations. Similar as with the Coding Weeks, we find these meetings to have a
group-building effect, and the higher interaction having a positive effect on co-
operation. As part of this process, we are also promoting pair-wise code review
alongside the propositions made in [11].

4.3 Using Utopia in Teaching

Possible use cases for Utopia in academic teaching range from the generation of
simulation data using existing models to the implementation and investigation
of new models, as it is done in the regular research context. So far, Utopia was
used for teaching in an MSc physics lecture (summer term 2019) and is currently
(winter term 2019/20) used in an MSc physics seminar. With the seminar still
under way at the time of writing of this paper, we present the experiences from
using Utopia as part of the mandatory exercises accompanying the Complex,
Chaotic, and Evolving Environmental Systems lecture.

There, students used Utopia to run and analyze well-established models of
spatially distributed complex systems: the Forest Fire Model, the Contagious
Disease Model, and the Predator-Prey Model. The focus was on the investiga-
tion of the behavior of the models, not on their implementation, which is why
we provided these implementations alongside with a detailed description of the
implemented dynamics and available configuration parameters. The exercises in-
structed students to generate simulation data for changing configuration param-
eters and subsequently use the framework to analyze the data and understand
the model behavior, e.g., by extracting macroscopic fixpoints or by investigating
power spectra to characterize spatial structures.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://dx.doi.org/10.1007/978-3-030-50436-6_32


Boosting Group-level Synergies by Using a Shared Modeling Framework 13

To make the setup as easy and machine-agnostic as possible, we used the au-
tomatically deployed and ready-to-use Docker image of Utopia8, which contained
all relevant model binaries. Furthermore, a Jupyter Notebook server was set up
to run inside the Docker container, allowing students to work with Utopia from
an interface that is more easily accessible than the command line. Setting up
the Docker environment and working through a tutorial on the usage of Utopia
constituted the first exercise of the lecture. We subsequently dedicated one ses-
sion of the tutorials to questions arising from this exercise; this was sufficient to
get students operational on their own computers.

We as teachers profited from not having to implement standalone models
and bare-bones simulation infrastructure, but having a fully-fledged modeling
framework available that we already had experience with. Furthermore, any
effort put into model implementation or documentation enhancements was a
direct benefit to other framework users.

For students, benefits included having a single and simple-to-use interface
with which to investigate all provided models. While learning to use Utopia
created additional challenges compared to using isolated model scripts, we see
working with a modeling framework as a valuable skill and perceived this to be an
appealing aspect for students interested in going into modeling-based research.

5 Conclusion

Developing flexible yet reliable software is a challenge. This is particularly true
in the academic context where people remain for just a few years and typically
have little experience with modern software engineering workflows. At the same
time, the nature of highly dynamic research fields puts high demands on the
quality of research software, e.g., in terms of reproducibility and reliability.

In the above case studies, we described our experiences with collectively
developing and using Utopia, a modeling framework for complex and evolving
systems. Our primary aim was to demonstrate that this approach is feasible and
how it can boost synergies within the research group. Adopting these practices
not only resulted in beneficial effects on the group’s dynamics, but improved the
quality of the developed research software and the resulting research output. We
also showed that in order to sustain these workflows, the group with its ever
new members has to be motivated and instructed in events like Coding Weeks
and regular question-discussion meetings. We aim to further promote both this
approach and the Utopia framework itself, being aware that software frameworks
need to be continuously maintained and improved in order to survive.

Taken together, we exemplified how modern software engineering workflows
allow to successfully tackle a large and rapidly changing research field in a com-
prehensive way which is otherwise only feasible for larger and more permanent
institutions. We trust that the collaborative philosophy that is facilitated by
such approaches will propagate via its users and thereby contribute to sustain-
able development and responsible use of research software.

8 https://hub.docker.com/r/ccees/utopia

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://hub.docker.com/r/ccees/utopia
https://dx.doi.org/10.1007/978-3-030-50436-6_32


14 Y. Sevinchan et al.

Acknowledgments

We thank the reviewers of this submission for their thoughtful remarks and
suggestions and Maria Blöchl for valuable feedback on an earlier version of this
manuscript. We are grateful to all contributors and users of Utopia to have
participated in this collective effort.

References

1. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In: Proceedings of the 2013 International Conference on Software Engi-
neering. pp. 712–721. ICSE ’13, IEEE Press (2013)

2. Hannay, J.E., MacLeod, C., Singer, J., Langtangen, H.P., Pfahl, D., Wilson, G.:
How do scientists develop and use scientific software? In: 2009 ICSE Workshop on
Software Engineering for Computational Science and Engineering. IEEE (2009).
https://doi.org/10.1109/secse.2009.5069155

3. Heaton, D., Carver, J.C.: Claims about the use of software engineering practices
in science: A systematic literature review. Information and Software Technology
67, 207–219 (2015). https://doi.org/10.1016/j.infsof.2015.07.011

4. Helbing, D., Bialetti, S.: How to do agent-based simulations in the future: From
modeling social mechanisms to emergent phenomena and interactive systems de-
sign (Oct. 2013). In: Understanding Complex Systems, chap. Agent-Based Model-
ing, pp. 25–70. Springer, Berlin/Heidelberg (2012)

5. Johanson, A., Hasselbring, W.: Software engineering for computational sci-
ence: Past, present, future. Computing in Science & Engineering (2018).
https://doi.org/10.1109/mcse.2018.108162940

6. Joppa, L.N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K.,
Gavaghan, D., Emmott, S.: Troubling trends in scientific software use. Science
340(6134), 814–815 (2013). https://doi.org/10.1126/science.1231535

7. Kanewala, U., Bieman, J.M.: Testing scientific software: A systematic litera-
ture review. Information and Software Technology 56(10), 1219–1232 (2014).
https://doi.org/10.1016/j.infsof.2014.05.006

8. Lamprecht, A.L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico,
E., Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez, P.A., McQuilton,
P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J.L., Chue Hong, N., Goble,
C., Capella-Gutierrez, S.: Towards FAIR principles for research software. Data
Science pp. 1–23 (2019). https://doi.org/10.3233/DS-190026

9. McIntosh, S., Kamei, Y., Adams, B., Hassan, A.E.: An empirical study of the
impact of modern code review practices on software quality. Empirical Software
Engineering 21(5), 2146–2189 (2015). https://doi.org/10.1007/s10664-015-9381-9

10. Nguyen-Hoan, L., Flint, S., Sankaranarayana, R.: A survey of scientific software
development. In: Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement - ESEM ’10. ACM Press (2010)

11. Petre, M., Wilson, G.: Code review for and by scientists. arXiv:1407.5648v2

[cs.SE] (2014), https://arxiv.org/abs/1407.5648v2
12. Riedel, L., Herdeanu, B., Mack, H., Sevinchan, Y., Weninger, J.: Utopia: A com-

prehensive and collaborative modeling framework for complex and evolving sys-
tems. Journal of Open Source Software (2020), https://joss.theoj.org/papers/
8ce6d2bc26c0c6553c5ce5aff38d83c3, under review

13. Wilensky, U.: NetLogo (1999), http://ccl.northwestern.edu/netlogo/

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_32

https://doi.org/10.1109/secse.2009.5069155
https://doi.org/10.1016/j.infsof.2015.07.011
https://doi.org/10.1109/mcse.2018.108162940
https://doi.org/10.1126/science.1231535
https://doi.org/10.1016/j.infsof.2014.05.006
https://doi.org/10.3233/DS-190026
https://doi.org/10.1007/s10664-015-9381-9
https://arxiv.org/abs/1407.5648v2
https://joss.theoj.org/papers/8ce6d2bc26c0c6553c5ce5aff38d83c3
https://joss.theoj.org/papers/8ce6d2bc26c0c6553c5ce5aff38d83c3
http://ccl.northwestern.edu/netlogo/
https://dx.doi.org/10.1007/978-3-030-50436-6_32

