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Abstract. The early stages of the development of a finite element method (FEM) 
based computational tool for numerically simulating mineral-slurry transport in-
volving both Newtonian and non-Newtonian flows are described in this work. 
The rationale behind the conception, design and implementation of the referred 
object-oriented programming tool is thus initially highlighted. A particular em-
phasis is put on several architectural aspects accounted for and object class hier-
archies defined during the development of the tool. Next one of the main modules 
composing the tool under development is further described. Finally, as a means 
of illustration, the use of the FEM based tool for simulating two-dimensional 
laminar flows is discussed. More specifically, canonical configurations widely 
studied in the past are firstly accounted for. A more practical application involv-
ing the simulation of a mineral-slurry handling device is then studied using the 
power-law rheological model. The results from the simulations carried out high-
light the usefulness of the tool for realistically predicting the associated flow be-
havior. The FEM based tool discussed in this work will be used in future for 
carrying out high-fidelity numerical simulations of turbulent multiphase flows 
including fluid-particle interactions. 

Keywords: Computational fluid dynamics, Finite element method, Object-ori-
ented programming, non-Newtonian fluid, mineral-slurry transport. 

1 Introduction  

Mining companies continuously set aside large amounts of resources to optimize their 
mineral extraction processes. This occurs because energy costs and greenhouse gas 
emissions can be significantly reduced by optimizing such processes [1]. Notice that 
mineral processing often involves transporting mixtures of water and/or chemical solu-
tions carrying ground rocks known as mineral-slurries [2]. Mineral-slurry transport in-
volves indeed multiphase flows featuring solid, liquid and gas phases. Consequently, 
in order to optimize mineral-slurry transporting systems, the associated complex flows 
need to be carefully characterized. Based on their rheological behavior, mineral-slurries 
may exhibit Newtonian or non-Newtonian rheological properties [3]. Particle size, 
slurry density, slurry viscosity, mass flow rate, and friction losses are thus the main 
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design factors when designing or selecting transport slurry systems [2]. In practice both 
experimental or numerical techniques can be used to study and optimize mineral ex-
traction processes [4]. Carrying out experimental tests is nevertheless relatively expen-
sive. In contrast, numerical modeling allows performing numerical experiments at 
lower costs than laboratory or full-scale experiments.  
Different numerical methods can be used to numerically solve the diverse multiphase 
flows present in practical applications. The finite element method (FEM) [5] constitutes 
one of the referred numerical methods. Industrial device designing and/or operating 
conditions optimization are some of the main FEM practical applications. In mining 
engineering FEM has been used for various purposes in the past [6-9]. Notice that there 
are several issues to be accounted for when properly developing a FEM-based compu-
tational tool. In order to obtain reliable numerical results in the shortest possible com-
putational time for instance, FEM models need to be coded such to maximize the com-
putational resources involved. A suitable programming paradigm should be also firstly 
selected before implementing a computational tool based on FEM. Object-oriented pro-
gramming (OOP) has been preferred in the past for carrying out the implementation of 
some FEM solvers [10]. Currently there are available several commercial and open-
source computational packages for FEM related applications [11-14]. Even though 
some of the aforementioned computational packages can be used for simulating min-
eral-slurry transport, it has been decided to develop a new computational tool. The main 
reason behind this important decision is that the new tool will include besides FEM 
based solvers several other numerical methods suitable for grinding processes model-
ling. In general, the referred new computational package is expected to be flexible 
enough, reducing the issues present when coupling different numerical approaches and 
properly modeling complex flows.  
In this work, the early stages of the development of a FEM based computational tool 
for numerically simulating mineral-slurry transport involving both Newtonian and non-
Newtonian fluids are described. Accordingly, Section 2 describes the rationale behind 
the conception, design and implementation of the referred FEM based tool. A particular 
emphasis is put on several architectural aspects accounted for and object class hierar-
chies defined during its development. One of the main modules composing the tool 
under development is further described in Section 3, including the rheological models 
implemented so far in the FEM based tool under development. In Section 4 in turn, as 
a means of illustration, the use of the tool for simulating two-dimensional laminar flows 
is discussed. More specifically, canonical configurations widely studied in the past are 
firstly accounted for [15-17]. A more practical application involving the simulation of 
a mineral-slurry flow device is then studied using a non-Newtonian fluid model. Fi-
nally, Section 5 summarizes the main conclusions drawn from the results obtained here. 

2 FEM Tool Development 

2.1 Development Context 

The FEM tool discussed here constitutes one of the modules of a larger computational 
package under development called CFLOWSS (Complex FLOWS Solver) [18]. As its 
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name indicates CFLOWSS aims to numerically solve different complex flows includ-
ing mineral-slurries. Currently several Eulerian and Lagrangian approaches are being 
implemented in CFLOWSS. The feasibility of easily carrying out one-way or two-way 
coupling between different numerical approaches represents therefore one of the key 
features of CFLOWSS. As highlighted in Fig. 1, some of the Eulerian numerical tech-
niques initially accounted for include finite volume methods (FVM) [19] and finite el-
ement methods (FEM) [5]. Notice that it was decided to implement a FEM module in 
CFLOWSS due to its proven applicability for non-Newtonian flows numerical model-
ling [20]. Lagrangian approaches include in turn discrete elements methods (DEM) [21] 
and smoothed particle hydrodynamics (SPH) [22]. Other numerical techniques such as 
spectral methods (SM) [23] and particle finite element methods (PFEM) [24] will be 
considered as well in future. Notice that the multiphysics involved when modeling com-
plex flows justifies the inclusion of the numerical techniques indicated above. 

 

Fig. 1. Main modules composing CFLOWSS (Complex FLOWS Solver). 

CFLOWSS is implemented using both an OOP paradigm and C++ as the main pro-
gramming language. The development of the CFLOWSS modules, models and numer-
ical algorithms is continuous in order to improve the accuracy of the flow modeling 
processes undertaken with its aid. Three main modules compose CFLOWSS, (i) Pre, 
(ii) Solver and (iii) Post (Fig. 1). Geometry, mesh, physical models and other settings 
required for starting a simulation case are defined in the CFLOWSS Pre module. The 
CFLOWSS Solver module includes in turn the Eulerian and Lagrangian approaches 
available for the numerical simulation of complex flows. One of these numerical tech-
niques (FEM) and its associated models and modules will be further discussed in the 
following sections. Finally, the CFLOWSS Post module mainly deals with the creation 
of results-containing output files able to be understood by well-known post-processing 
tools such as ParaView [25]. 
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2.2 FEM Module Class Hierarchy  

Details of the implementation of the FEM related modules in the CFLOWSS computa-
tional tool are provided in this section. Notice that the OOP paradigm used here favor 
the FEM implementation because FEM is essentially a modular method [26]. Many 
objects and abstract data have been thus extracted from the FEM formulation. As ex-
pected the FEM code implementation is based on many OOP principles such as ab-
straction, encapsulation, inheritance, composition and polymorphism [10]. For the sake 
of brevity however, only the most relevant FEM class hierarchy (Fig. 2) is discussed 
here. All classes shown in Fig. 2 were implemented within the CFLOWSS modules 
described above. In Fig. 2 the relationship between classes is represented by different 
line patterns. Solid lines represent inheritance. Dashed lines indicate in turn composi-
tion. Finally dash-dotted lines imply data transfer between friend classes. 
The CFLOWSS utility module shown in Fig. 1 and Fig. 2 includes the main utilities 
required to perform a FEM simulation. For instance, the FEMArray and FEMMatrix 
classes included in this module allow dynamically allocating memory for the arrays and 
matrices utilized. FEM is essentially a numerical technique for the solution of differen-
tial and integral, linear and non-linear, equation systems [5]. Consequently, the maths 
involved in FEM simulations are usually complex and computationally expensive. In 
order to solve the associated maths then, open source mathematical libraries [27],[28] 
are used in the FEM code implemented here. The main code statements of the referred 
mathematical libraries are found in the FEMMathlibraries class. Numerical techniques 
for solving differential equations with good convergence rates such as the multigrid 
methods [15] will be also included in the utilities module. 
Generic virtual classes typically called material classes are often used to represent ma-
terial behaviors. A generic class (FEMFluid) with similar characteristics is also consid-
ered in this work. FEMFluid class is used to characterize different fluid properties such 
as density and molecular viscosity. In complex flow related applications, the physical 
models are included in the FEMmodel class. Even though this is not illustrated in Fig. 
2, there is an aggregation relationship between the FEMFluid and FEMmodel classes. 
FEMnonNewtonianModel is a generic class that has no physical meaning, which in-
clude information and procedures common to all non-Newtonian derived models. Two 
well-known non-Newtonian models, power law [16] and Carreau-Yasuda [17], have 
been implemented so far for simulating mineral-slurry transport. For instance, the 
FEMPowerLaw class is used to estimate the shear rate and the power-law apparent 
viscosity in a non-Newtonian power-law fluid application. The FEMTruncatedPower-
Law class involves an improvement in the power-law model achieved by using a four-
parameter model [17]. In order to generate a FEM mesh, it is necessary to have a 
properly defined geometry and information about each element node. FEMMesh class 
results thus from a composition of FEMGeometry and FEMNode classes. Notice that 
FEMGeometry class allows setting the geometric configuration accounted for in a FEM 
simulation, whereas FEMNode class is used to store nodal information. FEMBound-
aryConditions class is used in turn to set the governing equations boundary conditions 
(BC). Configurable BC include Dirichlet and Neumman BC [5]. Finally, FEMBa-
sicFunctions allows configuring the FEM interpolation functions on each element. 
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Fig. 2. FEM module class hierarchy in CFLOWSS. 

The main class of the CFLOWSS FEM module is the FEMSolver class. This class is 
composed of FEMFluid, FEMMesh, FEMBoundaryConditions and FEMBasicFunc-
tions classes. That is, the FEMSolver class instantiates objects of these classes and ac-
cesses through these objects all methods included in such classes. Furthermore, the 
FEMSolver class has also access to all mathematical algorithms related classes required 
to solve any FEM simulation. Non-linear equations systems for instance are linearized 
and then solved with numerical methods such as the Newton-Raphson one [5]. Both 
FEMNewtonianSolver and FEMNonNewtonianSolver classes are inherited from the 
FEMSolver one (Fig. 2). The FEMnonNewtonianModel generic class composes the 
latter class. Finally, results related data coming out from the FEMSolver class are sent 
to the FEMPostprocessing class for further post-processing.  

3 FEM formulation 

3.1 Finite Element Method Approach 

In the CFLOWSS FEM module under discussion here, the particular approach used for 
solving the flow governing equations is the weighted residuals method [5]. In general, 
for a domain Ω, the weighted residuals formulation implies solving a equation of the 
form, 
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� �� dΩ
�

 = 0, (1) 

where � is a subspace of weighted functions and � is the residual between the differ-
ential equation exact solution and a finite-dimension approximated solution [30]. The 
weighted residuals method receives different names according to its basis and weighted 
functions. When the space of weighted functions is identical to the space of the basis 
ones, the weighted residuals method is called Galerkin method. The Galerkin method 
is utilized in the CFLOWSS FEM module because of its implementation advantages 
when compared to other similar methods [30]. 

3.2 Galerkin Method 

In order to illustrate the application of the Galerkin method, two-dimensional, laminar, 
incompressible flows are accounted for here. For such flows the mass and momentum 
transport equations are expressed as [31], 

∇ ∙ � = 0, (2) 
� � ∙ ∇� = ∇ ∙ �, (3) 

where � stands for fluid density and � is the absolute velocity vector. In addition, for 
Newtonian fluids, the total stress tensor � is computed according to,  

� = −�� + �[∇� + (∇� )�]. (4) 
In Eq. (4), � represents the absolute pressure and � the fluid dynamic viscosity.  
The application of the Galerkin method to a flow governed by the transport equations 
highlighted above leads to � and �-axis momentum equations of the form, 
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In these equations, �� are the weighted functions related to the momentum equations, 
which are equivalent to the basis ones. Biquadratic functions have been taken into ac-
count for the basis functions implementation in the CFLOWSS FEM module. � here 
is the number of algebraic momentum equations. Notice that the line integrals 

∫ ���
�

dΓ appearing in Eqs. (5) and (6) allow imposing boundary conditions on the 

domain Ω. The mass transport equation reads in turn as follows,  

��
� = � �

��

��
+

��

��
� ��dΩ = 0

�

     � = 1, … , �, (7) 

where �� are the weighted functions related to the continuity equations. Linear func-
tions have been accounted for in this case. � represents here the number of algebraic 
equations related to continuity. In order to complement the FEM modeling detailed 
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here, some rheological models implemented in the CFLOWSS FEM based tool for sim-
ulating non-Newtonian flows are described in the following section. 

3.3 Rheological Modeling of Non-Newtonian Flows  

Mineral slurries rheological properties vary according to its solids concentration. When 
the mineral slurries’ solids concentration increases, the associated apparent viscosity η 
is no longer constant but depends on shear stress � and/or shear rate�̇ [3]. For non-
Newtonian flows related applications, the dynamic viscosity � appearing in Eqs. (5) 
and (6) has to be replaced with a term of the form �(�̇). In this work, the �̇ magnitude 
is calculated locally using the second invariant of the rate-of-strain tensor [16]. The 
associated components of the rate-of-strain tensor are estimated in turn from the local 
velocity field [32]. Three typical models commonly used to compute the �(�̇) term are 
included in the CFLOWSS FEM based tool. 
 
Power-law model  
The simplest representation of the apparent dynamic viscosity of a non-Newtonian fluid 
is given by the power-law model [16],  

�(�̇) = ��̇���, (8) 

where � and � are the empirically obtained consistency and flow behavior indexes, 
respectively. Notice that this model may present some issues at relatively low and high 
shear rates, where additional model parameters are required to properly characterize the 
non-Newtonian fluids’ behavior [17]. The power-law model can be used then with cau-
tion in non-Newtonian flow applications such as mineral slurries [3]. 
 
Carreau-Yasuda model  
The Carreau-Yasuda model is a five-parameter model used when there are large devi-
ations from the power-law one at relatively low and high shear rates [16]. Non-Newto-
nian rheological properties of flows carrying solid particles such as mineral slurries 
may be described indeed by the Carreau-Yasuda model [3]. In this model, the apparent 
dynamic viscosity is estimated from,  

�(�̇) = �� + (�� − ��)(1 + (��̇)�)
���

� . 
(9) 

Where �� is the zero-shear rate viscosity, �� the infinite-shear-rate viscosity, � the fluid 
relaxation time and � is a dimensionless parameter describing the width of the transition 
region between the zero-shear-rate region and the power-law one [33]. 
 
Truncated power-law model  
The four-parameter truncated power-law model represents in turn an improvement on 
the pure power-law one for all shear rate range [17]. The apparent dynamic viscosity is 
computed in this case as, 

�(�̇) = �

��,                     �̇ <  �̇�,

��̇���,       �̇� <  �̇ <  �̇�,
��,                    �̇� < �̇.

 (10) 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_12

https://dx.doi.org/10.1007/978-3-030-50436-6_12


8 

In this model, the shear rates at which the low- and high-viscosity cut-offs are intro-
duced are estimated from, respectively, 

 �̇� = (
�

��

)
�

���,                      �̇� = (
�

��

)
�

���. (11) 

Some results obtained from the use of the CFLOWSS FEM based tool accounting for 
these different rheological models are described in the following section. 

4 Results and Discussion 

The main results obtained from the simulation of two-dimensional laminar flows using 
the CFLOWSS FEM based tool are discussed in this section. Canonical configurations 
widely studied in the past are firstly accounted for, followed by a practical application 
involving the simulation of a mineral-slurry flow device and non-Newtonian flows. 

4.1 Newtonian Laminar Flow between Infinite Parallel Plates 

The fully-developed two-dimensional Newtonian laminar incompressible steady-state 
flow between two infinite parallel plates is firstly considered here. The associated ge-
ometry accounted for is schematically shown in Fig. 3 (a). The analytical solution char-
acterizing this particular flow was obtained from Wang’s work [34].  

 

Fig. 3.  (a) Geometry accounted for when computing Newtonian laminar flows between parallel 
plates. (b) x-velocity profiles obtained analytically and using the CFLOWSS FEM based tool. 

Velocity fields computed using thirty different meshes (ranging from 2 to 1800 ele-
ments) were initially compared with their corresponding analytical solution and the ob-
tained average root-mean-square error (RMSE) was about 4.9E-08. For illustrative pur-
poses, velocity profiles computed using a 1250-elements mesh and analytically are 
compared in Fig. 3 (b). As noticed from this plot, the numerical and analytical results 
agree relatively well. 

4.2 Lid-driven Square Cavity 

The lid-driven cavity configuration has been widely utilized in the past as a standard 
verification case for new CFD codes [35]. This configuration has been also used here 
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for verifying the CFLOWSS FEM based tool accounting for a Newtonian flow. The 
numerical results discussed in this section have been compared with those obtained by 
Ghia et al. [15] at Reynolds numbers of 100 and 400. Accordingly, Fig. 4 (a)  shows 
RMSE based mesh independency results involving the u and v velocity components 
along the vertical and horizontal lines passing through the cavity geometric center. 
These results indicate in particular that when the mesh has more than 200 elements, the 
RMSE values remain almost constant and less than 5%. 

 

Fig. 4. (a) RMSE vs number of mesh elements. Lid-driven cavity velocity contours and stream-
line patterns computed by the CFLOWSS FEM based tool for (b) Re=100 and (c) Re=400. 

The lid-driven cavity velocity contours and streamline patterns computed by the 
CFLOWSS FEM based tool for Reynolds numbers of 100 and 400 are shown in Fig. 4 
(b) and (c), respectively. A 676-elements mesh with an aspect ratio equal to one was 
utilized for obtaining these results, which are comparable to those obtained by Ghia et 
al. [15]. In particular, the streamline patterns included in these plots reveal that the main 
eddy center moves towards the cavity geometric center as Reynolds number increases 
[35]. The growth of secondary eddies (located at the cavity bottom left and right re-
gions) is also observed in Fig. 4 (b) and (c) as Reynolds number increases. In addition, 
Fig. 5 shows u-velocities along the vertical line and v-velocities along the horizontal 
line passing through the square cavity geometric center for Reynolds numbers of 100 
and 400. The numerical results obtained here are compared in this figure to those ob-
tained by Ghia et al. [15]. As noticed from Fig. 5 the agreement between the CFLOWSS 
FEM based tool and the Ghia et al. results is quite good. The average RMSE values for 
the Reynolds numbers of 100 and 400 is indeed about 0.0027 and 0.036, respectively. 

4.3 Non-Newtonian Laminar Flow between Infinite Parallel Plates 

For the same considerations described in Section 4.1, in order to verify the CFLOWSS 
FEM based tool capabilities for dealing with non-linear fluid viscosities, a non-Newto-
nian flow passing through two infinite parallel plates has been simulated. The non-
Newtonian flow velocity profiles computed then using the Carreau-Yasuda, power-law 
and truncated power-law models are shown in Fig. 6. When possible, the numerical 
results obtained here are compared with their respective analytical solutions [16,17]. 
Notice that for the Carreau-Yasuda model there is no analytical solution available [33]. 
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Fig. 5.  (a) u-velocities along the vertical line and (b) v-velocities along the horizontal line pass-
ing through the square cavity geometric center for both Re=100 and Re=400. 

 

Fig. 6. Non-Newtonian flow velocity profiles obtained using Carreau-Yasuda, power-law and 

truncated power-law models at different pressure gradients. (a) 1 Pa/m, (b) 5 Pa/m, (c) 75 Pa/m. 
 
In addition, the fluid properties and geometric configuration simulated in this case were 
extracted from [17], accounting for a density value of 1 �� ��⁄ . The main results indi-
cate that, accounting for a 50x25 elements mesh, RMSE values of 2.4E-23 and 3.7E-
13 in Fig. 6 (a), 5.6E-09 and 2.7E-10 in Fig. 6 (b), and 2.6E-07 and 6.6E-7 in Fig. 6 (c) 
characterize the truncated power-law and power-law models, respectively. Moreover, 
the influence of the pressure gradient values on the velocity profiles associated with 
each rheological model included in Fig. 6 is similar to that described in literature [17]. 

4.4 Slurry Receiving Chamber 

The receiving chamber of a slurry distribution box [36] has been simulated as well using  
the CFLOWSS FEM based tool as an example of the engineering situations where this 
tool can be applied. It is worth noticing that turbulent models for multiphase flows in-
cluding fluid-particle interactions will be implemented later on in the CFLOWSS FEM 
based tool so they are not currently available yet. Even so, currently this tool can pro-
duce reliable results for some operating conditions characterizing mineral slurry-han-
dling devices. For instance, when the mineral-slurry both features relatively low flow 
velocities and contains large amounts of solid particles, the mineral-slurry transport 
may be considered as a laminar non-Newtonian flow [37]. The referred situation can 
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be modeled using the current version of the CFLOWSS FEM based tool under discus-
sion here. In particular, different flow patterns, velocity fields and geometric configu-
rations associated with the associated slurry-handling devices can be assessed using it. 
Accordingly, a particular geometric configuration of a slurry receiving chamber has 
been accounted for in this work as shown in Fig. 7 (a). Notice from this figure that the 
vertical distance of the mineral-slurry exit measured from the device bottom is denoted 
by Y. This vertical distance has been varied in the numerical simulations carried out 
here for flow pattern analyses. All results discussed in this section have been obtained 
accounting for a non-Newtonian power-law model, and mineral-slurry related parame-
ters reading as follows, (i) � = 1370 ��/��, (ii) � =1.6 Pa.s and (iii) �=0.4 [16]. 

 

Fig. 7.  (a) Slurry receiving chamber geometric configuration (units in mm). (b) RMSE versus 
number of mesh elements.  

A mesh-independency assessment has been initially carried out as shown in Fig. 7 (b), 
accounting for a 1000 elements mesh as the reference mesh for computing the RMSE 
values. Several numerical simulations were so performed gradually increasing the num-
ber of mesh elements along one axis and keeping constant this number along the other 
one, i.e., varying the mesh elements aspect ratio. For instance, the square-symbols 
curves in Fig. 7 (b) were obtained from simulations where the number of mesh elements 
along the x-axis was constant and equal to 10. Similarly, the ×-symbols curves corre-
spond to simulations where the number of mesh elements along the y-axis was equal to 
10. Notice that the RMSE values of the two velocity components were accounted for 
in this initial verification stage. The results shown in Fig. 7 (b) indicate in particular 
when the mesh has more than 500 elements, the RMSE values (lower than 0.5 mm/s) 
no longer vary significantly. 
The main results obtained from the numerical simulations of the slurry receiving cham-
ber accounted for here are summarized in Fig. 8. In particular, Fig. 8(a) to (c) and Fig. 
8 (d) to (f) show, respectively, the streamlines and velocity contours characterizing pure 
Newtonian (n=1.0) and non-Newtonian mineral-slurry (n=0.4) flows passing through 
the receiving chamber when varying the flow exit location. For obtaining these results, 
a constant velocity profile at the receiving chamber entry of 75 mm/s was initially im-
posed. The referred results highlight in particular that both velocity fields and eddy 
sizes are influenced by the fluid’s rheological properties and flow exit locations. When 
increasing Y indeed, progressively larger eddies are formed in the chamber bottom left 
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corner and those in the top right one almost disappear. Properly locating these eddies is 
important because sedimentation is fostered in eddies-containing regions. 
Pressure drops as a function of the flow exit location (Y value), the flow entry velocity 
and the fluid rheological properties were also studied as illustrated in Fig. 8 (g). This 
plot shows firstly that for the three imposed entry velocities, the highest pressure drops 
are obtained at the flow exit relative locations of 0 and 1, Y=0 and Y=400 mm, respec-
tively. In addition, for relatively low flow entry velocities (≈25 mm/s), compared to 
the Newtonian case (n=1), the mineral-slurry flow (n=0.4) presents higher pressure 
drops. This finding comes from the use of the power-law model, which considerably 
increases viscosity at low velocity gradients. This last aspect can be confirmed by ana-
lyzing the results shown in Fig. 8 (h), which shows the relationship between fluid’s 
rheological properties and pressure drops for different flow entry velocities at one sin-
gle flow exit location, Y=250 mm. In accordance with the results shown in Fig. 8 (h), 
at relative high flow entry velocities (≈75 mm/s), relatively higher pressure drops char-
acterize Newtonian flows (Fig. 8 (g)). Following these results, slurry-handling devices 
designers can define proper device configurations according to their requirements. 

 

Fig. 8. Velocity contours and streamline patterns characterizing Newtonian (n=1.0) ((a) to (c)) 
and mineral-slurry (n=0.4) flows passing through the receiving chamber for exit positions Y of 
0 mm ((a), (d)), 200 mm ((b), (e)) and 400 mm ((c), (f)). (g) Pressure drop versus relative exit 

position for different imposed inlet velocities and rheological properties. (h) Pressure drop ver-
sus receiving chamber entry velocity for Newtonian and mineral-slurry flows at Y=250 mm. 

5 Conclusions 

In this work, the early stages of the development of a FEM based computational tool 
for numerically simulating mineral-slurries transport involving both Newtonian and 
non-Newtonian flows were described. The rationale behind the conception, design and 
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implementation of the referred FEM based tool was thus initially described. Several 
architectural aspects accounted for and object class hierarchies defined during its de-
velopment were detailed next. The particular approach used for solving the flow gov-
erning equations, i.e., the Galerkin method, a variation of the weighted residuals one, 
was emphasized as well, along with the non-Newtonian flow models implemented in 
the referred tool for dealing with mineral-slurries rheological aspects. As a means of 
illustration, the FEM based computational tool discussed in this work was used for 
studying two-dimensional, laminar, incompressible flows. Canonical configurations 
studied in the past were firstly accounted for, followed by a practical application in-
volving the simulation of a mineral-slurry handling device and non-Newtonian flows. 
When possible, the numerical results obtained here were compared with analytical so-
lutions and data available in literature and the corresponding agreement was relatively 
good. It is concluded therefore that the FEM based tool is useful for realistically pre-
dicting the associated flow behavior. Once fully developed, the computational tool dis-
cussed in this work will be used for carrying out high-fidelity numerical simulations of 
turbulent multiphase flows including fluid-particle interactions. 
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