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Abstract. We propose stable and locally conservative hybrid mixed fi-
nite element methods to approximate the Darcy system and convection-
diffusion problem, presented in a mixed form, to solve miscible displace-
ments considering convective flows with adverse mobility ratio. The sta-
bility of the proposed formulations is achieved due to the choice of non-
conforming Raviart-Thomas spaces combined to upwind scheme for the
convection-dominated regimes, where the continuity conditions, between
the elements, are weakly enforced by the introduction of Lagrange mul-
tipliers. Thus, the primal variables of both systems can be condensed
in the element level leading a positive-definite global problem involving
only the degrees of freedom associated with the multipliers. This ap-
proach, compared to the classical conforming Raviart-Thomas, present
a reduction of the computational cost because, in both problems, the
Lagrange multiplier is associated with a scalar field. In this context, a
staggered algorithm is employed to decouple the Darcy problem from
the convection-diffusion mixed system. However, both formulations are
solved at the same time step, and the time discretization adopted for
the convection-diffusion problem is the implicit backward Euler method.
Numerical results show optimal convergence rates for all variables and
the capacity to capture the formation and the propagation of the vis-
cous fingering, as can be seen in the comparisons of the simulations of
the Hele-Shaw cell with experimental results of the literature.

Keywords: Raviart-Thomas spaces · Hybrid mixed methods · Locally
conservative methods · Upwind stabilization · Adverse mobility ratio ·
Hele-Shaw.

1 Introduction

The miscible displacement of a higher viscosity fluid in a porous medium raises
considerable attention to a variety of applications like hydrology, blood motion
in vessels, industrial processes involving filtration such as sugar refining, carbon
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sink, oil recovery and groundwater exploration in porous media [6,14,30]. During
the transport of an injected fluid in a reservoir, it is common the formation of
fingers and channels in the flow, and this can happen even in a homogeneous
media if the injected fluid is less viscous than the resident fluid. Injection of
a fluid with different viscosity of the reservoir-resident fluid usually produces
complex concentration patterns along with displacement [5, 6, 18,28].

In the numerical point of view, since approximations are adopted to simulate
the fluids displacement with different viscosities using meshes of elements with
the cell diameter smaller than the length of a formed finger, this can lead to
inaccurate representations of the interfaces of these fronts, due to the tendency
that mixtures, with a higher mobility ratio M , have to generate highly branched
fractal structures [5,14,29]. The mobility ratio relates the viscosity of the resident
fluid νres to the viscosity of the injected fluid νinj

M = νres/νinj , (1)

for M > 1, or adverse mobility ratio, the injected fluid is less viscous than resi-
dent fluid, and in this case, the experiments predict that the displacement front
is physically unstable where small perturbations can be forming multiple viscous
fingerings [1, 18, 26, 27]. This unstable behavior is also true mathematically, as
can be seen in [27] and in references therein. Therefore, this problem requires
the employ of robust numerical methods that accurately solve this phenomenon.

The Partial Differential Equations (PDE) that govern the phenomenon of the
displacement of the fluid mixtures consist of a system formed by Darcy’s problem
and Transport problem. Some successful numerical approximations employing
finite element methods to solve the Darcy problem can be found in [2, 8, 11, 16,
19,25], for the Transport equation can be seen in [9,10,12,17,20,23] and for the
Darcy-Transport coupled system we mention the works [13,15,17,21,31].

The objective of this work is to propose an equivalent finite element method
for Darcy and Transport problems. In this sense, we rewrite the Transport equa-
tion in a mixed form in terms of diffusive flux and concentration. Thus, we
have two mixed systems. However, the use of finite element methods for mixed
problems requires compatibility between the approximation spaces [3,7]. Stable
formulations have proven successful as can be seen in [8,25]. The Raviart-Thomas
spaces [25], referenced here by RT k, was developed for the mixed problems, like
Darcy problem, is be able to simulate problems in heterogeneous medium with
stability, mass conservation and optimal convergence rates. However, Arnold and
Brezzi in [2] proposed an hybridization, employing Lagrange multipliers associ-
ated to the scalar field, that gives rise to a positive-definite system obtaining
the same accuracy of the conforming Raviart-Thomas spaces but with fewer un-
knowns. An extension of this approach for the mixed convection-diffusion prob-
lems are developed and analyzed by Egger and Schöberl [12], where a formula-
tion is proposed by the combination of upwind techniques used in discontinuous
Galerkin methods for hyperbolic problems with conservative discretizations of
mixed methods for elliptic problems.

In this context, we propose an equivalent locally conservative numerical
method for the Darcy and the convection-diffusion problems employing the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_19

https://dx.doi.org/10.1007/978-3-030-50436-6_19


Hybrid Mixed Methods Applied to Miscible Displacements 3

Raviart-Thomas spaces in a non-conforming way in both formulations. In this
case, the continuity is weakly imposed via Lagrange multipliers associated with
the scalar field defined on the edges/faces of the elements. Thus, all interest
variables (velocity, pressure, diffusive flux and concentration) degrees-of-freedom
are condensed in the element level leading to a global problem involving only
the degrees-of-freedom of the multiplier. After solving the global problem, the
approximate solution of the multiplier is plugged into the local problems to re-
cover the discontinuous approximation of the primal variables. This approach
significantly reduces the computational cost compared to the use of conforming
Raviart-Thomas spaces.

The methodology to solve this system is based on a staggered algorithm to
decouple the hydrodynamics from the hyperbolic system, resulting in a scheme
that uses a locally conservative hybrid mixed finite element method to approx-
imate both problems. The two problems are solved in the same time scale, ap-
plying an implicit backward finite difference scheme in time to approximate the
Transport equation. Moreover, the spurious oscillations characteristics of the
convection-dominated regimes are mitigated through of an upwind scheme as-
sociated with the multiplier and concentration values, evaluated on the edges of
the elements [12]. Numerical simulations are presented and demonstrate optimal
convergence rates for all variables and a good capture of the viscous fingering in-
stabilities on the interface between the miscible fluids compared to experimental
simulations in Hele-Shaw cells with rectilinear flows.

This paper is organized as follows: In Section 2, we present the Darcy-
transport model problem. In Section 3, notations and definitions required to
present the hybrid methods are described. The stable and equivalent mixed hy-
brid method for the Darcy and transport is presented in Section 4. Section 5 is
devoted to convergence study and numerical simulations, comparing the approx-
imate solution with experimental results in Hele-Shaw cell, considering adverse
mobility ratio and high Péclet number. And finally, in Section 6, we present the
concluding remarks of this work.

2 Model Problem

The model problem is described by a PDE system composed by two subsystems,
the Darcy problem, considering a incompressible flow and neglecting gravita-
tional forces, and the Transport equation. Thus, let Ω ⊂ Rd be the domain,
with d = 2, 3, and the boundary ∂Ω = ∂ΩN ∪ ∂ΩD in time interval (0, T ], the
problem can be written as follows

Given the concentration c and the functions p and f , find the pair [u, p], such
that:

u = −K∇p in Ω,
div(u) = f in Ω,
u · n = 0 on ∂ΩN ,
p = p on ∂ΩD.

(2)
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4 I. Igreja and G. Miranda

Given the Darcy velocity u, porosity φ and the functions g, c0 and c, find c,
such that:

φ
∂c

∂t
+ u · ∇c− div(D∇c) = g in Ω × (0, T ],

c(x, 0) = c0(x) in Ω,
D∇c · n = 0 on ∂ΩN × (0, T ],
c = c on ∂ΩD × (0, T ].

(3)

where the variables of interest, p, u, and c are respectively the hydrostatic
pressure, the Darcy’s velocity and the fluid concentration. The coefficients of the
equations are φ = φ(x) the effective porosity of the medium, K = K(c,x) = G

ν
the hydraulic conductivity tensor, a proportionality coefficient that takes into
account the characteristics of the medium, including size, distribution, form, and
arrangement of the particles, and the viscosity of the fluids. Thus, G = G(x) and
ν = ν(c) denotes the medium permeability and the fluid viscosity, respectively.
Finally, D = D(u) is the dispersion tensor that can be defined as

D(u) = αmI + ‖u‖ [αlE(u) + αt(I− E(u))] , E(u) =
u⊗ u

‖u‖2
,

with ‖u‖2 =
∑d
i=1 u

2
i , ⊗ denoting the tensorial product, I the identity tensor,

αm being a molecular diffusion coefficient, αl the longitudinal dispersion and αt
the transverse dispersion. In miscible displacement of a fluid through another
in a reservoir, the dispersion is physically more important than the molecular
diffusion [15,24]. Thus, we assume the following properties 0 < αm ≤ αl, αl ≥
αt > 0 and 0 < φ ≤ 1.

With the gravitational effect neglected, besides the mobility ratio, another
dimensionless parameter determines the behavior of the model is the Péclet num-
ber, Pe = ‖u‖L/‖D‖, where L is the channel length. For miscible displacements
in an petroleum reservoir, the viscosity of the fluid mixture may depend on the
concentration of the injected fluid through a nonlinear function, the quarter-
power viscosity law [30]

ν(c) = νres[1− c+M
1
4 c]−4, c ∈ [0, 1] (4)

where M defined in Eq.(1) denotes the mobility ratio. From the equation (4) we
can observe that, for M 6= 1 the subsystems (2) and (3) become tightly coupled.

In order to generate equivalence between transport problem (3) and Darcy
problem (2), we rewrite the transport problem in a mixed form including the
diffusive flux σ = −D∇c, which gives rise to the following problem

σ + D∇c = 0 on Ω × (0, T ],

φ
∂c

∂t
+ u · ∇c+ div(σ) = g on Ω × (0, T ],

(5)

with boundary and initial conditions given in (3).
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Hybrid Mixed Methods Applied to Miscible Displacements 5

3 Notations and Definitions

To introduce the equivalent stable hybrid formulation for Darcy (2) and Trans-
port (3) systems, we first recall some notations and definitions. Therefore, let
Hm(Ω) the usual Sobolev space equipped with norm ‖ · ‖m,Ω = ‖ · ‖m and semi-
norm | · |m,Ω = | · |m, with m ≥ 0. For m = 0, we present L2(Ω) = H0(Ω) as
the space of square integrable functions and H1

0 (Ω) the subspace of functions
in H1(Ω) with zero trace on ∂Ω. In additional, we also define the Hilbert space
associated to the divergence operator

H(div, Ω) = H(div) = {w ∈ [L2(Ω)]d, divw ∈ L2(Ω)},

with norm

‖w‖2H(div) = ‖w‖20 + ‖w‖20.

Let Th be a regular finite element partition of the domain Ω, defined by

Th = {K} := an union of all elements K

and let

Eh = {e; e is an edge/face of K for all K ∈ Th}

denotes the set of all edges/faces e of all elements K,

E0h = {e ∈ Eh; e is an interior edge/face}

is the set of interior egdes/faces, and

E∂h = {e ∈ Eh; e ⊂ ∂Ω}

the set of edges/faces of Eh on the boundary of Ω. We assume that the domain
Ω is a polygonal and Th is a regular partition of Ω. Thus, there exists c > 0
such that h ≤ che, where he is the diameter of the edge/face e ∈ ∂K and h,
the mesh parameter, is the element diameter. For each element K we associate
a unit outward normal vector nK .

The RT k spaces [25] are constructed by mapping polynomials defined on the
reference element K̂ = [−1, 1]2 to each element K of the mesh Th. We denote by
FK : K̂ → K the invertible, bilinear map of the two domains in Rd, d = 2, 3. A
scalar-valued function ϕ̂ on K̂ transforms to a function ϕ = P 0

K ϕ̂ on K by the
composition

ϕ(x) = (P 0
K ϕ̂)(x) = ϕ̂(x̂), (6)

with x = FK(x̂). A vector-valued function ϕ̂ on K̂ transforms to a function
ϕ = P 1

Kϕ̂ on K via the Piola transform

ϕ(x) = (P 1
Kϕ̂)(x) =

1

JK(x̂)
[DFK(x̂)]ϕ̂(x̂), (7)
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where DFK(x̂) is the Jacobian matrix of the mapping FK and JK(x̂) is its
determinant.

The (discontinuous) RT k space of index k, Ukh × Pkh , is defined to be

Ukh =
{
vh ∈ [L2(Ω)]2;vh|K ∈ P 1

K(Qk+1,k(K̂)×Qk,k+1(K̂)),∀K ∈ Th
}
, (8)

Pkh =
{
qh ∈ L2(Ω); qh|K ∈ P 0

K(Qk(K̂)),∀K ∈ Th
}
, (9)

where Qi,j denotes the set of polynomial functions of degree up to i in x and up
to j in y. We also define the following sets of functions on the mesh skeleton:

Mk
h =

{
µ ∈ L2(Eh); µ|e ∈ pk(e), ∀e ∈ E0h, µ|e = µ,∀e ∈ E∂h ∩ ∂ΩD

}
, (10)

M̄k
h =

{
µ ∈ L2(Eh); µ|e ∈ pk(e), ∀e ∈ E0h, µ|e = 0,∀e ∈ E∂h ∩ ∂ΩD

}
, (11)

where pk(e) denotes the set of polynomial functions of degree up to k on e,
and µ is the Dirichlet boundary condition function associated to p in the Darcy
problem and c in the transport equation.

4 Equivalent Hybrid Mixed Method

From the definitions presented in the previous section, we can write the following
hybrid mixed formulation for the Darcy and Transport systems. For this, we
define the product spaces Vk

h = Ukh × Pkh ×Mk
h and V̄k

h = Ukh × Pkh × M̄k
h and

the variable sets

XD
h = [uh, ph, λ

p
h] ∈ Vk

h and XT
h = [σ, ch, λ

c
h] ∈ Vk

h

concerning the variables related to the Darcy problem (2) and the variables re-
lated to transport problem respectively, we can show the following semi-discrete
formulation to the Darcy problem

Given ch, find XD
h ∈ Vk

h, such that

A(XD
h ,Yh) = F (Yh), ∀Yh ∈ V̄k

h. (12)

On the other hand, the transport problem can be formulated by
Given uh, find XT

h ∈ Vk
h, such that Yh ∈ V̄k

h

φ
∂ch
∂t

+B(XT
h ,Yh) = G(Yh), ∀Yh ∈ V̄k

h. (13)

In this context, we define the following generalized bilinear form for Darcy
and transport problems

A (Xh,Yh) =
∑
K∈Th

[ ∫
K

Cwh · vhdx−
∫
K

sh∇ · vhdx +

∫
∂K

λh (wh · nK) ds

+

∫
∂K

µh (wh · nK) ds−
∫
K

qh∇ ·whdx

]
, (14)
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where Xh = [wh, sh, λh] and Yh = [vh, qh, µh]. Taking Xh = XD
h and C = K−1

this form can be adapted to Darcy’s problem and to Xh = XT
h and C = D−1

can be adapted to the transport problem. The source term of (12) and (13) is
obtained directly from the multiplication of the respective functions f and g by
qh with a negative sign.

The convective term of the transport equation is stabilized by an upwind
strategy proposed by [12], which can be defined as

Aconv(X
T
h ,Yh) =

∫
K

chuh · ∇qhdx +

∫
∂K

uh · nK {λch/ch} (µh − qh)ds (15)

with

{λ/c} :=

{
λ, e ⊂ ∂K in

c, e ⊂ ∂Kout ,

where the element outflow boundary is defined as ∂Kout := {e ∈ ∂K : u·nK > 0}
and the element inflow boundary as ∂K in = ∂K\∂Kout.

Therefore, the form A(·, ·) of the formulation (12) is given by the bilinear
form A (·, ·) defined in (14) taking Xh = XD

h and C = K−1. On the other hand,
the compact bilinear form B(·, ·) of the formulation (13) is defined as

B(XT
h ,Yh) = A

(
XT
h ,Yh

)
+Aconv

(
XT
h ,Yh

)
, (16)

with C = D−1.
It is important to emphasize that according to the numerical analysis of

the presented hybrid formulations, using Raviart-Thomas spaces, a priori error
estimates in the L2(Ω)-norm ensures optimal convergence rates for the velocity,
pressure and concentration. For more details see [2, 12].

4.1 Time Discretization and Resolution Algorithm

Setting the time step ∆t > 0, such that N = T/∆t and tn = n∆t with n =
0, 1, 2, ..., N and the time interval Ih = {0 = t0, t1, ..., tN = T} which defines a
partition of I = (0, T ], we can discretize the time derivative term of the semi-
discrete formulation (13) employing implicit backward finite difference scheme
as follows

Given un+1
h and c0h, find XT,n+1

h ∈ Vk
h × Ih, such that for all Yh ∈ V̄k

h

φ
cn+1
h − cnh
∆t

+B(XT,n+1
h ,Yh) = G(Yh), com n = 0, 1, 2, ..., N (17)

The resolution methodology is focused on decoupling Darcy and transport
problems. Thus, given the initial condition c0h, the viscosity is evaluated using
the equation (4) and used to solve the Darcy problem (12), once the velocity
uh is computed the transport problem is solved using the formulation (17). This
resolution algorithm is repeated until it reaches the final time T .

To reduce the computational cost of the problem resolution at each time step,
the static condensation technique is employed. Thus, element-level problems are
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condensed in favor of the Lagrange multiplier, generating a global system with
degrees of freedom associated with the multiplier only, which in this case is a
scalar. Also, the new system of equations is positive-definite, allowing for using
simpler and more robust solvers. After a global system resolution, the variables
uh, ph, σh and ch are retrieved in the element level [15, 16]. In this work, the
deal.II library [4] is used to solve these problems.

5 Numerical Results

In this section, the proposed hybrid method (12)-(17) is tested through conver-
gence studies and numerical simulations that are compared with experimental
results presented by Malhotra et al. [18] in adverse mobility rate scenarios.

5.1 Convergence study

Here, we study the convergence rates of the proposed hybrid mixed formulations
in a domain Ω = [0, 1]2 and in the time interval I = [0, 0.2], adopting the sources
f = 0 e g = 2π2 sin(π(x+ y − 2t)) and the parameters G = I, ν(c) = 0.2c− 0.5,
αmol = 0.01, αl = αt = 0 and φ = 1.0, is possible to derive the following
analytical solution [22]

u = [1, 1]T , p =
2

10π
cos(π(x+y−2t))+

1

2
(x+y), c = sin(π(x+y−2t)). (18)

The initial and boundary conditions are determined by the evaluation of the ex-
act solution on time t = 0 and on the boundary of the domain ∂ΩD, respectively.

For the h-convergence study, we adopt meshes with 4, 16, 64, 256, 1024, 4096
quadrilateral elements with the same polynomial order k = 0, 1, 2 for the La-
grange multiplier and the primal variables (velocity, pressure, diffusive flux and
concentration) and the time step ∆t = hk+1 to reduce the effects of the error
associated to the time discretization. Hence, the spatial error governs the overall
error. The results can be seen in Table 1, where it is possible to observe optimal
convergence rates for all variables, i.e., order k + 1.

5.2 Numerical Simulations in Hele-Shaw Cells

The following results are performed in a Hele-Shaw cell where the flow channel
is 84 cm long and 5 cm wide, as described in the work of Malhotra et al. [18].
In this experimental work, Malhotra and collaborators injecting water with dye
into glycerol solutions to quantify the growth of the mixing zone in miscible
viscous fingering.

In this example, dyed water was injected into 79% glycerol solution at a rate
of 4.69 ml/min with a mobility ratio M = 50 and a Péclet number Pe = 10234
gives rise to the profiles presented in the left side of the Figure 1. In this context,
adopting the same experimental data in a mesh of 1500 × 100 elements with
polynomial order k = 1, time step ∆t = 0.1s, G = I, αmol = 1.53 × 10−7m2/s,
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Table 1: h-Convergence study from the approximations ch, uh and ph.

order cells ‖c− ch‖0 ‖u− uh‖0 ‖p− ph‖0
Error Rate Error Rate Error Rate

0 4 7.894e-1 - 5.147e-1 - 1.158e-1 -
16 5.852e-1 0.43 4.399e-1 0.23 5.187e-2 1.16
64 3.704e-1 0.66 2.708e-1 0.70 2.865e-2 0.86
256 2.162e-1 0.78 1.627e-1 0.74 1.584e-2 0.86
1024 1.077e-1 1.01 9.175e-2 0.83 7.949e-3 0.99
4096 5.351e-2 1.01 4.892e-2 0.91 3.987e-3 1.00

1 4 5.273e-1 - 4.579e-1 - 2.920e-2 -
16 1.834e-1 1.52 1.543e-1 1.57 1.120e-2 1.38
64 4.454e-2 2.04 4.624e-2 1.74 2.801e-3 2.00
256 1.156e-2 1.95 1.223e-2 1.92 7.422e-4 1.92
1024 2.874e-3 2.01 3.092e-3 1.98 1.861e-4 2.00
4096 7.173e-4 2.00 7.754e-4 2.00 4.685e-5 1.99

2 4 3.120e-1 - 2.612e-1 - 1.849e-2 -
16 4.340e-2 2.85 4.589e-2 2.51 2.791e-3 2.73
64 5.654e-3 2.94 6.119e-3 2.91 3.709e-4 2.91
256 7.062e-4 3.00 7.705e-4 2.99 4.658e-5 2.99
1024 8.975e-5 2.98 1.005e-4 2.94 6.157e-6 2.92

αl = αmol and αt = 1.53 × 10−8m2/s and φ = 1.0, we develop numerical
simulations to compare with experimental results at time t = 22, 48, 63, 68, 80, 90
seconds, as can be seen in the right side of the Figure 1.

As can be seen in Figure 1, the numerical results show a good performance
of the proposed method in capturing both the formation of viscous fingers and
the propagation of the water front. Moreover, the upwind scheme employed is
capable of stabilizing the convection-dominated regime caused by the reduction
of the resident fluid viscosity adopted in the experiment that generates a Péclet
number of the 104 order.

6 Conclusions

In this work, we proposed an equivalent stable hybrid mixed method adopt-
ing non-conforming Raviart-Thomas spaces for the Darcy and the Transport
systems to solve miscible displacements with adverse mobility ratio. For the
convection-diffusion equation, an upwind scheme was employed to stabilizing
the convection-dominated regimes, and the implicit backward Euler approach
was used to the time discretization. The continuity was weakly imposed by the
Lagrange multiplier associated with the pressure field for the Darcy problem and
the concentration for the Transport mixed problem. This approach gives rise to
a positive-definite global matrix with reduced computational cost compared to
classical conforming Raviart-Thomas formulations. To solve this coupled prob-
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10 I. Igreja and G. Miranda

Fig. 1: Hele-Shaw cell experiment (left) developed by Malhotra et al. [18] com-
pared with the approximate solution (right) at time t = 22, 48, 63, 68, 80, 90s,
adopting 1500× 100 elements, M = 50, Pe = 10234 and time step ∆t = 0.1s.

lem, we employed a staggered approach to decoupling the systems using the
same time scale for both problems. The numerical studies confirmed optimal
convergence rates for velocity, pressure and concentration. In addition, simula-
tions adopting an adverse mobility ratio, comparing the approximate solution
with experimental results in Hele-Shaw cell, demonstrated that the proposed
hybrid formulations are capable of capturing the formation and propagation of
the viscous fingering even in cases of high Péclet number.
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