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Abstract. Greening of Data Centers could be achieved through energy savings 

in two significant areas, namely: compute systems and cooling systems. A 

reliable cooling system is necessary to produce a persistent flow of cold air to 

cool the servers due to increasing computational load demand. Servers’ 

dissipated heat effects a strain on the cooling systems. Consequently, it is 

necessary to identify hotspots that frequently occur in the server zones. This is 

facilitated through the application of data mining techniques to an available big 

dataset for thermal characteristics of High-Performance Computing ENEA Data 

Center, namely Cresco 6. This work presents an algorithm that clusters hotspots 

with the goal of reducing a data centre’s large thermal-gradient due to uneven 

distribution of server dissipated waste heat followed by increasing cooling 

effectiveness. 

Keywords: Data Center, HPC, Data Mining, Big Data, Thermal, Hotspot, 

Cooling, Thermal management. 

1   Introduction 

A large proportion of worldwide generated electricity is through hydrocarbon 

combustion. Consequently, this causes a rise in carbon emission and other Green 

House Gasses (GHG) in the environment, contributing to global warming. Data 

Center (DC) worldwide were estimated to have consumed between 203 to 271 billion 

kWh of electricity in the year 2010 [1] and in 2017, US based DCs alone used up 

more than 90 billion kilowatt-hours of electricity [14]. According to [2], unless 

appropriate steps are taken to reduce energy consumption and go-green, global DC 

share of carbon emission is estimated to rise from 307 million tons in 2007 to 358 

million tons in 2020. Servers in DCs consume energy that is proportional to allocated 

computing loads, and unfortunately, approximately 98% of the energy input is being 

dissipated as waste heat energy. Cooling systems are deployed to maintain the 

temperature of the computing servers at the vendor specified temperature for 

consistent and reliable performance. Koomey [1] emphasises that a DC energy input 

is primarily consumed by cooling and compute systems (comprising servers in chassis 
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and racks). Thus, these two systems have been critical targets for energy savings. 

Computing-load processing entails jobs and tasks management. On the other hand, 

DC cooling encompasses the installation of cooling systems and effective hot/cold 

aisle configurations.  Thermal mismanagement in a DC could be the primary 

contributor to IT infrastructure inefficiency due to thermal degradation. Server 

microprocessors are the primary energy consumers and waste heat dissipators [4]. 

Generally, existing DC air-cooling systems are not sufficiently efficient to cope with 

the vast amount of waste heat generated by high performance-oriented 

microprocessors. Thus, it is necessary to disperse dissipated waste heat so that there 

will be an even distribution of waste heat within a premise to avoid overheating.  

Undeniably, a more effective energy savings strategy is necessary to reduce energy 

consumed by a cooling system and yet efficient in cooling the servers (in the compute 

system). One known technique is thermal-aware scheduling where a computational 

workload scheduling is based on waste heat. Thermal-aware schedulers adopt 

different thermal-aware approaches (e.g. system-level for work placements [16]; 

execute ‘hot’ jobs on ‘cold’ compute nodes; predictive model for job schedule 

selection [17]; ranked node queue based on thermal characteristics of rack layouts and 

optimisation (e.g. optimal setpoints for workload distribution and supply temperature 

of the cooling system). Heat modelling provides a model that links server energy 

consumption and their associated waste heat. Thermal-aware monitoring acts as a 

thermal-eye for the scheduling process and entails recording and evaluation of heat 

distribution within DCs. Thermal profiling  is based on useful monitoring information 

on workload-related heat emission and is useful to predict the DC heat distribution. In 

this paper, our analysis explores the relationship between thermal-aware scheduling 

and computer workload scheduling. This is followed by selecting an efficient solution 

to evenly distribute heat within a DC to avoid hotspots and cold spots. In this work, a 

data mining technique is chosen for hotspots detection and thermal profiling for 

preventive measures. The novel contribution of the research presented in this paper is 

the use of real thermal characteristics big dataset for ENEA High Performance 

Computing (HPC) CRESCO6 compute nodes. Analysis conducted are as follows: 

hotspots localisation; users categorisations based on submitted jobs to CRESCO6 

cluster; compute nodes categorisation based on thermal behaviour of internal and 

surrounding air temperatures due to workload related waste heat dissipation. This 

analysis aims to minimise employ thermal gradient within a DC IT room through the 

consideration of the following: different granularity levels of thermal data; energy 

consumption of calculation nodes; IT room ambient temperature. An unsupervised 

learning technique has been employed to identify hotspots due to the variability of 

thermal data and uncertainties in defining temperature thresholds. This analysis phase 

involves the determination of optimal workload distribution to cluster nodes. 

Available thermal characteristics (i.e. exhaust temperature, CPUs temperatures) are 

inputs to the clustering algorithm. Subsequently, a series of clustering results are 

intersected to unravel nodes (identified by IDs) that frequently fall into high-

temperature areas. The paper is organised as follows: Section I – Introduction; Section 

II – Background: Related Work; Section III – Methodology; Section IV – Results and 

Discussion; Section V – Conclusions and Future Work. 
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2 Background: Related Work  

In the context of High Performance Computing Data Center (HPC-DC), it is essential 

to satisfy service level agreements with minimal energy consumption. This will 

involve the following: DC efficient operations and management within recommended 

IT room requirements, specifications, and standards; energy efficiency and effective 

cooling systems; optimised IT equipment utilisation.  DC energy efficiency has been a 

long standing challenge due to multi-faceted factors that affect DC energy efficiency 

and adding to the complexity, is the trade-off between performance in the form of 

productivity and energy efficiency. Interesting trade-offs between geolocations and 

DC energy input requirements (e.g. cold geolocations and free air-cooling; hot, sunny 

geolocations and solar powered renewable energy) are yet to be critically analysed 

[8]. One of the thermal equipment-related challenge is raising the setpoint of cooling 

equipment or lowering the speed of CRAC (Computer Room Air Conditioning) fans 

to save energy, may in the long-term, decrease the IT systems reliability (due to 

thermal degradation). However, a trade-off solution (between optimal cooling system 

energy consumption and long-term IT system reliability) is yet to be researched on 

[8]. Another long-standing challenge is IT resource over-provisioning that causes 

energy waste due to for idle servers. Relevant research explores optimal allocation of 

PDUs (Power Distribution Units) for servers, multi-step algorithms for power 

monitoring, and on-demand provisioning reviewed in [8]. Other related work 

addresses workload management, network-level issues as optimal routing, Virtual 

Machines (VM) allocation, and balance between power savings and network QoS 

(Quality of Service) parameters as well as appropriate metrics for DC energy 

efficiency evaluation. One standard metric used by a majority of industrial DCs is 

Power Usage Effectiveness (PUE) proposed by Green Grid Consortium [2]. It shows 

the ratio of total DC energy utilisation with respect to the energy consumed solely by 

IT equipment. A plethora of DC energy efficiency metrics evaluate the following: 

thermal characteristics; ratio of renewable energy use; energy productivity of various 

IT system components, and etc. There is a pressing need to provide a holistic 

framework that would thoroughly characterise DCs with a fixed set of metrics and 

reveal potential pitfalls in their operations. Though some existing research work has 

made such attempts but to date, we are yet to have a standardised framework [9] [13]. 

To reiterate, the thermal characteristics of the IT system ought to be the primary focus 

of an energy efficiency framework because it is the main energy consumer within a 

DC. Several researches have been conducted to address this issue. Sungkap et al. [11] 

propose an ambient temperature‐aware capping to maximize power efficiency while 

minimising overheating. Their research includes an analysis of the composition of 

energy consumed by a cloud-based DC. Their findings for the composition of DC 

energy consumption are  approximately 45% for compute systems; 40% for 

refrigeration-based air conditioning; remaining 15% for storage and power 

distribution systems. This implies that approximately half of the DC energy is 

consumed by non‐computing devices. In [6], Wang and colleagues present an 

analytical model that describes DC resources with heat transfer properties and 

workloads with thermal features. Thermal modelling and temperature estimation from 

thermal sensors ought to consider the emergence of server hotspots and thermal 

solicitation due to the increase in inlet air temperature, inappropriate positioning of a 

rack or even inadequate room ventilation. Such phenomena are unravelled by 
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thermal-aware location analysis. The thermal-aware server provisioning approach to 

minimise the total DC energy consumption calculates the value of energy by 

considering the maximum working temperature of the servers. This approach should 

consider the fact that any rise in the inlet temperature rise may cause the servers to 

reach the maximum temperature resulting in thermal stress, thermal degradation, and 

severe damage in the long run. Typical different identified types of thermal-aware 

scheduling are reactive, proactive and mixed. However, there is no reference to heat-

modelling or thermal-monitoring and profiling. Kong and colleagues [4] highlight 

important concepts of thermal-aware profiling, thermal-aware monitoring, and 

thermal-aware scheduling. Thermal-aware techniques are linked to the minimisation 

of waste heat production, heat convection around server cores, task migrations, and 

thermal-gradient across the microprocessor chip and microprocessor power 

consumption. Dynamic thermal management (DTM) techniques in microprocessors 

encompasses the following: Dynamic Voltage and Frequency Scaling (DVFS), Clock 

gating, task migration, and Operating System (OS) based DTM and scheduling. In 

[5], Parolini and colleagues propose a heat model; provide a brief overview of power 

and thermal efficiency from microprocessor micro-level to DC macro-level. To 

reiterate, it is essential for DC energy efficiency to address thermal awareness in order 

to better understand the relationship between both the thermal and the IT aspects of 

workload management. In this paper, the authors incorporate thermal-aware 

scheduling, heat modelling, thermal aware monitoring and thermal profiling using a 

big thermal characteristic dataset of a HPC-Data Center. This research involves 

measurement, quantification, and analysis of compute nodes and refrigerating 

machines. The aim of the analysis is to uncover underlying causes that causes 

temperatures rise that leads to the emergence of thermal hotspots. Overall, effective 

DC management requires energy use monitoring, particularly, energy input, IT energy 

consumption, monitoring of supply air temperature and humidity at room level (i.e. 

granularity level 0 in the context of this research), monitoring of air temperature at a 

higher granularity level (i.e.at Computer Room Air Conditioning/Computer Room Air 

Handler (CRAC/CRAH) unit level, granularity level 1). Measurements taken are 

further analysed to reveal extent of energy use and economisation opportunities for 

the improvement of DC energy efficiency level (granularity level 2).  DC energy 

efficiency metrics will not be discussed in this paper. However, the discussion in the 

subsequent section primarily focuses on thermal guidelines from American Society of 

Heating, Refrigerating And AC Engineers (ASHRAE) [7]. 

3   Methodology 

To reiterate, our research goal is to reduce DC wide thermal-gradient, hotspots and 

maximise cooling effects. This entails the identification of individual server nodes 

that frequently occur in the hotspot zones through the implementation of a clustering 

algorithm on the workload management platform.  The big thermal characteristics 

dataset of ENEA Portici CRESCO6 computing cluster is employed for the analysis. It 

has 24 measured values (or features) for each single calculation node (see Table 1) 

and comprises measurements for the period from May 2018 to January 2020.   

Briefly, the cluster CRESCO6 is a High-Performance Computing System (HPC) 
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consisting of 434 calculation nodes with a total of 20832 cores. It is based on Lenovo 

Think System SD530 platform, an ultra-dense and economical two-socket server in a 

0.5 U rack form factor inserted in a 2U four-mode enclosure. Each node is equipped 

with 2 Intel Xeon Platinum 8160 CPUs (each with 24 cores) and a clock frequency of 

2.1 GHz; a RAM size of 192 GB, corresponding to 4 GB/core. A low-latency Intel 

Omni-Path 100 Series Single-port PCIe 3.0 x16 HFA network interface. The nodes 

are interconnected by an Intel Omni-Path network with 21 Intel Edge switches 100 

series of 48 ports each, bandwidth equal to 100 GB/s, and latency equal to 100ns. The 

connections between the nodes have 2 tier 2:1 no-blocking tapered fat-tree topology. 

The power consumption massive computing workloads amount to a maximum of 190 

kW. 

 

Table 1. Thermal dataset – description of features. 

Node Name server ID, integer from 1 to 434 

Timestamp timestamp of a measurement 

System, CPU, Memory 

Power 

Node instantaneous power, memory power, CPU power use in 

three corresponding columns (expressed in Watt) 

Fan 1a, Fan1b, 

…,  

Fan 5a, Fan 5b 

Speed of a cooling fan installed inside the node (expressed in 

RPM - revolutions per minute) 

System, CPU, Memory, 

I/O utilisation 

Percentage values of CPU, RAM memories and I/O utilisation 

 

Inlet, CPU1, CPU2, 

Exhaust temperature 

Temperature at the front, inside (on CPU1 and CPU2) and at 

the rear of every single node (expressed in Celsius) 

 

SysAirFlow Speed of air traversing the node expressed in CFM (cubic foot 

per minute) 

DC Energy Meter of total energy used by the node, updated at 

corresponding timestamp and expressed in kWh 

 

     3.1 Energy Saving Approach 

 

This work incorporates thermal-aware scheduling, heat modelling, and thermal 

monitoring followed by subsequent user profiling based on “waste heat production” 

point of view. Thermal-aware DC scheduling is designed based on data analytics 

conducted on real data obtained from running cluster nodes in a real physical DC. For 

the purpose of this work, approximately 20 months’ worth of data has been collected. 

Data collected are related to: relevant parameters for each node (e.g. inlet air 

temperature, internal temperature of each node, energy consumption of CPU, RAM, 

memory, etc…); environmental parameters (e.g.  air temperatures and humidity in 

both the hot and cold aisles); cooling system related parameters (e.g. fan speed); and 

finally, individual users who submit their jobs to cluster node. This research focuses 

on the effect of dynamic workload assignment on energy consumption and 

performance of both the computing and cooling systems. The constraint is that each 

arrived job must be assigned irrevocably to a particular server without any 

information about impending incoming jobs. Once the job has been assigned, no pre-

emption or migration is allowed, which a rule is typically adhered to for HPC 

applications due to high data reallocation incurred costs. In this research, we 
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particularly explore an optimised mapping of nodes that have to be physically and 

statically placed in advance to one of the available rack slots in the DC. This will 

form a matrix comprising computing units with specific characteristics and certain 

resource availability level at a given time t. The goal is to create a list of candidate 

nodes to deliver “calculation performance” required by a user’s job. When choosing 

the candidate nodes, the job-scheduler will evaluate the suitability of the thermally 

cooler nodes (which at the instant t) based on their capability to satisfy the calculation 

requested by a user (in order to satisfy user’s SLA). To enhance the job scheduler 

decision making, it is essential to know in advance, the type of job a user will submit 

to a node(s) for computation.  Such insight is provided by several years’ worth of 

historical data and advanced data analytics using machine learning algorithms. 

Through Platform Load Sharing Facility (LSF) accounting data we code user profiles 

into 4 macro-categories:  

1. CPU_intensive 

2. MEMORY_intensive 

3. CPU&MEMORY_intensive 

4. CPU&MEMORY_not intensive 

This behavioural categorisation provides an opportunity to save energy and better 

allocate tasks to cluster nodes to reduce overall node temperatures. Additionally, 

when job allocation is evenly distributed, thermal hotspots and cold spots could be 

avoided. The temperatures of the calculation nodes could be evened out, thus, 

resulting in a more even distribution of heat across the cluster.  

 

3.2 Users and workload understanding profiled log 

 

Based on thermal data, it is necessary to better understand in-depth what users do and 

how they manage to solicit the calculation nodes for their jobs. The three main 

objectives of understanding users’ behaviour are as follows: Identify parameters 

based on the diversity of submitted jobs for user profiling; Analyse the predictability 

of various resources (e.g. CPU, Memory, I/O) and identify their time-based usage 

patterns;  Build predictive models for  estimating future CPU and memory usage 

based on historical data carried out in the LSF platform. Abstraction of behavioural 

patterns in the job submission and its associated resource consumption is necessary to 

predict future resource requirements. This is exceptionally vital for dynamic resource 

provisioning in a DC. User profile is created based on submitted job-related 

information and to reiterate, the 4 macro categories of user profiles are:  1) CPU-

intensive, 2) disk-intensive, 3) both CPU and MEMORY- intensive, or 4) neither 

CPU- nor MEMORY-intensive. A crosstab of the accounting data (provided by the 

LSF platform) and resource consumption data help guide the calculation of relevant 

thresholds that code jobs into several distinct utilisation categories. For instance, if the 

CPU load is high (e.g., larger than 90%) during almost 60% of the job running time 

for an application, then the job can be labelled as a CPU-intensive one. The goal is for 

the job-scheduler to optimise task scheduling when a job with the same AppID (i.e. 

the same type of job) or same username is re-submitted to a cluster. In case of a match 

with the previous AppID or username, relevant utilisation stats from the profiled log 

are retrieved. Based on the utilisation patterns, this particular user/application will be 

placed into one of the 4 previously discussed categories.  Once a job is categorised, a 

thermally suitable node is selected to satisfy the task calculation requirements. A task 
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with high CPU and memory requirement will not be immediately processed until the 

node temperature is well under a safe temperature threshold. Node temperature refers 

to the difference between the node’s outlet exhaust air and inlet air temperatures 

(note: this generally corresponds to the air temperature in the aisles cooled by the air 

conditioners). 

3.3 Real-time workload management based on Thermal awareness: Cluster 

evaluation 

It is necessary to have a snapshot of relevant thermal parameters (e.g. temperatures of 

each component in the calculation nodes) for each cluster to facilitate efficient job 

allocation by the job-scheduler. Generally, a snapshot is obtained through direct 

interrogation of the nodes and installed sensors in their vicinity, or inside the 

calculation nodes. For each individual node, the temperatures of the CPUs, memories, 

instantaneous energy consumption and peed of the cooling fans are evaluated 

undeniably, the highly prioritised parameter is the difference between the node’s inlet 

and exhaust air temperatures. If there is a marked difference, it is evident   that the 

node is very busy (with jobs that require a lot of CPU or memory-related resource 

consumption). Therefore, for each calculation node, relevant data is monitored in real 

time, and subsequently, virtually stored in a matrix that represents the state of the 

entire cluster. Each matrix cell represents the states of a node (represented by relevant 

parameters).   For new job allocation, the scheduling algorithm will choose a node 

based on its states depicted in the matrix (e.g. recency or Euclidean distance).  

Through this, generated waste heat is evenly distributed over the entire "matrix" of 

calculation nodes so that hotspots could be significantly reduced. Additionally, a user 

profile is an equally important criterion for resource allocation. This is due to the fact 

that user profiles provide insights into user consumption patterns and the type of 

submitted jobs and their associated parameters. For example, if we know that a user 

will perform CPU-intensive jobs for 24 hours, we will allocate the job in a "cell" 

(calculation node) or a group of cells (when the number of resources requires many 

calculation nodes) that are physically well distributed or with antipodal locations.  

This selection strategy aims to evenly spread out the high-density nodes followed by 

the necessary cooling needs. This will help minimise DC hotspots and ascertain 

efficient cooling with reduction in cooling-related energy consumption. 

4   Results and Discussion 

As previously discussed, we have created user profiles based on submitted job-related 

information. Undeniably, these profiles are dynamic because they are constantly 

revised based on user resource consumption behaviour. For example, a user may have 

been classified as "CPU intensive" for a certain time period. However, if the user’s 

submitted jobs are no longer CPU intensive, then the user will be re-categorised.  The 

deployment of the thermal-aware job scheduler generally aims to reduce the overall 

CPU/memory temperatures, and outlet temperatures of cluster nodes. The following 
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design principles guide the  design and implementation of the job: 1) Job categories -  

assign an incoming job  to one of these 4 categories: CPU-intensive, memory-

intensive, neither CPU nor memory-intensive, and both CPU and memory-intensive 

tasks; 2) Utilisation monitoring - monitoring CPU and memory utilisation while 

making scheduling decisions; 3) Redline temperature control - ensure operating CPUs 

and memory under threshold temperatures; 4) Average temperatures maintenance - 

monitor average CPU and memory temperatures in a node and manage an average 

exhaust air temperature across a cluster. To reiterate, user profile categorisation is 

facilitated by maintaining a log profile of both CPU and memory utilisation for every 

job (with an associated user) processed in the cluster. A log file contains the following 

user-related information:  (1) user ID; (2) Application identification; (3) the number 

of submitted jobs; (4) CPU utilisation; (5) memory utilisation. 

 

4.1 Data Analysis: Results and Discussion 

 

A list of important thermal management-related terms is as follows: 1) CPU-intensive 

- applications that is computation intensive (i.e. requires a lot of processing time); 2) 

Memory-intensive-a significant portion of these applications require RAM processing 

and disk operations; 3) Maximum (redline) temperature - the maximum  operating 

temperature specified by a device manufacturer or a system administrator; 4) Inlet air 

temperature - the temperature of the air flowing into a data node (i.e. temperature of 

the air sucked in from the front of the node); 5) Exhaust air temperature - the 

temperature of the air coming out from a node (the temperature of the air extracted 

from the rear of the node). By applying these evaluation criteria, we have built an 

automated procedure that provides insight into the 4 user associated categories (based 

on present and historical data). Obviously, the algorithm always makes a comparison 

between a job just submitted by a user and the time series (if any) of the same user. If 

the application launched or the type of submitted job remains the same, then the user 

will be grouped into one of the 4 categories (based on a supervised learning 

algorithm) During each job execution, the temperature variations of the CPUs and 

memories are recorded at pre-established time intervals. Finally, it continuously 

refines the user behaviour based on the average length of time the user uses for the 

job. This will provide a more accurate user (and job) profile because it provides 

reliable information on the type of job processed in a calculation node and its total 

processing time. The job scheduler will exploit such information for better job 

placement within an ideal array of calculation nodes in the cluster.  A preliminary 

study is conducted. To provide insight into the functioning of the clusters. For 8 

months, we have observed the power consumption (figure 1) and temperature (figure 

2) profiles of the nodes   with workloads. We have depicted energy consumed by the 

various server components (CPU, memory, other) in figure 3 and presented a graph 

that highlights the difference in energy consumption between idle and active nodes 

(figure 4). 
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Figure 1. The representative shape of Power 

profile portion on average for all available nodes. 

Power consumption dataset for a subset of 200 

days. 

 

 

Figure 2. Temperature profiles (subset of 1 
month) on average for all available nodes. Nodes 

are sorted in the order of exhaust air temperature 

increase. 

 

 

Figure 3. Average energy partioning for all nodes 

of cluster CRESCO6 

 

Figure 4. Energy consumption in idle and active 

nodes (subset of 8 months) 

It is observed that for each node, an increase in load effects an increase in temperature 

difference between inlet and exhaust air for that particular node. Figure 5 depicts the 

average observed inlet air temperature (blue segment, and in the cold aisle), and 

exhaust air temperature at their rear side) amaranth segment, in the hot aisle). Note 

the temperature measurements are also taken two CPUs adjacent to every node. The 

setpoints of the cooling system are approximately 18°C at the output and 24°C at the 

input of the cooling system – as respectively shown in Figure. 5 as blue and red 

vertical lines.  However, it appears that the lower setpoint is variable (supply air at 15-

18°C) while the higher setpoint varies from 24-26°C. As observed from the graph, the 

cold aisle maintains the setpoint temperature at the inlet of the node, which affirms 

the efficient design of the cold aisle (i.e. due to the use of plastic panels to isolating 

the cold aisle from other spaces in the IT room). However, the exhaust air temperature 

has registered on average, 10°C higher level than the hot aisle setpoint. Notably, 

exhaust temperature sensors are directly located at the rear of the node (i.e. in the 

hottest parts of the hot aisle). 
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Figure 5. Temperature observed on average in all nodes during 9 months with vertical lines 

corresponding to cold and hot aisle setpoints. 

 

 
 

Therefore, it is observed that hotspots are immediately located at the back of server 

racks, while the hot aisle air is cooled down to the 24-26°C. This is due the cooling 

system at the CRAC (computer room air conditioning) which results in hot air intake, 

air circulation and cold-hot air mix in the hot aisle. Meanwhile, the previously 

mentioned temperature difference of 10°C between the hotspots and the ambient 

temperature unravels the cooling system weak points because it could not directly 

cool the hotspots. In the long term, the constant presence of the hotspots might affect 

the servers’ performance (i.e. thermal degradation) which should be carefully 

addressed by the DC operator.  Remarkably, although the hotspots are present at the 

rear of the nodes, the cooling system does cool temperatures around the nodes. Cold 

air flows through the node and is measured at the inlet, then at CPU 2 and CPU 1 

locations (directly on the CPUs) and finally, at the exhaust point of the server. The 

differences between observed temperature ranges in these locations are averaged for 

all the nodes. An investigation on the observed temperature distribution contributes to 

the overall understanding of the thermal characteristics, as it provides an overview of 

the prevailing temperatures shown in Figure 5 and Figure 6. For every type of thermal 

sensors, the temperature values are recorded as an integer number, so the percentage 

of occurrences of each value is calculated. The inlet air temperature is registered 

around 18°C in the majority of cases and has risen up to 28°C in around 0.0001% of 

cases. It could be concluded that the cold aisle temperature remains around the 15-

18°C setpoint for most of the monitored period. Ranges of the exhaust temperature 

and those of CPUs 1 and 2 are in the range 20-60°C with most frequently monitored 

values in the intervals of 18-50°C. Although these observations might incur 

measurement errors, they reveal severs that are at risks of frequent overheating when 

benchmarked with manufacturer’s recommendation data sheets. 

Additionally, this study focuses on variation between subsequent thermal 

measurements with the aim of exploring temperature stability around the nodes. All 

temperature types have distinct peaks of zero variation which decreases symmetrically 

and assumes a Gaussian distribution. It could be concluded that temperature tends to 

be stable in the majority of monitored cases. However, the graphs for exhaust and 

CPUs 1 and 2 temperature variation (Figure 6 reveal that less than 0.001% of the 

recorded measurements show an amplitude of air temperature changes of 20°C or 

more occurring at corresponding locations. 

Sudden infrequent temperature fluctuations are less dangerous compared to prolonged 

periods of constantly high temperatures. Nevertheless, further investigation is needed 

to uncover causes of abrupt temperature changes so that appropriate measures could 
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Figure 6. Distribution of monitored temperature values taken for all nodes and months. 

 

  

a)      b) 

  

c)      d) 

be undertaken by DC operators to maintain prolonged periods of constantly 

favourable conditions. We propose a scheduler upgrade which aims to optimise CPU 

and memories-related resource allocation, as well as exhaust air temperatures without 

relying on profile information. Prescribed targets for the proposed job scheduler are 

shown in Table 2. 
 

Table 2. Schema with prefixed target for improved job scheduler. 

 

 Proposed job scheduler 

Strategy Schedules job based on utilisation and 

temperature information gathered at run-time 

Job Assignment Assigns a job to the coolest node in a cluster at 
any point in time 

Job Scheduling Schedules a job on the coolest node in a cluster 

Temperature control Maintains uniform temperate across a cluster 

Node Activity At least 50% are active nodes at any given time 
in a cluster 

Pros Works better with a large cluster 

Cons Overhead of communication of temperature and 

utilisation information 
 

The design of the proposed job schedule ought to address four issues:  1) Differentiate 

between CPU-intensive tasks and memory-intensive tasks; 2) Consider CPU and 

memory utilisation during the scheduling process; 3) Maintain CPU and memory 

temperatures under the threshold redline temperatures; 4) Minimise the average 

exhaust air temperature of nodes to reduce cooling cost. The job scheduler receives 

feedback of node status through queried Confluent platform [15] (monitoring software 

installed on each node).  When all the nodes are busy, the job scheduler will manage 

the temperatures, embarks on a load balancing procedure by keeping track of the 

coolest nodes in the cluster. In doing so, the scheduler continues job executions even 

in hot yet undamaging conditions. The job scheduler maintains the average cluster 
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CPU and memory utilisation represented by U_{CPUavg} and U_{MEMavg}, CPU 

and memory temperatures represented by T_{CPUavg}, T_{MEMavg}, respectively. 

The goal of our enhanced job scheduler is to maximise the COP (coefficient of 

performance). Below are the 7 constraints (at nodes level) for our enhanced scheduler: 

 

1. check constraint Ti
CPU (instant i) < TCPUAvg 

2. otherwise, check constraint Ti
Mem<TMemavg 

3. TMemavg < TMemMax   and TCPUavg < TCPUMax 

4. Ti
out⩽ (∑ 𝑇𝑜𝑢𝑡𝑁

𝑖=1 ) / N 

5. Each job is assigned to utmost one node 

6. Minimise response time of job 
 

With the first and second constraints are satisfied, ensure that the memory and CPU 

temperatures remain below the threshold temperatures. If a cluster’s nodes exceed the 

redline threshold, then optimise the temperature by assigning jobs to the coolest node 

in the cluster. The third constraint specifies that if the average temperature of memory 

or CPU rises above the maximum temperature, then the scheduler should stop 

scheduling tasks as it might encounter hardware failures. The fourth constraint states 

that the exhaust air temperature of a node should be the same or less than the average 

exhaust air temperature of the cluster (taking into consideration N number of nodes). 

The fifth constraint ensures that a node gets utmost one job at a single point in time. 

The last point aims at reducing the completion time of a job to achieve optimal 

performance. The following is the description of our algorithm: 

 
****matrix of node with position r-ow and c-olumn**** 

Cluster= matrix[r,c]   

user=getUSERfromSubmittedJob_in_LSF 

Jobtype= getJobProfile(user)  
 

****push the values of utilization and temperature for cpu and memory into matrix***** 

for (i=0; i=number_of_node;i++) do 

 nodename = getnodeName(i)  

 Uicpu = getCPU_Utilization(nodename) 

 Uimemory = getMEMORY_Utilization(nodename) 

 Ticpu = getCPU_Temperature(nodename) 
 Timemory = getMEMORY_Temperature(nodename) 

End for 

 

*************if a user is not profiled *************** 

 if Jobtype= null then  

 **********try to understand job type at run time***********  

  if (Ucpu <= U_threshold_cpu) && (Umemory <= U_threshold_memory) then 

   Jobtype=easyJob 
  else if (Ucpu>U_threshold_cpu) && (Umemory < U_threshold_memory) then 

   Jobtype=CPUintensiveJob 

  else if (Ucpu<U_threshold_cpu) && (Umemory > U_threshold_memory) then 

   Jobtype=MEMORYintensiveJob 

  else  

   Jobtype=CPU&MEMORYintensiveJob  

  end if 

 end if 
 

******** I try to find the candidate nodes for each type of job*********** 

avgTempCluster= avgTemp(Cluster) 

minT_nodename= getTempNodename(minTemp(Cluster)) 

maxT_nodename=getTempNodename(maxTemp(Cluster)) 

 

***********intervals of temperatures for candidate nodes************* 
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bestCPUIntensiveNode=getNode (minT_nodename, minT_nodename+25%)) 

bestMEMORYIntensiveNode= getNode(minT_nodename+50%, minT_nodename+75%) 

bestCPU&MEMORYIntensiveNode= getNode(minT_nodename+25%, minT_nodename+50%) 

bestEasyJob= getNode(maxT_nodename, maxT_nodename-25% ) 

 

******************job assignments************************** 

if Jobtype= CPUintensiveJob then 

assignJob (bestCPUIntensiveNode)  

else if Jobtype= MEMORYintensiveJob then 

assignJob (bestMemoryIntensiveNode)  
else if Jobtype= CPU&MEMORYintensiveJob then 

assignJob(bestCPU&MEMORYIntensiveNode)  

else  

assignJob(bestEasyJob) 

end if 

 

The algorithm feeds into the node matrix by considering the physical arrangement of 

every single node inside the racks. Firstly, obtain the profile of the user who puts in a 

resource request for resources. This is done by retrieving the user’s profile from a list 

of stored profiles. The algorithm is executed for all the nodes to appreciate resource 

utilisation level and temperature profiles each node. If the user profile does not exist, 

then when a user executes a job for the first time, the algorithm calculates a profile 

instantaneously. All the indicated threshold values are operating values calculated for 

each cluster configuration and are periodically recalculated and revised according to 

the use of the cluster nodes. Subsequently, some temperature calculations are made 

from the current state of the cluster (through a snapshot of thermal profile). Finally, 

the last step is to assign the job to the node based on the expected type of job. 

Through this, the algorithm helps avert the emergence of hotspots and cold spots by 

uniformly distributing the jobs in the cluster. 

5.   Conclusions and Future Work 

In order to support sustainable development goals, energy efficiency ought to be 

the ultimate goal for a DC with a sizeable high-performance computing facility. To 

reiterate, this work primarily focuses on two of major aspects: IT equipment energy 

productivity and thermal characteristics of an IT room and its infrastructure. The 

findings of this research are based on the analysis of available monitored thermal 

characteristics-related data for CRESCO6. These findings feed into recommendations 

for enhanced thermal design and load management. In this research, clustering 

performed on big datasets for CRESCO6 IT room temperature measurements, has 

grouped nodes into clusters based on their thermal ranges followed by uncovering the 

clusters they frequently subsume during the observation period. Additionally, a data 

mining algorithm has been employed to locate the hotspots and approximately 8% of 

the nodes have been frequently placed in the hot range category (thus labelled as 

hotspots). Several measures to mitigate risks associated with the issue of hotspots 

have been recommended: more efficient directional cooling, load management, and 

continuous monitoring of the IT room thermal conditions. This research brings about 

two positive effects in terms of DC energy efficiency. Firstly, being a thermal design 

pitfall, hotspots pose as a risk of local overheating and servers thermal degradation 

due to prolonged exposure to high temperatures. Undeniably, information of hotspots 
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localisation could facilitate better thermal management of the IT room where waste 

heat is evenly distributed. Thus, it ought to be the focus of enhanced thermal 

management in the future. Secondly, we discussed ways to avert hotspots through 

thermal-aware resource allocation (i.e. select the coolest node for a new incoming 

job), and selection of nodes (for a particular job) that are physically distributed 

throughout the IT room. 
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