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Abstract. In their operations private chauffeur companies have to solve
variations of the multiple objective dial a ride problem. The number and
type of restrictions make the problem extremely intricate and, when
manually done, requires specialized people with a deep knowledge of
the modus operandi of the company and of the environment in which
the procedure takes place. Nevertheless, the scheduling can be auto-
mated through mean of computational methods, allowing to deliver so-
lutions faster and, possible, optimized. In this context, this paper com-
pares six algorithms applied to solving a multiple objective dial a ride
problem, using data from a company mainly working in the Algarve,
Portugal. The achieved results show that ε-MOEA overcomes the other
algorithms tested, namely the NSGA-II, NSGA-III, ε-NSGA-II, SPEA2,
and PESA2.
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1 Introduction

One of the problems addressed by private chauffeur companies is the design
of optimal routes and schedules to pick up, drive, and deliver clients to drop
off locations previously scheduled. The optimization has to attend to a large
number of parameters and restrictions, e.g.: capacity demands (number of per-
sons, volume of the luggage, large/special sport items etc.) or service restrictions
(transportation of children, disabled people, drivers availability, drivers working
hours, vehicles availability, etc.). The problem is even more intricate and dy-
namic when issues like delayed services, absence of workers, traffic congestion,
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vehicle breakdowns or service cancellations (just to give some examples) are
taken into account.

In its general form, the described problem is a variation of the dial a ride
problem (DARP), where clients obligatorily provide the pick up and drop off lo-
cations and time, and other parameters such as number of passengers and their
ages or luggage volume (e.g., see [6, 26] for formal definition of the problem).
DARP consists in, given a characterized fleet of vehicles, designing (optimal)
routes and schedules to satisfy clients requests of pick up and deliver in certain
time windows, not necessarily using all available vehicles. DARP is known to
be NP-hard and has been addressed in many ways including exact and meta-
heuristic solutions [14]. For example, to solve a route planning problem at a
senior activity center, a heterogeneous DARP with configurable vehicle capacity
was solved by Qu and Bard [27], using a branch and price and cut algorithm. A
branch and cut algorithm capable of solving small to medium-size instances was
developed by Cordeau [5] along with a mixed-integer programming formulation.
In [29] a pick up and delivery problem with time windows and a DARP tested a
branch and cut algorithms with families of inequalities on several instance sets
of the problems. In [31] an ant colony optimization algorithm was applied to
minimize the fleet size required to solve a DARP. The study in [9] aimed to
develop and test different genetic algorithms to find appropriate encodings and
configurations, specifically for the case with time windows. Parallel implemen-
tations were also studied as the tabu search variants described and compared
in [1] (applied to a static DARP). A two-stage hybrid meta-heuristic method
using ant colony optimization and tabu search for the vehicle routing problem
with constraints of simultaneous pick up and delivery, and time windows was
presented by Lai and Tong [21]. Another parallel approach embedded with a
multi-start heuristic for solving the vehicle routing problem with simultaneous
pick up and delivery was proposed in [30]. Berbeglia, Cordeau and Laporte pre-
sented an hybrid algorithm for the dynamic DARP [2], which combines an exact
constraint programming algorithm and a tabu search heuristic.

The DARP was formulated with distinct objectives such as the minimiza-
tion of the routes’ duration, ride time, waiting time, number of vehicles used,
operational cost, etc. (for a more complete list see [7]). In the criteria context,
the problem has been addressed in several multiple objective (MO) formula-
tions. In the MO case, several possibly antagonistic objectives are evaluated
producing a set of solutions over a partially ordered objective space [12]. For
instance, Chevrier et al. [4] addressed the problem of lack of transport service in
sparsely inhabited areas as a demand responsive transport problem, comparing
the non-dominated sorting genetic algorithm II (NSGA-II), the strength pareto
evolutionary algorithm 2 (SPEA2), and the indicator based evolutionary algo-
rithm (IBEA). In the same work, improvements using an iterative local search
(ILS), added in the mutation operator, are used to select the best approach in
a solution capable of producing answers in a short period of time. Another ap-
plication of NSGA-II to a multiple objective variation of the DARP problem
considering disruptive scenarios (e.g., accidents with the transporting vehicles,
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vehicle breakdown, and traffic jams) was presented by Issaoui et al. [19]. A
bi-objective formulation of DARP is solved using NSGA-II in [16]. The formula-
tion consists in the determination of routes to be performed by a fleet of vehicles
available to serve geographically dispersed customers. For more in-depth surveys
on the subject, please refer to the works of Cordeau and Laporte [6] and Ho et
al. [18].

This paper compares six multiple objective evolutionary algorithms (MOEA)
applied to solving an instance of the multiple objective dial a ride problem (MO-
DARP), namely: Multi-Objective Evolutionary Algorithm based on ε-dominance
(ε-MOEA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), NSGA-
III, ε-dominance Non-dominated Sorting Genetic Algorithm II (ε-NSGAII), im-
proved Strength Pareto Evolutionary Algorithm (SPEA2) and Pareto Envelope-
based Selection Algorithm 2 (PESA2). Data used to produce the experimental
results was retrieved from the working flow of a private chauffeur company with
a heterogeneous fleet, which mainly works in the Algarve, Portugal. The objec-
tives were discussed with the company and set to be: (a) the minimization of
total distance traveled by the vehicles to serve all requests, (b) the minimization
of the drivers’ wages difference, and (c) the minimization of the total number of
empty seats while satisfying all requests. Results show that the algorithms can
return a very large set of valid solution but, for the tested instances and in gen-
eral, ε-MOEA overcomes the other algorithms in indicators such as hypervolume,
generational distance, and inverted generational distance.

The added value of this paper is the comparison of the computational per-
formance of the six mentioned state-of-the-art algorithms over a set of DARP
instances with different sizes, allowing us to propose ε-MOEA as a good starting
point (since, e.g., computational time was not a major concern) to solve the
private chauffeur company’s problem.

The remaining document is structured as follows. The next section deals with
the problem’s formulation and multiple objective optimization issues. Section 3
briefly describes the algorithmic solutions tested and discusses the problem’s cod-
ification and chosen operators. The next section, Sec. 4, presents and discusses
results obtained with the experimented methods. The last section presents a
conclusion and future work.

2 Problem formulation

The MO-DARP addressed in this paper was formulated in [24] and took up
again in [15]. The problem is formulated over a directed network where nodes
are pick up, delivery or shift start/end locations, and edges have associated to
them distance and traversing time. A request is characterized by a pick up node,
a drop off node, the number and type of passengers (load), and pick up (or
drop off) time. Driver and vehicles are connected as there are as many depots as
drivers, since it is considered that a vehicle starts and ends at the driver’s homes
(start/end location). Each vehicle has a capacity and is allocated to one driver.
Drivers’ working time window and maximum workload are also parameters of
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the model. The formulation allows for a vehicle to be shared by more than one
driver, given that the driver’s time windows do not overlap with each other, and
the end point of one shift coincides with the start point of the next shift. In the
algorithm, these cases are solved considering dummy-duplicated cars with the
same characteristics of the original ones.

Regarding scheduling issues, the model takes into consideration operational
costs, the number of unused vehicle seats while serving a request, and the cu-
mulative salary of the driver regarding the drivers’ average salary (part of the
salary of the drivers depends on the number and type of services). Therefore,
for a given set of services, the goal of the problem is expressed by a multiple
objective function which comprises (a) the minimization of total distance made
by the vehicles to serve all services, (b) the minimization of the drivers’ wages
difference, and (c) the minimization of the total number of empty seats while
satisfying all requests. Being obvious that the first objective minimizes the op-
erational costs, the third one also has the same effect as optimizing the number
of seats to the request will reduce the use of larger vehicles, which usually have
associated higher costs (e.g., larger consumption) and might be less comfortable
for the passengers. The second objective reduces the overload of some of the
drivers/vehicles which might represent a security issue, promoting, at the same
time, more balanced wages among drivers. Most requests solving issues are more
or less common sense as, all requests are satisfied by a single vehicle, the vehicle
which picks up the customer is the same that drops him off, a vehicle starts and
ends its daily service at its depot, vehicles’ capacity restrictions for each service
are verified, none of the requests of a vehicle overlap in time, and workers only
works within the defined time window.

As these different objectives are conflicting, when a solution is better in one
objective is normally worse in other(s), e.g., a solution will not improve/decrease
the total distance traveled by the vehicles to serve all services (objective (a))
without increasing at least one of the other two objectives (drivers’ wages differ-
ence (b) or total number of empty seats while satisfying all requests (c)). This
means that the problem will not have one best solution, but rather a collection
of trade-off solutions, each better in one objective, but worse in other(s). If no
decision formula is known (e.g., priority on the objectives), a human decision
maker should be presented with this collection of “best solutions”, to decide
which one should be used, based on the company’s politics.

To determine these “best solutions”, the Pareto dominance is used: sup-
pose an objective function F = (f1, f2, . . . , fm) such that fi : Ω → R (i ∈
{1, 2, . . . ,m}, Ω is the solutions/search space, and R is an ordered set), and,
without loss generality, all objectives of our MO problem are to be minimized.
The solution X ∈ Ω dominates solution Y ∈ Ω, X ≺ Y , if the following
pair of conditions are verified: fi(X) ≤ fi(Y ) for all i ∈ {1, 2, . . . ,m} and
exists j ∈ {1, 2, . . . ,m} such that fj(X) < fj(Y ). The solution of the MO
problem is the set of solutions which are not dominated by any other solu-
tion in the search space, i.e., P = {X ∈ Ω|@Y ∈Ω : Y ≺ X}, called Pareto
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set. The set of images of the solutions in the Pareto set is called Pareto front,
F = {y ∈ Rm|y = F (X), X ∈ P}.

However, it is not always possible to compute the Pareto set as, for instance, it
can be very large or there are no “efficient” algorithms to compute it. In this case,
decision makers might be satisfied when a good approximation set is returned.
To measure the quality of approximation set, many indicators can be found in
literature [3, 28, 33]. Desirable features of those indicators include convergence
(toward the Pareto front), spread (extent of the front, i.e., distance between the
front’s extreme solutions), distribution (evenness of the front, i.e., uniformity
of the objective distances between pairs of “adjacent” solutions), and Pareto
compliance (the ranking established by the indicator does not contradict Pareto
optimality, i.e., a front ranked better by one metric must be Pareto preferred
over the ones which are ranked worst).

In this work, we will compare the results of the algorithms using the hy-
pervolume (HV), the generational distance (GD) and the inverted generational
distance (IGD) indicators. The (i) hypervolume, HV, uses a reference point to
measure the size of the objective space covered by the approximation front [35].
HV considers accuracy, diversity and cardinality, being the only known unary
metric with this capability. In our case, the hypervolume ratio is computed has
the ratio between the hypervolume of the approximation front and the hyper-
volume of a reference front (i.e., best know approximation set, computed as the
non-dominated elements of all known solutions) will be used. The (ii) genera-
tional distance, GD, of an approximation front A is computed as the sum of the
distance between each solution in A to the closest objective vector in a reference
front, averaged over the size of A. The reference front can be the Pareto front
or the best known approximation of it. GD only estimates the convergence of
the approximation set toward the reference front, and the results can be biased
toward approximation sets of poor quality having large cardinality. The (iii) in-
verted generational distance, IGD, which compared with GD, reverses the order
of the fronts considered as input, i.e., IGD is computed as the sum of the dis-
tances between the elements of the reference front to the closest element the
approximation front, averaged over the size of the reference front. This makes
IGD less sensitive to the size of the approximation set and intuitively measures
more effectively convergence, spread, and distribution. It should be mentioned
that, while the hypervolume is Pareto compliant, GD and IGD are not.

3 Algorithmic solutions

This section presents the adopted solution encoding, general genetic algorithms
(GA) flow and briefly introduces the six algorithms used to solve the MO-DARP
problem presented in Sec. 2.

3.1 Solution encoding and general GA

The solution of the MO-DARP problem corresponds to the assignment of driv-
ers/vehicles to services. E.g., considering a set of services (S1, S2, S3, S4), ordered
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for instance by pick up time, a solution could be something like (1, 2, 1, 3) mean-
ing that services S1 and S3 are to be served by driver/vehicle 1, S2 is to be
served by driver/vehicle 2, and service S4 for by driver 3.

Given this representation using vectors of integers, the basic implementation
of the based-GA is quite straightforward and can be summarized as follows [14]:
(i) initialize the population by randomly attributing drivers/vehicles to services.
(ii) Use the objective function values and number of violated restrictions to com-
pute the fitness of each individual. (iii) Select parents supported on their rank
and apply the crossover operator with probability, pc. Figure 1 – left exemplifies
a k-point crossover operation [32] where Parent 1 and Parent 2 are combined
to generate Offspring 1 and Offspring 2. In the example, the operator randomly
chooses κ = 3 (a parameter of the algorithm) cutting points which is followed
by a swap between the blocks defined by those cutting points. (iv) In the next
step, offspring suffer a mutation with probability pm. In our case, the muta-
tion operator randomly changes the vehicle/driver assigned to a service, e.g., see
Fig. 1 – right. (v) As an optional step, not applied in our experiments, we can
use a local search operator and/or solution correction. For instance, the local
search can apply “neighbor” operator to improve offspring, generally improving
the convergence in terms of fitness and time/number of iterations/number of ob-
jective function evaluations. Solution correction can also improve the algorithm
performance by applying operations to ensure that solutions going to the next
generation are feasible. (vi) Finally, the offspring are evaluated for their fitness
(and possibly crowding distance, distance to reference points, etc.) and between
parents and offspring, a new population, with the same size of the original one, is
returned. This population moves to the next generation, returning to step (iii),
or if the stopping criteria are met, the feasible non-dominated solutions in the
last population are returned as the proposed solution.

As seen, GA evolve a population of solutions through a number of gener-
ations, using two main operators: crossover and mutation. In short, the first
operator passes the parents lineament to the offspring and the second imple-
ments diversity on the population, preventing it from becoming trapped in some
local minima and avoiding the stagnation of the population. Given a population
and its offspring, in a greedy manner, the best individuals will be part of the
next generation, maintaining a fixed population size (N). If everything goes well,
the new population has moved towards the optimal solution, while maintaining
its diversity.

One crucial difference between a generic (single objective) GA and a multiple
objective GA, is the selection of the individuals that move to the next generation,
as in a multiple objective problem, generally there is not a single best solution for
the problem and therefore the selection of elements moving to the next generation
is done using the Pareto dominance.

Another thing worth mention is that, as the representation used allows for
invalid solutions (e.g., a vehicle has two services that overlap in time), these are
treated in the algorithm by implementing a restriction-violation policy, meaning
that each solution will have assigned to it the number of restrictions it violates,
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S1 S2 S3 S4 S5 S6 S7 S8
Parent 1 5 2 1 1 1 2 3 2
Parent 2 2 1 4 2 3 1 4 3

S1 S2 S3 S4 S5 S6 S7 S8
Offspring 3 2 4 2 4 4 3 3

Crossover

www� operator Mutation

www� operator

S1 S2 S3 S4 S5 S6 S7 S8
Offspring 1 5 2 4 2 1 2 3 3
Offspring 2 2 1 1 1 3 1 4 2

S1 S2 S3 S4 S5 S6 S7 S8
Mutated offspring 3 2 2 1 4 4 4 3

Fig. 1. Solution representation using vectors of integers. Example of the crossover (left)
and mutation (right) operators.

and solutions that do not violate any restriction will always be considered “bet-
ter” than those that violate any restriction, this means that the former will
always be moved to the next generation (regardless of their fitness values) prior
to any of the latter, and if any of these last will survive, the ones with less
violations are preferred.

3.2 Algorithms overview

NSGA-II As the name suggests, Non-dominated Sorting Genetic Algorithm II,
NSGA-II, proposed by Deb et. al. [11], is a genetic algorithm specially adapted
for the optimization of multiple objective problems. NSGA-II uses Pareto dom-
inance to rank solutions to their respective “layer” in the approximation set,
i.e., non-dominated solutions are in rank 1, solutions dominated by first rank
solutions are in rank 2, solutions dominated by solutions in rank 1 and 2 are
placed in rank 3, and so on. The individuals that pass to the next generation are
consecutively selected from the lowest rank layers. When not all individuals in a
given rank can pass to the next generation, NSGA-II uses the notion of crowd-
ing distance to maintain diversity, so that the solutions discarded are those in a
more crowded space.

NSGA-III Another algorithm is NSGA-III [10], characterized by the authors as
“a reference-point-based many-objective evolutionary algorithm following NSGA-
II framework that emphasizes population members that are non-dominated, yet
close to a set of supplied reference points”. In this algorithm, the maintenance
of diversity among population is aided by supplying and adaptively updating
a number of well-spread reference points (r), replacing the crowding distance
operator. Equal to NSGA-II, “lowest” layers’ elements are added while not sur-
passing the population’s size. When adding a layer that surpasses the popu-
lation size then some elements are selected taking into consideration a set of
reference points which can either be predefined in a structured manner or sup-
plied (preferentially) by the user. Worth mentioning that the population size is
not a parameter, but is determined automatically using the number of reference
points.

PESA2 Proposed by Corne et al. [8] the Pareto Envelope-based Selection Al-
gorithm 2, PESA2, uses a selection technique in which the unit of selection are
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hyper-boxes located in the objective space. The selective fitness is made over the
hyper-boxes populated by at least one individual of the current approximation
set. The selected individual is then randomly chosen from the elected hyper-
boxes. The method was proven to return solutions which are better spread along
the Pareto frontier than individual based selection tested methods.

SPEA2 Proposed by Zitzler, Laumanns, and Thiele [34], the improved Strength
Pareto Evolutionary Algorithm, SPEA2, starts by initializing the population
with a set of candidate solutions. Then, the best solutions are stored in an
archive, insulated from the population. Non-dominated individuals are featured
by combining dominance count and dominance rank methods. In other words,
for each individual the number of dominated individuals and the number of
dominating individuals in the population allows to compute a fitness value. In
each iteration, non-dominated individuals from the union of the archive and the
current population are updated, maintaining archive’s size, either by including
dominated individual from the current pool or removing individual from the
archive, basing the decision on the nearest neighbor Euclidean distance. The
mating pool used to generate the next population is filled by the individuals of
the archive and the offspring are then generated by a set of variation operators.

ε-MOEA Deb, Mohan and Mishra [13] proposed a steady-state Multi-Objective
Evolutionary Algorithm, ε-MOEA, based on the ε-dominance, concept intro-
duced in [22]. This algorithm uses a two co-evolving populations: an EA popula-
tion, and an archive population. The former starts with an random population,
and the later gets the non-dominated solutions from the former. In each gener-
ation, two solutions, one from each population, are mated to create offspring,
which are then checked for inclusion in both population and archive, using the
ε-dominance concept. Worth mention that, while the population has a fixed
number of individuals, meaning that an individual must be removed in order
to incorporated an offspring in the population, the archive can grow as large as
needed, to incorporate all non-dominated solution. A detailed explanation can
be found in [13].

ε-NSGA-II Kollat and Reed [20] have extended the NSGA-II algorithm, by
adding ε-dominance [22], archiving and adaptive population sizing. The ε-domi-
nance allows the user to specify the precision with which they want to quantify
each objective. The ε-NSGA-II uses a series of “connected runs”, and, as the
search progresses, the population size is adapted based on the number of ε-
non-dominated solutions found and stored in the archive, which are then used
to direct the search using an injection scheme, where 25% of the subsequent
population are composed by ε-non-dominated solutions from the archive, and
the other 75% will be generated randomly.

As seen, the last two algorithms use the ε-dominance concept to maintain the
diversity of the population. Basically, this means that the search space is divided
in a number of grids (or hyper-boxes) of ε-size, and in each grid (or hyper-box)
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Algorithms κ pc pm ε r N

NSGA-II 4 0.9 0.01 – – 100
NSGA-III 4 0.9 0.01 – 12 –
SPEA2 4 0.9 0.01 – – 100
PESA2 4 0.9 0.01 – – 100
ε-NSGA-II 4 0.9 0.01 0.001 – 100
ε-MOEA 4 0.9 0.01 0.001 – 100

Table 1. Tuned algorithms’ parameters.

only one solution in allowed (see [22] for a detailed explanation), guaranteeing
this way the inexistence of any area for the solutions to converge.

4 Experimental results

Starting by a brief characterization of the private chauffeur company’s testing
data, this section compares the algorithms presented in Sec. 3. So, data used
in this section is part of the dataset of the services requested between January
2012 and December 2019 to a private chauffeur company of Algarve. Data is
characterized by a seasonal variation where the summer months, in particular
July, August, and September, have the largest number of services. The number
of services per hour also varies during a tipical day. As a curiosity, the peak
number of services in a single hour was reached in a Saturday of September 2019
with 70 services requested between 8 and 9 a.m. On the other other hand, the
peak number of services for a single day was also reached in September 2019
with 552 requests.

The code was developed is Python, using the Platypus framework for evo-
lutionary computing, which includes optimization algorithms and analysis tools
for MO optimization [17]. To compute the distance between the different service
locations, the Open Source Routing Machine (OSRM) [23] was used, which is
a C++ routing engine for shortest paths in road networks, supported on Open
Street Maps cartography [25]. Implementations were run on an Intel i7-5820K
at 3.3Ghz, 32GB RAM, running Microsoft Windows 10. To simplify the presen-
tation, algorithms’ parameters were previously tuned varying their values over
large predetermined sets, being the final values summarized in Tab. 1. The stop-
ping criteria was set as 50,000 evaluations of the objective function and the
algorithms were run 10 times for each instance. Furthermore, given the large
number of days/problem instances available and in order to represent the sea-
sonality of this type of service, 4 scenarios with different degrees of complexity
were selected, namely, by order of scenario, with 40, 99, 300 and 526 requests,
and 14, 25, 52 and 70 vehicles, respectively. As a note, the vehicle set used in
each scenario was limited to the vehicles used by the company on the selected
day.

Table 2 shows the achieved mean values (standard deviation values inside
parenthesis) for HV, GD, and IGD indicators. In bold are the best achieved in-
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Indicator Scenario NSGA-II NSGA-III SPEA2 PESA2 ε-NSGA-II ε-MOEA

HV

1 0.896 (.02) 0.898 (.02) 0.907 (.01) 0.905 (.01) 0.918 (.02) 0.934 (.02)

2 0.819 (.03) 0.859 (.02) 0.831 (.02) 0.826 (.04) 0.798 (.02) 0.881 (.03)

3 0.654 (.07) 0.738 (.03) 0.626 (.04) 0.699 (.06) 0.540 (.07) 0.784 (.06)

4 0.593 (.06) 0.757 (.05) 0.605 (.06) 0.695 (.07) 0.478 (.05) 0.755 (.08)

GD

1 0.006 (.00) 0.004 (.00) 0.004 (.00) 0.005 (.00) 0.002 (.00) 0.001 (.00)

2 0.012 (.00) 0.006 (.00) 0.004 (.00) 0.008 (.00) 0.003 (.00) 0.002 (.00)

3 0.022 (.01) 0.014 (.00) 0.010 (.00) 0.015 (.00) 0.014 (.00) 0.004 (.00)

4 0.031 (.01) 0.017 (.00) 0.018 (.01) 0.020 (.01) 0.028 (.00) 0.010 (.00)

IGD

1 0.078 (.01) 0.070 (.01) 0.066 (.01) 0.067 (.00) 0.051 (.01) 0.040 (.01)

2 0.122 (.02) 0.078 (.01) 0.087 (.01) 0.098 (.02) 0.114 (.02) 0.057 (.01)

3 0.236 (.05) 0.146 (.02) 0.199 (.03) 0.167 (.04) 0.272 (.06) 0.106 (.02)

4 0.350 (.08) 0.178 (.04) 0.272 (.05) 0.213 (.05) 0.407 (.05) 0.160 (.05)

Table 2. Hypervolume, generational distance, and inverted generational distance mean
(standard deviation) values for the 4 scenarios.

dicator’s values. Required to calculate the indicators’ values, the reference front
for each scenario was computed as the best know approximation front, i.e., it was
computed has the non-dominated elements of all known solutions in the objec-
tive space. From the table’s analysis and over the introduced arrangement, it is
deductible that ε-MOEA achieves the best results. Only on Scenario 4, NSGA-II
had best HV but with a difference of 0.002 units. This results allows us to believe
that ε-MOEA has better convergence, spread, and distribution when compared
with the others, again over this set of instances. We should also point out that in
general, algorithms achieved a population of non-dominated solutions in every
case, i.e., all solutions/population elements belong to their approximation set.
This fact allowed us to avoid taking measures relative to feasibility of the so-
lution (e.g., implementing post optimization/feasibility operators), maintaining
the purity of the algorithms.

To better illustrate the difference in the solutions, only extreme solutions
(those with the minimum values in each objective) will be examined next. This
does not mean that a decision maker will select on of those. Figure 2 shows
three typical scheduling solutions for Scenario 1 obtained with ε-MOEA, where
each line represents a vehicle’s scheduling (red bars for service time and blue
bars the connection time, i.e., moving without passengers). The plots shows
the extreme solutions for each objective, namely: (top) minimal total distance,
(middle) minimal difference in drivers’ wages, and (bottom) minimal number of
empty seats. Argumentably, although expectable, it is possible to assert that the
top solution (with a total of 2745 Km) has less transit without passengers (blue
bars) than the others (with 3088 Km and 2900 Km, respectively). Easy to observe
is the fact that, the bottom solution has 3 vehicles without any service, as these
were vehicle with more seats and were not scheduled. This last solution shows
that is conceivable for the company to diminish the number of large vehicles, at
least in the low season.

As an example of a larger instance, Fig. 3 presents the scheduling for Scenario
4 considering the minimal distance (extreme) solution, obtained with ε-MOEA.
The presented solution accounts for 38987 Km and 924 empty seats. If the num-
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Fig. 2. Examples of scheduling obtained with ε-MOEA for Scenario 1, considering
the objective-extreme: (top) total distance, (middle) drivers’ wages difference, and
(bottom) number of empty seats.

ber of empty seats was to be minimized (solution is not presented), the number
of empty seats extreme solution accounted for 41660 Km and 844 empty seats.
As conclusion, these solutions require a decision maker which, in accordance
with the company policy, must decide, for instance, if saving 2673 Km is better
or worse than using larger vehicles (with, probably, higher fuel consumption).
Or simply choose a more “balanced” solution between the ones returned by the
elected algorithm.

5 Conclusion

This paper studies algorithmic solutions for the scheduling operation of a pri-
vate chauffeur company. The problem was previously formalized as a multiple
objective dial a ride problem, with three objectives: (a) minimization of total
distance traveled by the vehicles to serve all requests, (b) minimization of the
drivers’ wages difference, and (c) minimization of the total number of empty seats
while satisfying all requests. Six algorithms (ε-MOEA, NSGA-II, NSGA-III, ε-
NSGA-II, SPEA2, and PESA2) were compared using hypervolume, generational
distance, and inverted generational distance indicators over 4 different size in-
stances of the problem. Over this arrangement, ε-MOEA could be considered the
best solution as it presented the best indicator values, except for one indicator
in one scenario.

As future work an analysis on the usage of this and other algorithms online
(or quasi-online) is due. Another not yet studied issue is the problem’s dynamic,
where new requests or vehicles are inserted/removed during or after optimization
process finished.
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Fig. 3. Examples of scheduling obtained with ε-MOEA for Scenario 4, considering the
objective-extreme total distance
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