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Abstract. The paper is devoted to new aspects of ontology-based ap-
proach to control the behavior of Edge Computing devices. Despite the
ontology-driven solutions are widely used to develop adaptive mecha-
nisms to the specifics of the Internet of Things (IoT) and ubiquitous
computing ecosystems, the problem of creating withal full-fledged, easy
to handle and efficient ontology-driven Edge Computing still remains
unsolved. We propose the new approach to utilize ontology reasoning
mechanism right on the extreme resource-constrained Edge devices, not
in the Fog or Cloud. Thanks to this, on-the-fly modifying of device func-
tions, as well as ad-hoc monitoring of intermediate data processed by
the device and interoperability within the IoT are enabled and become
more intelligent. Moreover, the smart leverage of on-demand automated
transformation of Machine-to-Machine to Human-Centric IoT becomes
possible. We demonstrate the practical usefulness of our solution by the
implementation of ontology-driven Smart Home edge device that helps
locating the lost things.

Keywords: Ontology Engineering · Internet of Things · Edge Com-
puting · Ubiquitous Computing · Human-Machine Interaction · Human-
Centric IoT · Firmware Generation.

1 Introduction

The development and deployment of a ubiquitous computing environment faces
many challenges related to the communicability, reconfigurability and context
awareness of individual data processing nodes within this environment. There
are a lot of ways to tackle these challenges by introducing intermediate layers in
the sensor and actuator network, where certain groups of devices are controlled
by hubs. Hubs are normally quite powerful nodes capable of complex algorithms
execution including different steering and data aggregation techniques based
on Machine Learning or Semantic Web. Such nodes are often denoted as “Fog
Nodes”, and the corresponding set of computation approaches is called “Fog
Computing” [11].
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The responsibility of Fog Nodes includes tracking of the connected sensors
and actuators, performing data preprocessing and aggregation, maintaining the
temporal data storage and data transfer, as well as providing needed machine-
to-machine (M2M) and human-machine interfaces (HMIs). To make the entire
network more flexible, hubs should be aware of their usage context [21], which
enables smart control over the potentially transient end-point devices. This,
however, restricts the use-cases to the star-like network topologies, where hubs
become mandatory links inside the data processing chains and can run into
potential bottlenecks both in stability and performance.

One of the ways to improve the stability and performance within ubiquitous
computing environment is based on the “Edge Computing” [5] concept, whereby
the end-point devices (sensors and actuators themselves, so-called “Edge Nodes”)
leverage their own computing capabilities to partially offload the hubs. But tra-
ditionally the Edge Nodes, being an essential part of data processing chains, are
unaware of their role in the entire system, and provide neither configuration nor
monitoring interface past the hub. As a result, the flexibility, transparency and
reconfigurability of each particular sensor subnet (up to the nearest hub) is still
an issue: every change or access for monitoring in the sensor network involves
the nearest Fog Node, that still has to enumerate and track all the Edge Nodes.

We propose to push the intelligent capabilities to the edge of the sensor / ac-
tuator network making the Edge Nodes as smart, as possible. For this, we uti-
lize ontology engineering methods and means, which allow us to generate the
firmware for the corresponding devices making their functioning be driven by the
reusable formal knowledge representation model. Previously we successfully ap-
plied ontology engineering methods to automate firmware and middleware gen-
eration for the devices within the ecosystem of the Internet of Things (IoT) [14].
The current work is devoted to Edge Computing, entirely governed by ontolo-
gies. In this case, changes in the firmware of edge devices are completely avoided
in the favor of changing the functioning model stored as an ontology.

Compared to the traditional firmware-based approach, ontology-driven Edge
Computing ensures the semantic protocols, which allow on-the-fly reconfigura-
tion of edge devices, inspecting their roles and functioning patterns at runtime
(by means of self-documentation capabilities), transparently monitoring all the
stages of their work (including the monitoring of the intermediate data and their
transformations, should it be required). Moreover, if required, ontologies enable
the flexible interconnection within the sensor network and the autonomous func-
tioning of intelligent Edge nodes, when no network facilities are available. All
this in turn, appears to be a powerful advantage to build IoT ecosystem upon,
since the ontology-driven access allows to establish ad-hoc human-machine inter-
action sessions with any IoT device on demand. Thereby the human-it-the-loop
scenario is supported as a key for Human-Centric IoT [2].

Our goal was to make a step towards hardware implementation of task on-
tologies by organizing the ontology-driven functioning of the light Edge devices
based on very resource-constrained microcontroller units (MCUs) like ESP8266
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(80 KiB RAM, 80 MHz CPU), ATmega328 (2 KiB RAM, 16 MHz CPU) or even
ATtiny45 (256 B RAM, 8 MHz CPU).

We implemented the suggested approach within SciVi Smart system [14]
(https://scivi.tools) and tested it by developing a practically useful IoT
device.

2 Key Contributions

In this paper, we present an approach to organize Edge Computing governed by
ontologies. The main idea is to replace the traditional firmware of edge device
by the ontology reasoner, while the underlying extensible ontology describes the
schematics, role and functioning principles of this device.

The following key results of the conducted research are presented:

1. The unified ontology-driven approach to perform configurable and inspectable
computing on Edge devices within sensor/actuator network in a unified in-
telligent way. This allows not only to improve the M2M interconnections,
but also to automate the transforming M2M IoT into Human-Centric IoT
by means of ad-hoc monitoring and steering Edge devices.

2. The ontology “cognitive compression” method, whereby all the redundant
information is trimmed, yet the essential structure of ontology remains re-
trievable and preserves its semantic power. Removing the excessive ontology
nodes and relations, using the topological sorting for the remaining ones and
applying multilevel structure layout to describe data flow chains in observ-
able and concise form we managed to fit them in the RAM of tiny MCUs.

3. Software to generate extra-lightweight configurable reasoner for ontologies
compressed by the method (2). This reasoner is written in C++ (some parts
are written manually, but some are generated automatically according to
the user’s preferences) and can run on a wide range of MCUs, including
ESP8266, STM32, ATmega and even ATtiny.

4. Practically useful implementation of the suggested approach by creating
ontology-driven Smart Home Edge device that can help to find lost or for-
gotten things.

3 Related Work

Ontology engineering appears to be a powerful methodology to leverage inter-
operability of heterogeneous devices within IoT ecosystems [16], as it brings
advanced semantics and context-awareness to the ubiquitous computing [10,19].
The emerging convergence of IoT and cognitive technologies is denoted as Se-
mantic Web of Things (SWoT) [7]. Traditionally, only M2M interaction is consid-
ered, and ontologies are mainly used to describe the properties and capabilities
of the devices to automate their communication and coordination for the sake
of cooperation [7,3,16,21]. However, it is nowadays obvious that the evolution of
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IoT is not limited by M2M, but also requires technologies to facilitate human-
in-the-loop scenario. This direction of IoT is called Human-Centric one [2] and
demands both semantic technologies and advanced software and hardware HMIs,
including tangible ones [6].

Ubiquitous computing environment traditionally includes 3 main levels of
computing: Cloud [11], Fog [11] and Edge [5]. All the levels are characterized
by the distributed data processing, but the computation power and energy con-
sumption decrease dramatically form the Cloud to the Edge, so each level re-
quires its own approaches both in hardware and in software. In this paper, we
focus on the Edge level.

As stated by K. Sahlmann et al., the key feature required by Edge de-
vices is their adaptiveness that can be reached by using ontology-driven so-
lutions [17]. But the main obstacles to the implementation of such solutions
are storage capacity and computing power of the Edge nodes [9,16,18,12,20].
The traditional ontology reasoners are well performed on the desktop computers
and capable to run on smartphones [8,4], but still cannot even be started on
MCUs [18] despite rapid evolution of Edge hardware. Main problems of Edge
devices, which hinder straightforward use of ontology-driven techniques, are the
following [9,16,18,12,20]:

1. Low RAM capacity. It often appears to be impossible to arrange all the
needed data structures in the Edge device memory, not even the ontology
itself.

2. Low CPU frequency. Even if the ontology and related supplementary data
fit in the device memory, reasoning process takes then too much time and
appears to be practically useless as it is incompatible with the real-time tasks
(while Edge Computing often requires real-time operation).

3. Low power. As the reasoning requires a lot of computations and has con-
siderable memory footprint, it is an energy consuming process. But Edge
devices are often autonomous, so should consume as less power as possible,
or their power sources will drain too fast.

X. Su et al. tackle these problems by introducing so-called “Entity Notation”:
the concise format for knowledge representation and network package payload
encoding [20]. According to the evaluations provided, this format enables drastic
reduction of the ontology size compared with standard OWL or RDF notation
(compression ratio compared to RDF is about 20 times), while the computational
burden and energy consumption decrease as well. This format enables efficient
interconnection for MCUs and can be encoded/decoded in a straightforward way,
but it still cannot ensure the fitting of entire ontology into the device RAM for
the full-fledged reasoning.

Another promising way to fit ontologies to the Edge device memory is pro-
posed by K. Sahlmann et al. [16]. But the role of ontologies is limited to de-
scribing the capabilities of Edge devices without affecting their behavior. In the
later work K. Sahlmann et al. proposed ontology-driven Edge device virtual-
ization [17]. This appears to be a step further towards ontology-driven Edge
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Computing, however the reasoning process takes place on the hub (Fog) devices,
which have much more computational power compared to Edge devices.

H. Dibowski et al. presented a very elaborate work about the usage of ontolo-
gies to describe the device capabilities, but also to retrieve devices, select their
operation mode, parametrize them, and automatically evaluate their interoper-
ability [3]. However, the reasoning takes place on the Fog node as well (authors
used a quite powerful PC as an aggregator for a large amount of IoT devices).

C. Seitz et al. suggest embedding an ontology-based expert system to auto-
mate diagnosis of different anomalies within IoT and robotics systems [18]. The
software solution proposed by Seitz et al. performs well on the resource con-
strained embedded devices running under Linux-based operating system. How-
ever, the memory consumption of this software reaches several megabytes, so it
is suitable for microcomputers (like e. g.Raspberry Pi), and not for MCUs.

Very impressive results were obtained by H. Abdulrab et al., who developed
so-called “Ontology Mediators” – the semantic integration components for ubiq-
uitous computing environment [1]. This is a special model-driven middleware
to enable transparent interconnection of different devices, including the Edge
ones (running under ECOS). The interconnection based on Ontology Mediators
comprises device communication as well as fusion and smart transformation of
sensors’ data. In fact, this work is the closest one to what we want to achieve,
since Ontology Mediators are governed by the knowledge model and the tar-
get hardware are very resource-constrained. However, this solution foremost ad-
dresses the M2M communication, while the human-in-the-loop scenario is not
elaborated.

The main distinctive features of our approach are the following:

1. We suggest full-fledged ontology-driven Edge Computing solution, assuming
the behavior of Edge Computing devices (e. g. sensing, data processing,
actuation and communication) is fully controlled by task ontologies. Thereby
we a make a step towards hardware implementation of ontologies.

2. We target not only microcomputers like Raspberry Pi, but also extremely
resource-constrained MCUs (e. g. ESP8266 and even ATtiny45).

3. We focus not only on M2M interconnection, but also on human-in-the-loop
scenario (utilizing the semantic power of ontologies to leverage the creation of
ad-hoc HMI with Edge devices to enable on-demand device monitoring and
steering) and on autonomous functioning of Edge devices (when no network
and correspondingly no external steering is available).

4 Proposed Solution

4.1 Background

In our previous research we used ontology-driven solutions to automate the cal-
ibration and monitoring of IoT sensor-based devices by means of Smart system
SciVi scientific visualization tools [15], as well as to create custom hardware
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HMI based on IoT technologies [14]. SciVi provides the high-level user inter-
face to describe the behavior and interconnection of custom IoT devices and
of middleware to glue together different parts of IoT ecosystem in a graphical
form using data flow diagrams (DFDs). Moreover, SciVi enables the automatic
firmware or middleware generation for IoT devices according to these DFDs.

Data processing operations, visualization features and code generation mech-
anism of SciVi are governed by the set of underlying ontologies organized as a
repository. The detailed description of this process can be found in [13,15,14].
But until now the firmware for IoT devices generated by SciVi was completely
imperative: it implements algorithm described by DFD in a traditional sequen-
tial fashion.

In the present work we extend this mechanism by the new module that
enables generation of embedded reasoners capable of running direct on the IoT
Edge devices and turning them into ontology-driven ones.

4.2 Proposed Ontology-Driven Edge Computing Pipeline

The main idea of ontology-driven Edge Computing is schematically presented in
the Fig. 1 and described below.

Fig. 1. Ontology-driven Edge Computing (arrows represent data links).

We propose the following lifecycle of the ontology-driven Edge device. First,
the embedded reasoner should be generated and installed on MCU. This step is
normally performed just once, as a single reasoner covers wide variety of tasks
the MCU can be used for. Then, Edge device should be assembled by attaching
required sensors and actuators to the MCU. This step can be repeated whenever
the device is upgraded. After that, the user should describe the device behavior
as DFD within SciVi. This step can be repeated whenever the device role in the
computation process should be changed. DFD is automatically transformed into
the task ontology that is cognitively compressed and stored in the concise binary
format we call EON (Embedded or Edge ONtology). EON-encoded ontology is
transferred to Edge device using wired or wireless connection. Afterwards, the
reasoner on the device’ side starts working, so the device performs described
actions. Custom monitoring and steering of the device is allowed in SciVi via
special queries to the embedded reasoner. This step is normally repeated multiple
times during the device usage, facilitating the human-in-the-loop scenario.
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To test the proposed approach, we created relatively simple but useful IoT
device that is “a reusable pager for the silent things”. There are a lot of things
(for example, suitcases, glasses, wallets, keychains, etc.) you may want to find
in a unified way by a ring signal, just like calling a lost cell phone. The pager
we created is removable/reusable; can be attached to the “silent thing” and
“called” anytime: it maintains a WiFi access point and buzzes whenever some-
one connects. The pager also has a “night mode”: when the illumination is low,
the frequency of buzzer signal decreases, so it is perceived quieter. Thanks to
the ontology-based functioning, the base frequency of buzzing can be altered
according to the particular thing the pager is attached to, so the user will be
able to distinguish, which one is “responding” to the call. We used the following
hardware: ESP8266 MCU with a built-in 802.11 (WiFi) capable communica-
tion module as a core, passive buzzer HW-508 to play sound and photoresistor
VT90N2 to measure illumination strength. These components are very common
and cheap, which make it easy to reproduce the results described in the paper.

4.3 Edge Computing Functions Ontology

First of all, we propose an extensible domain ontology of Edge Computing func-
tions (hereafter denoted as D). In fact, this ontology matches the integration
of semantic filters ontology and electronic components / middleware ontology
created by knowledge engineer within SciVi Smart system described in [14]. The
ontology D describes available actions, data processing filters, etc.

Fragment of this ontology applicable for the test case is shown in the Fig. 2.
This fragment represents WiFi Access Point being a “Comms” (states for “Com-
munications”) element, having the string-typed network SSID and password set-
tings, as well as the output of the numerical amount of connected clients.

Fig. 2. Fragment of Edge Computing Functions ontology.

4.4 Data Flow Diagram

Based on the ontology D, SciVi automatically generates a set of instruments
enabling end-user to compose DFD and thereby visually describe the behavior
of Edge device. DFD describing the behavior of the test case Edge device is
shown in the Fig. 3.
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Fig. 3. Data flow diagram representing the behavior of Edge device.

Each node represents the individual data processing stage and links represent
the data transfer. It is worth noting, that each node has a corresponding ontology
fragment under the hoot, like the one shown in the Fig. 2 (which matches the
“Wifi Access Point” node). The diagram defines simple algorithm of Edge device
behavior: the number of connected clients, obtained from the Wifi Access Point is
tested against the threshold 1 (“Step” node), and multiplied (“Multiply” node)
by the value obtained from the ADC (the photoresistor is connected to) and
mapped to [100, 1000] (“Map” node). The actual quotients like threshold value
and mapping segment borders are tuned in the settings window, that opens by
clicking the corresponding node, so they are not depicted in the figure. The
multiplication result is then used as a frequency of tone (“Tone” node) played
back by the device’ buzzer. The part of DFD highlighted by the dotted line will
be discussed in the next section.

In real-world, users can define more complex DFDs and, if the provided set
of nodes is not enough for them, new ones can be easily added by changing the
ontology D instead of modifying the SciVi core source code.

4.5 Edge Computing Task Ontology

The user-defined DFD is than used by SciVi Smart system to automatically
create the task ontology (hereafter denoted as T ). In fact, this ontology is the
representation of DFD in an ontological form.

Each node of T can be computable, this means, it can have an attribute
defining a specific function that should be evaluated during the reasoning process
to determine the node’s value. The nodes can be chained by use_for relations,
which denote the data flow.

It must be noted, that only the ontology T should be stored and handled on
the Edge device side. The ontology D can be stored elsewhere, for example, on
the Fog device or even in the Cloud.

Fragment of task ontology T , generated according to the above mentioned
DFD and controlling the device is shown in the Fig. 4. This fragment corresponds
to the part of DFD highlighted with the dotted line in the Fig. 3. Nodes filled
gray and relations depicted by dotted arrows are not stored on Edge device,
whereby nodes filled white and yellow, and the relations depicted by solid lines
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are stored on Edge device. The difference in storing the white and yellow nodes
is discussed in the next section.

Fig. 4. Fragment of task ontology describing the behavior of Edge device.

4.6 Cognitive Compression and Embedded Ontology

Task ontology T should be uploaded to the target device to govern its function-
ing. However, it should first be compressed to fit the Edge device memory.

As stated in [18], size of the ontology is the most significant parameter that
should be optimized when it comes to reasoning on the Edge. Speaking about
MCU, capacity of the memory is often restricted to less than 1 KiB (e. g. popular
MCU ATtiny45 possesses 256 B of RAM and 256 B of EEPROM). Traditional
formats like OWL or RDF are not even close to be handled on such hardware [20].

Searching through the available information resources, we were unable to
find any format that would enable fitting a solid meaningful ontology into less
than 256 B. So, we developed our own representation format called EON. It is
a concise binary format highly optimized for Edge Computing tasks. The EON
format is created special for task ontologies (T ) trimming all the redundant
information and assuming that, if required, this information can be unambigu-
ously restored with a help of the domain ontology (D). We call this trimming
“cognitive compression”, and this is an essential part of EON.

Encoding and decoding of ontologies representation in EON format can be ex-
pressed in a formal way as follows: TEON = σ(κ(T,D)), T = κ−1(σ−1(TEON ), D),
where σ denotes serialization into EON binary form; κ – cognitive compression;
σ−1 – deserialization to traditional form e. g. OWL; κ−1 – cognitive decompres-
sion. TEON denotes task ontology stored in EON format, while T and D are
represented in some traditional format e. g. in OWL.

The function σ takes an ontology as a set of nodes, their attributes and
relations, and dumps it to a sequence of bytes. This sequence is chunk-based
and contains only two chunks (preceded by length in bytes): relations chunk and
attributes chunk. It must be noted, that to reduce the size of the byte sequence,
we do not store the names of nodes or relations inside it, just integer identifiers
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(IDs). The names are actually not needed for reasoning on Edge device, so they
are trimmed by the function κ.

Relations chunk stores triplets similar to RDF, but represented by integer
IDs only. Each triplet is packed into 16 or 24 bit depending on the size of ID. In
the current form EON is limited by 64 nodes inside T (after cognitive compres-
sion), 65536 nodes inside D and 9 relation types (the possible bitwise layouts
are discussed below). These limits appear to be sufficient for computing tasks
performed on the low-performance Edge devices. In case of more complex tasks
(performed on correspondingly more powerful devices) we can extend EON rela-
tion triplets to 32 bit, which will enable handling significantly larger ontologies.

Attributes chunk stores key-value pairs, where key is the integer ID of node
and value is its attribute. Normally, attributes are the functions that should
be evaluated to calculate the result associated with the node in terms of data
flow. Functions may contain operators’ ID, nodes’ IDs and constants. The table
of available operators is tied to the reasoner and is discussed in the upcoming
section. If the function contains node ID, the corresponding result of this node
is substituted during the reasoning process. Constants can be of different data
type. Right now, numerical types (signed and unsigned integers up to 32 bit and
32 bit float) and null-terminated ASCII strings are supported.

Functions are stored in the postfix notation to reduce the entry size. Each
function component and each attribute have a distinctive bit marker. Thereby,
no length values are stored to reduce the size of entire sequence.

Task ontology T describes the data flow inside Edge device and communi-
cation protocols with the other computing nodes in the network. In the data
flow, order of operations is crucial. As the operations are encoded to the ontol-
ogy nodes’ attributes, we suggest storing their order implicitly as the order of
nodes. As seen in the Fig. 4, we apply topological sorting to the nodes, so the
data flow represented by use_for relations is aligned from left to right, build-
ing a multilevel structure layout of ontology graph representation. This layout
is both human- and machine-readable, incorporating the knowledge about the
operations order. When dumped to EON format, this partial order of nodes is
preserved, so the reasoner can evaluate the nodes one by one, and any time
the next node requires the data from the previous ones, these data are already
computed. This reduces both the size of result ontology and the computation
time.

Next, when preparing T to dumping to EON, we trim all the redundant
knowledge that can be unambiguously restored by traversing the domain ontol-
ogy D and contains no descriptions of actions essential for Edge device function-
ing. The trimmed nodes are filled gray in the Fig. 4, the trimmed relations are
shown as dotted arrows. Currently we remove all relations except instance_of
(because it denotes the connection of T and D and thereby is needed to restore
the trimmed knowledge) and use_for (because it directly denotes the data flow).
It must be noted, that EON, as an ontology representation format, can support
much more relations, letting space for future modifying (e. g. generalizing) the
cognitive compression algorithm.
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The names of nodes and relations are also trimmed (replaced by the IDs),
so the cognitive decompression is possible only if the ontology D is presented.
However, as long as the cognitive decompression takes place in SciVi that runs
on the Fog Node or in Cloud, access to D is not an issue. To reduce the size
of resulting byte sequence, we enumerate the nodes filled white in the Fig. 4
starting from 1, but to make the decompression possible, we keep the IDs from
the ontology D for the nodes filled yellow. So, for each instance_of relation,
the source node is the one from T (so its ID is just a number of node in the
multilevel structure layout of T ), and the destination node is denoted by its ID
in D.

To represent the IDs in the EON byte sequence, following layouts are used
(s denotes bit of source node ID, r – bit of relation ID, d – bit of destination
node ID):

1. s s s s s s 0 r r r d d d d d d

(regular relation for the nodes inside T ).
2. s s s s s s 1 0 d d d d d d d d

(instance_of relation joining T and D, if D has no more than 256 entities).
3. s s s s s s 1 1 d d d d d d d d d d d d d d d d

(instance_of relation joining T and D, if D has from 256 to 65536 entities).

Last, but not least, we optimize the storage of constants by finding the small-
est type including particular value (e. g. the value 1.0 is treated as 8 bit integer,
while 1.1 – as 32 bit float).

In our test case, the ontology, which fragment is shown in the Fig. 4, took
only 80 bytes after cognitive compression and dumping to EON (this appears to
be more than 800 times smaller than storing it in OWL format).

4.7 Embedded Reasoner

The aim of embedded reasoner is to ensure the evaluation of data flow repre-
sented by the ontology T in the EON format. The architecture of the reasoner
is shown in the Fig. 5, where data links depict the transfer of data between the
reasoner modules, and control links represent the transfer of commands.

To enable portability across different MCUs, the reasoner is implemented
in C++. Currently, we have tested it on ESP8266 (within WeMos D1 mini
platform), ATmega328 (within Arduino platform) and ATtiny45 (as a standalone
MCU). The compilation process is automated within SciVi Smart system [14].

The Functions Module steers the hardware and provides the table of avail-
able operators, which enables the MCU’s instruction set to be used within ontolo-
gies. The code of this module is generated automatically by SciVi according to
the user’s choice of libraries that should be supported in the particular reasoner.
This configurability allows reducing the size of reasoner’s binary representation
(e. g. ATtiny45 has only 4 KiB flash memory to store the code).

The Communication Module allows sending and receiving data and com-
mands to / from SciVi. Basically, 4 commands are supported: Upload (to save
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Fig. 5. Architecture of EON embedded reasoner.

new ontology T on the MCU), Download (to retrieve T from MCU), Get (to re-
ceive the particular evaluated result of given node within T ) and Set (to change
the evaluated result of given node by the new one, that was evaluated on the
side of SciVi). Communication takes part either via WebSocket over WiFi (in
case of ESP8266), via modified set of AT-commands via RS-232 serial port (in
case of ATmega328) or via USI SPI (in case of ATtiny45).

The ontology T is stored in the MCU’s EEPROM. The reading and writ-
ing of EON format is ensured by the EON Reader/Writer. The Evaluation
Core performs traversing the EON-encoded ontology and calls operators pro-
vided by Function Module whenever needed. Evaluation results are stored in
the Evaluation Buffer; the results obtained from SciVi (via Communication
Module) are stored in the Substitution Buffer. Substitution Buffer allows
steering the MCU externally by overriding the results evaluated by the Evalua-
tion Core. This in turn enables building ad-hoc user interface with Edge device
and opens a gate for the on-demand transformation of M2M functioning into
the Human-Centric one.

When the ontology T encoded to EON format and uploaded to Edge de-
vice, its embedded reasoner starts executing the tasks described. This is an
autonomous process (suitable for M2M functioning scenario), however the end-
user can anytime connect to the device using SciVi Smart system to monitor the
data flow or even to take control over it. For this, ontology T is retrieved back
to SciVi, decoded from EON with help of the ontology D and transformed into
the DFD shown to the user. After that, the user can add visualization nodes to
this diagram utilizing the visual analytics capabilities of SciVi [15], or change
the data links to modify the flow itself. Data for monitoring are retrieved in
real-time (using Get command discussed above), and the modifications of the
data flow take effect immediately (using Set command).

The changes in data flow are kept as long as the communication session
with Edge device persists. By disconnecting, all the changes are automatically
reverted by the embedded reasoner (by wiping the Substitution Buffer), so
Edge device restores its initial functioning. If the user wants to store the changes,
updated DFD should be dumped to task ontology and committed to Edge device.
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5 Conclusion

In this paper, we demonstrate the new ontology-driven approach to bring more
intelligence to Edge devices within the IoT ecosystem. In contrast to the tra-
ditional immutable firmware, the ontology-driven approach ensures adaptivity
of devices and introduces semantic power to the ubiquitous computing systems.
Our approach allows to reduce the developers efforts thanks to the firmware
generation. Also it makes the modifications of machine-to-machine and human-
machine interactions within IoT ecosystem more clean and simple thanks to
the ontology-based task descriptions. We developed the efficient binary format
EON and cognitive compression algorithm to represent task ontologies on Edge
devices’ side, implemented the set of instruments to automate the creation of cor-
responding ontologies and the lightweight configurable reasoner using the tools
of our Smart system SciVi.

We tested our approach by creating a simple yet useful Edge device that helps
to locate lost things. SciVi Smart system is an open source project available on
https://github.com/scivi-tools. The subproject discussed in this paper is
available on https://github.com/scivi-tools/scivi.eon.

Our approach can be refined by adding the task ontology verification stage to
find out whether the particular ontology from the repository is suitable for the
device of certain hardware configuration. Also, the embedded reasoner efficiency
should be studied in terms of CPU overhead and energy consumption.

We plan to use this approach to create function-reach hardware HMI for
complex visual analytics tasks by studying multiparametric modeling of users’
communication processes in the Internet social services [14].
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