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Abstract. A computationally efficient surface to groundwater coupled
hydrological model is being developed based on the Extended Cellular
Automata (XCA) formalism. The three-dimensional unsaturated flow
model was the first to be designed and implemented in OpenCAL. Here,
the response of the model with respect to small variations of the quanti-
zation threshold has been assessed, which is the OpenCAL’s quantization
algorithm’s parameter used for evaluating cell’s steady state condition.
An unsaturated flow test case was considered where the elapsed times of
both the non quantized execution and the execution run by setting the
quantization threshold to zero (with respect to the moist content vari-
able) were already evaluated. The model response has been assessed in
terms of both accuracy and computational performance in the case of an
MPI/OpenMP hybrid execution. Results have pointed out that a very
good tradeoff between accuracy and computational performance can be
achieved, allowing for a considerable speed-up of the model against a
very limited loss of precision.

Keywords: Extended Cellular Automata · Unsaturated flow modelling
· Computational Efficiency

1 Introduction

Due to climate change, water management has become a key factor for sus-
tainable development scenarios [18, 1]. The development of increasingly efficient
hydrological models is an essential element in the study of the water cycle dy-
namics. Many models have been proposed to predict these phenomena (cfr. [27]).
Most of them use a physical approach based on partial differential equations
(PDEs) to describe the real phenomenon. Nevertheless, since their analytical
solution is often unknown, an approximate solution is obtained by applying a
numerical method such as Finite Differences, Finite Elements, or Finite Volumes
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(cf. [6, 14]). In most cases, a time-explicit recurrence relation is obtained, which
expresses the next state of the generic (discrete) element of the system as a
function of the current states of a limited number of neighboring elements. For
this reason, the most explicit schemes can be formalized in terms of Cellular
Automata (CA) [25], which is one of the best-known and most widely used de-
centralized discrete parallel calculation models (cf. [4, 5, 20, 22, 16, 29, 8, 9, 26]).
Nevertheless, a kind of global control over the simulation is often useful to make
the modeling of certain processes more straightforward. Therefore, both decen-
tralized transitions and steering operations can be adopted to model complex
systems (cfr. [10]).

Different software systems were proposed to model complex systems formal-
ized in terms of Cellular Automata. Among them, Camelot was developed as
a (commercial) integrated development environment (IDE) based on the CAR-
PET C-like MPI-based language [2]. Another example is libAuToti [30], which
represented a C++ free application program interface (API) based on MPI.
Unfortunately, both systems are no longer developed. However, the OpenCAL
(Open Computing Abstraction Layer) open source software library [7] has been
recently proposed as an alternative to the aforementioned software systems. In
particular, it permits to exploit heterogeneous parallel computational devices on
clusters of interconnected workstations. Both CPUs and GPUs, as well as other
many-core accelerators, are supported. Despite its recent release, OpenCAL was
already applied to the simulation of different physical phenomena, including a
debris flow evolving on real topographic surface, as well as to the implementa-
tion of graphics convolutional filters, fractal generation algorithms. In addition,
a particle system based on the Discrete Element Method was also implemented
and preliminarily tested [13, 12].

In [11] we developed a preliminary unsaturated model, XCA− Flow, based
on the discretization of Darcy’s law, by adopting an explicit Finite Difference
scheme to obtain a discrete formulation [17, 23]. We then implemented it by us-
ing OpenCAL, and therefore applied the model to simulate a three-dimensional
test case. Specifically, giving rise to a topologically connected phenomenon, it
was simulated for assessing the computational advantage that the OpenCAL’s
quantization algorithm proved to be able to provide in similar cases [7]. The
quantization threshold used to characterize the stationary cells was set to zero,
meaning that the reference hydraulic head difference had to overcome zero in
order to activate the cell. The highest speed-up (with respect to the parallel non
quantized simulation) of about 4.4 was achieved by considering a hybrid dis-
tributed/shared memory execution on a dual socket Intel Xeon-based worksta-
tion, using 2 MPI processes and 16 OpenMP threads, for a total of 32 computing
threads. In particular, the fastest execution of the non quantized simulation re-
quired about 535 seconds using 32 threads on a single MPI process, while the
quantized simulation lasted 122 seconds only. This good result suggested us to
further investigate the OpenCAL’s quantization algorithm in order to under-
stand if a good tradeoff between accuracy and computational performance was
possible in the case non-zero quantization thresholds were considered.
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The paper is organized as follows. Section 2 briefly outlines the XCA−Flow
unsaturated flow model, while Section 3 briefly presents the OpenCAL architec-
ture and its quantization algorithm. Section 4 illustrates the case study, together
with the outcomes and the accuracy evaluation, while Section 5 assesses the
simulations outcomes and presents the computational performances achieved.
Finally, Section 6 concludes the paper with a general discussion envisaging pos-
sible future developments.

2 The XCA − F low Flow Model

The XCA − Flow was developed for addressing several typical hydrological
problems, from parcel/hillslope to large basin scales, benefiting from the com-
putational advantages allowed by the XCA-based approach. The direct discrete
formulation of the Richards’ equation where the XCA − Flow model relies on
is thoroughly described by Mendicino et al. [23], who already used the XCA
formalism for developing an unsaturated flow model using the CAMELot envi-
ronment. Here, for the sake of clarity and completeness, the main equations of
the model are summarized.

The Richards’ equation is a non linear degenerate elliptic-parabolic partial
differential equation [19] describing double-phases flow in porous media, it is
given by combining the mass conservation equation with the momentum conser-
vation equation represented by the Darcys’ law. Considering the pressure head ψ
as the dependent variable, the Richards’ equation for an isotropic porous medium
is written as [3]:

Cc(ψ)
∂ψ

∂t
−∇

[
K(ψ)∇ψ

]
− ∂K(ψ)

∂z
= 0 (1)

where the pressure head ψ [m] is related to the hydraulic head h [m] by the
equation ψ = h − z, being z [m] the elevation, Cc(ψ) is the specific ritention
capacity [m-1], given by the relation Cc(ψ) = dθ/dh, where in turns θ is the
moisture content [m3 m-3] and K(ψ) is the hydraulic conductivity [m s-1].

The XCA− Flow model solving Equation 1 is formally defined as:

XCA− Flow =
〈
(D,S, I), X,Q, (Σ,Φ), Γ, (T, t), ω, τN

〉
where:

– D = [0, nr−1]× [0, nc−1]× [0, ns−1] ⊂ Z3 is the three-dimensional discrete
computational domain, with nr, nc, and ns the number of rows, columns,
and slices, respectively.

– S = [0, nr · ∆s] × [0, nc · ∆s] × [0, ns · ∆s] ⊂ R3 is the continuum three-
dimensional realm corresponding to D, subdivided in cubic cells of side ∆s.
The function µ defines the mapping to D as:

µ : D → R3

(ι1, ι2, ι3) 7→
(
ι1 ·∆s, ι2 ·∆s, (ns − 1− ι3) ·∆s

)
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– I =
{
Iρ, Iβ , Iτ ⊆ D} is the set of domain interfaces, where

• Iρ ⊆ πs=0 is the boundary region, belonging to the top surface πs=0,
that is affected by rain;

• Iβ the remaining domain boundary region over which no input rain is
considered;

• Iτ = D \ Iρ ∪ Iβ the set of cells belonging to the inner domain, where
the system evolution occurs.

– X =
{

(0, 0, 0), (−1, 0, 0), (0,−1, 0), (0, 1, 0), (1, 0, 0), (0, 0,−1), (0, 0, 1)} is the
von Neumann neighborhood.

– Q = Qθ ×QK ×Qh ×QCc ×Qconv is the set of states for the cell, where:

• Qθ is the set of values representing the soil moisture content;
• QK is the set of values representing the unsaturated hydraulic conduc-

tivity;
• Qh is the set of values representing the hydraulic total head;
• QCc is the set of values representing the specific retention capacity;
• Qconv is the set of values representing the temporal step size which guar-

antees the numerical convergence;

– Σ =
{
σρ, σβ , στ

}
is the set of local transition functions or kernels. In par-

ticular:

• σρ : Qh×QCc → Qh accounts for input rain. Specifically, if h, Cc, rir, ∆t,
and ∆s2 denote hydraulic head, specific retention capacity, rain intensity
rate, time interval corresponding to a transition step, and surface of the
cell side, respectively, σρ updates the hydraulic head within the cell as:

h′ = h+
rir ·∆t
∆s2 · Cc

• σβ : Qh → Qh sets the boundary condition on the boundary cells that
are not affected by rain. The Neumann boundary conditions, which fix
the water flow to a constant value, for instance h′ = h represent a no
flow condition; the Dirichlet boundary conditions, which fix the hydraulic
head to a constant value, can be adopted.

• στ : Q|X| → Q corresponds to the discrete time explicit resolution of the
equation 1 and can be written as:

h′c = hc +
∆t
[∑6

α=1 Kα

(
hα − hc

)]
∆s2Cc

where Kα is the average hydraulic conductivity between the current cell
c and the cell in the α neighbor calculated using:

Kα =
2∆s3

∆s3

Kα
+ ∆s3

Kc

also the substates qθ, qK and qcc are updated according to the constitu-
tive equations between ψ, θ and K proposed by [31], [24].
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Finally the substate qconv is updated adopting the Courant-Friedrichs-
Lewy condition to achieve numerical convergence:

∆t ≤ ∆s2Cc∑6
α=1Kα

Optionally, the στ kernel can add/remove cells to/from the set of active
cells A in case the quantization algorithm is exploited in the OpenCAL
implementation of XCA− Flow. In this case, a gradient threshold must be
set on one or more cell substates that, if exceeded/not-exceeded, produces
the cell activation/deactivation.

– Φ =
{
φρ, φβ , φτ

}
is the set of functions applying the local transition of Σ to

the non-local domains defined by I. In particular:

• φρ : Q|Iρ| → Q|Iρ| applies the σρ local transition to the Iρ interface, to
account for input rain;

• φβ : Q|Iβ | → Q|Iβ | applies the σβ local transition to the Iβ interface, to
account for boundary conditions;

• φτ : Q|I
+
τ | → Q|Iτ | applies the στ local transition to the Iτ interface.

Here, I+τ denotes the union of Iτ and the set of cells belonging to D \ Iτ
that are needed to guarantee a complete neighborhood to each boundary
cell of Iτ . According to the Cellular Automata definition, only states of
cells in Iτ are updated.

– Γ =
{
γt | γt : Q

|D|
conv → R

}
is the set of global functions, where γt evalu-

ates a reduction over the Qconv substate in order to evaluate the physical
time corresponding to a state transition of the automaton. Specifically, if ∆t
denotes the time step size, we have:

∆t = min
ι∈D

qconvι

– T = φρ ◦ φβ ◦ φτ ◦ γt is the function determining the automaton global
transition. It is obtained by preliminary applying the elementary processes
to the related interfaces, and then the reduction function needed to evaluate
the time interval corresponding to a computational step.

– ∆t ∈ R+ is the quantity corresponding to the physical time interval simu-
lated by a state transition of the automaton. It is evaluated step by step by
considering the γt reduction function.

– ω : R → {false, true} is the termination criterion, based on the simula-
tion elapsed time. When the prefixed simulated time interval is complete, ω
returns false and the simulation terminates.

– τN : N × C → C is the XCA control unit. At step n = 0, the XCA is in the
initial configuration C0. τN is then applied at discrete steps, by producing
a sequence of configurations C1, C2, · · · , until the ω termination criterion is
satisfied.
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3 A Brief Overview of the OpenCAL Library and its
Quantization Algorithm

OpenCAL (Open Computation Abstraction Layer) is an open source parallel
C/C++ software library based on the Extended Cellular Automata (XCA) com-
putational paradigm [15], which exposes as a Domain Specific Language (DSL).
As a consequence, being the XCA formalism quite general, OpenCAL also pro-
vides support to other computational models like Cellular Automata, Finite
Difference and, more in general, to structured grid-based methods.

Once the simulation model has been properly defined using the XCA for-
malism, OpenCAL allows for its straightforward implementation. As a matter
of fact, the spatial computational domain, the variables representing the cell’s
state (substates), and the neighborhood can be easily defined, as well as the
local state transition function and possible global operators. Moreover, the ini-
tial conditions of the system, and a termination criterion to the simulation can
be defined with the minimum effort. Eventually, OpenCAL provides embedded
optimization algorithms and allows for a fine grained control over the simulation
[7].

One of the most important advantages of using OpenCAL is that, once the
serial implementation of a model has been completed, different parallel versions
can be easily obtained, including those for multi- and many-core shared memory
devices, as well as for distributed memory systems, thanks to the adoption of
parallel underlying APIs like OpenMP, OpenCL, and MPI. Furthermore, the em-
bedded optimizations adopted in the serial version are transparently translated
in the different parallel execution contexts.

Among the above cited optimizations, the quantization algorithm can provide
a significant speed-up in the simulation of topologically connected phenomena.
Chosen a model’s substate and a stationary condition threshold for the cell, the
algorithm allows to skip stationary cells, meaning that not only the transition
function is not computed, but also that stationary cells are completely skipped,
i.e., they are not visited by the loops spanning the domain. To this end, the
set of active cells, A, must be preliminary defined, usually at the initialization
stage. Only cells belonging to A are processed. The set A must therefore be kept
updated during the simulation by referring to specific add/remove API functions.
Similarly to the case of the substates, even the active cell’s data structure needs
to be updated before applying the next transition. Further details regarding the
quantization algorithm can be found in [7].

4 Description of the Test Case

The case of study investigated in this work is a three-dimensional test based
on a real experiment conducted in the Jornada Test Site near Las Cruces, New
Mexico, by the University of Arizona and reproduced using two-dimensional nu-
merical modeling by [28] and [21]. It concerned a heterogeneous terrain with very
dry initial conditions, having three main horizontal soil layers and a fourth soil
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type inserted in the deepest of them (Figure 1). The main hydraulic properties
of the four soil types are reported in Table 1. The original two-dimensional test
case domain was 8.00 m long and 6.50 m deep, with a uniform rain rate rir of
0.02 m d-1 for a length of 2.25 m along the left side of the upper boundary layer
(Figure 1). Along the other boundaries, Neumann’s conditions (no flow) were
imposed.

Fig. 1. Cross-section of the computational domain. It shows the four different zones,
the first is located on the top of the domain and extends vertically for 0.30 m, the
second extends for 0.60 m, the third for the remaining 5.60 m. The fourth zone is
inserted and surrounded by the third zone. The grey zone on the top of the domain
highlights the surface area directly affected by the rain.

As in [11], the original domain was extended along the third dimension in
order to obtain a 1.50 m wide three-dimensional grid of cubic cells with edge
length ∆s = 0.05 m. Accordingly, a grid of nr = 160 rows, nc = 30 columns,
and ns = 130 slices was obtained. The input rain was accordingly extended to
the third dimension (Figure 1). The system initial conditions were defined by
imposing a constant total head value of -7.3 m all over the domain, coinciding
with the test case already considered in [11]. This configuration permitted to
exploit the OpenCAL’s quantization algorithm i) by initializing the set of non-
stationary cells, A, to the domain interface affected by rain, and ii) by activating
a stationary cell c each time the ∆hc > τ condition was satisfied, where ∆hc and
τ are the hydraulic head difference between the central (already active) cell and
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Zone θr θs α (m−1) n Ks (m d−1)

1 0.1020 0.368 3.34 1.982 7.909
2 0.0985 0.351 3.63 1.632 4.699
3 0.0859 0.325 3.45 1.573 4.150
4 0.0859 0.325 3.45 1.573 41.50

Table 1. Properties of the four different soil types. Each row indicates a different zone
from the first to the fourth, each column represents a soil property. θr is the residual
soil moisture content, θs is the satutared soil moisture content, α [m−1] and n are
soil parameters adopted in the Van Genuchten model, Ks [m d−1] is the saturated
hydraulic conductivity.

the neighboring cell c, and τ the fixed activation threshold, respectively. Since
h-form of the Richards’ equation [3] was considered to solve the unsaturated
flow, the hydraulic head has been used to define the activation condition. Note
that, each time a new cell is activated, the model activates its neighboring cells
as well. This is needed to guarantee mass conservation. In fact, if a cell c losses
some mass due to the hydraulic head condition with respect to a neighboring
cell cn, this latter must be active at the same step to receive the mass from c.
In particular, the problem could occur at the phenomenon’s propagation front.

As in [11], a total of 30 days were simulated for each experiment, which
required a total of 25,986 computational steps, with an average time step ∆t =
99.75 s. The outcome is shown in Figure 2. The phenomenon propagates up to
about 3 m depth, not affecting the deepest layers.

5 Experiments, Accuracy and Computational
Performance

Different simulations of the test case described in Section 4 were performed
by varying the hydraulic head quantization threshold, with the purpose to as-
sess both the accuracy and the computational performance with respect to the
non quantized (reference) simulation. The values adopted for the quantization
threshold are listed in Table 2. Note that, the set of experiments here considered
extends the study described in [11], where the only τ = 0 threshold was taken
into account.

Figure 3 shows the differences of the variable ψ between the reference and
the τ = 0.1, 0.25, 0.5, 1 quantized simulations. The error, which is limited to
about -3.3 m, increases (in absolute value) with the quantization threshold. In
particular, the differences are close to zero in most parts of the domain, with
the major errors localized near the phenomenon propagation front (cf. Figures
2 and 3).

Regarding the computational aspects, the OpenMP/MPI OpenCAL compo-
nent was used to implement the XCA-Flow model, and a workstation running
Arch Linux, equipped whit two Intel 8 core (16 threads) Xeon E5-2650 sockets,
was used to run the simulations. In particular, the experiments were performed
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Fig. 2. The soil moisture content variation ∆θ [-] on a vertical section at the final step
of the 30-days reference simulation. Black dotted lines indicate the different zones, the
red line shows the domain decomposition between the two nodes considered.

by referring to a 2 MPI processes/16 OpenMP threads parallel configuration.
Specifically, the 3D domain was decomposed along the third (vertical) dimen-
sion over the 2 MPI processes, resulting in two sub-domains of 20 and 110 slices,
respectively (cf. Figure 2). Note that, the adopted parallel set up is the same of
[11], which permitted to achieve the best performance on the considered hard-
ware by executing the reference simulation in 729.15 s. The results achieved are
summarized in Table 2 in terms of elapsed times. Figure 4 shows both the mean
square error of the ψ variable with respect to the reference simulation and the
corresponding elapsed times of the simulations executed by considering the dif-
ferent quantization thresholds listed in Table 2. The error is close to zero up to
τ = 0.1, afterward it increases up to the value of about 2.6 · 10−3 m2. Differ-
ently, the elapsed times decrease with the quantization threshold, from a value
of about 300 s to a value of less than 100 s.
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Fig. 3. Vertical sections showing the differences of the∆ψ variable [m] between the final
configurations of the reference simulation and the simulations performed by considering
the τ a) 0.1 m, b) 0.25 m, c) 0.5 m, and d) 1 m quantization thresholds.

Threshold (m) Mean square error (m2) Elapsed time (s)

0 0 291.77
0.001 1.74e-10 183.47
0.01 2.92e-08 155.69
0.1 6.23e-06 137.23
0.25 6.46e-05 122.89
0.5 4.36e-04 109.47
1.0 2.59e-03 99.15

Table 2. Threshold values τ [m] adopted in this work with the corresponding mean
square error [m2], based on the ψ variable calculated only on the active cells, and
elapsed time [s].
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Fig. 4. Mean square error [m2], based on the ψ variable calculated only on the active
cells, and elapsed time [s] achieved using different quantization threshold. A further
simulation with no threshold has been executed with an elapsed time of 729.15 s.

6 Conclusions

In this paper, the implementation of an unsaturated water flow model is pre-
sented based on the OpenCAL library, which allows exploiting the XCA formal-
ism. Specifically, the impact of the quantization algorithm is presented, which
allows reducing the computational effort at the expense of the accuracy level.

A three-dimensional test case was considered to assess computational per-
formance and accuracy, which simulates the infiltration in the first soil layers
produced by a uniform rain rate. Small variations of the quantization threshold
τ were assessed in order to activate the non-stationary cells. In particular, τ
refers to the hydraulic head variation between adjacent cells.

From an accuracy assessment point of view, it was observed that the quanti-
zation algorithm produces a delay in the propagation front since the non-active
cells, which are not taken into account during the computation, become active
when the quantization threshold is reached. As a consequence, there is a time
cumulative error near the propagation front, which is tightly related to the cho-
sen quantization threshold. In particular, most of the thresholds used for this
specific case study, on a 30 days simulation, generate a low relative error. The
greatest error of about 3.3 m has been obtained by adopting a threshold τ = 1 m,
which could not be tolerable for some applications. Although, the other thresh-
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olds τ ∈ [0.001, 0.5] m generate smaller errors. The acceptability of the results
achieved, also in these cases, relies on the specific application. Therefore, the
choice of the quantization threshold turns out to be a key factor and depends
mainly on the model application.

Regarding the computational performance, the parallel implementation of
the XCA − Flow model proposed in [11] has been adopted, by varying the
quantization threshold to further speeding-up the execution. The best results
have been achieved using the threshold τ = 1 m, which permitted a 66 percent
execution boost compared to the τ = 0 parallel simulation. The results pointed
out that a good trade off between accuracy and computational performance can
be achieved, allowing a considerable speed-up of the model against a limited loss
of precision.

The future outlook will regard the application of dynamic quantization thresh-
olds, which will permit to reduce the error during the simulation. Moreover, fur-
ther hydrological variables will be considered to define the quantization thresh-
olds in order to assess if there is any further advantage in terms of computational
performance and accuracy. Finally, XCA−Flow will be applied to a real basin
scale case study. In this context, the quantization algorithm will be a crucial
factor to reduce the expected high computing time.
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