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1 AGH University of Science and Technology, Kraków, Poland
2 The University of the Basque Country, Bilbao, Spain

3 The University of Texas at Austin, USA
maciej.paszynski@agh.edu.pl

Abstract. In this paper, we present a residual minimization method for three-dimensional
isogeometric analysis simulations of advection-diffusion equations. First, we apply the implicit
time integration scheme for the three-dimensional advection-diffusion equation. Namely, we
utilize the Douglas-Gunn time integration scheme. Second, in every time step, we apply the
residual minimization method for stabilization of the numerical solution. Third, we use iso-
geometric analysis with B-spline basis functions for the numerical discretization. We perform
alternating directions splitting of the resulting system of linear equations, so the computa-
tional cost of the sequential LU factorization is linear O(N). We test our method on the
three-dimensional simulation of the advection-diffusion problem. We parallelize the solver for
shared-memory machine using the GALOIS framework.

Keywords: isogeometric analysis · implicit dynamics · advection-diffusion problems · linear
computational cost · direct solvers · GALOIS framework

1 Introduction

The alternating direction implicit method (ADI) is a popular method for performing finite difference
simulations on regular grids. The first papers concerning the ADI method were published in 1960
[1,3,5,19]. This method is still popular for fast solutions of different classes of problems with finite
difference method [8, 9]. In its basic version, the method introduces intermediate time steps, and
the differential operator splits into the x, y (and z in 3D) components. As a result of this operation,
on the left-hand side, we only deal with derivatives in one direction, while the rest of the operator
is on the right-hand side. The resulting system of linear equations has a multi-diagonal form, so
the factorization of this system is possible with a linear O(N) computational cost. It is a common
misunderstanding that the direction splitting solvers are limited to simple geometries. They can be
also applied to discretizations in extremely complicated geometries, as described in [10].

In this paper, we generalize this method for three-dimensional simulations of the time-dependent
advection-diffusion problem with the residual minimization method. We use the basic version of
the direction splitting algorithm, working on a regular computational cube, since this approach
is straightforward and it is enough to proof our claims that the residual minimization stabilizes
the advection-diffusion simulations. In particular, we apply the residual minimization method with
isogeometric finite element method simulations over a three-dimensional cube shape computational
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grids with tensor product B-spline basis functions. The resulting system of linear equations can be
factorized in a linear O(N) computational cost when executed in sequential mode.

We use the finite element method discretizations with B-spline basis functions. This setup, as op-
posed to the traditional finite difference discretization, allows us to apply the residual minimization
method to stabilize our simulations.

The isogeometric analysis (IGA) [4] is a modern method for performing finite element method
(FEM) simulations with B-splines and NURBS. In enables higher order and continuity B-spline
based approximations of the modeled phenomena. The direction splitting method has been redis-
covered to solve the isogeometric L2 projection problem over regular grids with tensor product
B-spline basis functions [6, 7]. The direction splitting, in this case, is performed with respect to
space, and the splitting is possible by exploiting the Kronecker product structure of the Gram
matrix with tensor product structure of the B-spline basis functions. The L2 projections with IGA-
FEM were applied for performing fast and smooth simulations of explicit dynamics [11–14, 16, 20].
This is because the explicit dynamics with isogeometric discretization is equivalent to the solution
of a sequence of isogeometric L2 projections.

In this paper, we focus on the advection-diffusion equation used for simulation of the propagation
of a pollutant from a chimney. We introduce implicit time integration scheme, that allows for the
alternating direction splitting of the advection-diffusion equation. We discover that the numerical
simulations are unstable, and deliver some unexpected oscillations and reflections. Next, we utilize
the residual minimization method in a way that it preserves the Kronecker product structure of the
matrix and enables stabilized linear computational cost solutions.

The actual mathematical theory concerning the stability of the numerical method for weak
formulations is based on the famous “Babuśka-Brezzi condition” (BBC) developed in years 1971-
1974 at the same time by Ivo Babuśka, and Franco Brezzi [25–27]. The condition states that a weak
problem is stable when

sup
v∈V

|b(u, v)|
‖v‖V

≥ γ‖u‖U ,∀u ∈ U. (1)

However, the inf-sup condition in the above form concerns the abstract formulation where we
consider all the test functions from v ∈ V and look for solution at u ∈ U (e.g. U = V ). The above
condition is satisfied also if we restrict to the space of trial functions uh ∈ Uh ⊂ U

sup
v∈V

|b(uh, v)|
‖v‖V

≥ γ‖uh‖Uh
. (2)

However, if we use test functions from the finite dimensional test space Vh = span{vh} ⊂ V

sup
vh∈Vh

|b(uh, vh)|
‖vh‖Vh

≥ γh‖uh‖Uh
, (3)

we do not have a guarantee that the supremum (3) will be equal to the original supremum (1), since
we have restricted V to Vh. The optimality of the method depends on the quality of the polynomial
test functions defining the space Vh = span{vh} and how far are they from the supremum defined in
(1). There are many method for stabilization of different PDEs [28–31]. In 2010, the Discontinuous
Petrov Galerkin (DPG) method was proposed, with the modern summary of the method described
in [32].
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The DPG method utilizes the residual minimization with broken test spaces. In other words, it
first generates a system of linear equations[

G −B
BT 0

] [
r
u

]
=

[
l
0

]
. (4)

This system of linear equations has the inner product block G over the test space, the two blocks
with the actual weak form B and BT , and the zero block 0. The test space is larger than the trial
space, and the inner product and the weak form blocks are rather sparse matrices. Therefore, the
dimension of the system of linear equations is at least two times larger than the original system
of equations arising from standard Galerkin method. In the DPG method, the test space is broken
in order to obtain a block-diagonal matrix G and the Schur complements can be locally computed
over each finite element. The price to pay is the presence of the additional fluxes on the element
interfaces, resulting from breaking the test spaces, so the system over each finite element looks like G −B1 −B2

BT1 0 0
BT2 0 0

ru
t

 =

 l0
0

 . (5)

We do not know any other reason of breaking the test spaces in the DPG method other then
reduction of the computational cost of the solver.

In this paper, we want to avoid dealing with fluxes and broken spaces since it is technically
very complicated. Thus, we stay with the unbroken global system (4) and then we have to face one
of the two possible methods. The first one would be to apply adaptive finite element method, but
then the cost of factorization in 3D would be up to four times slower than in the standard finite
element method and broken DPG (without the static condensation). This is because depending
on the structure of the refined mesh, we will have a computational cost of the multi-frontal solver
varying between O(N) to O(N2) [33], and our N is two times bigger than in the original weak
problem, and 22 = 4. This could be an option that we will discuss in a future paper.

Another method that we exploit in this paper is to keep a tensor product structure of the
computational patch of elements with tensor product B-spline basis functions, decompose the system
matrix into a Kronecker product structure, and utilize a linear computational cost alternating
directions solver. Even for the system (4) resulting from the residual minimization we successfully
perform direction splitting to obtain a Kronecker product structure of the matrix to maintain the
linear computational cost of the alternating directions method.

In order the stabilize the time-dependent advection-diffusion simulations, we perform the fol-
lowing steps. First, we apply the time integration scheme. We use the Douglas-Gunn second order
time integration scheme [2]. Second, we stabilize a system from every time step by employing the
residual minimization method [34–36]. Finally, we perform numerical discretization with isogeomet-
ric analysis [4], using tensor product B-spline basis functions over a three-dimensional cube shape
patch of elements.

The novelties of this paper with regard to our previous work are the following. In [11], we
described parallel object-oriented JAVA based implementation of the explicit dynamics version
of the alternating directions solver, without any residual minimization stabilization, and for two-
dimensional problems only. In [12], we described sequential Fortran based implementation of the
explicit dynamics solver, with applications of the elastic wave propagation, without implicit time
integration schemes and any residual minimization stabilization. In [16], we described the parallel
distributed memory implementation of the explicit dynamics solver, again without implicit time
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4 M.  Loś, J. Munoz-Matute, M. Paszyński

integration scheme and residual minimization method. In [14], we described the parallel shared-
memory implementation of the explicit dynamics solver, with the same restrictions as before.
In [13, 17] we applied the explicit dynamics solver for two and three-dimensional tumor growth
simulations. In all of these papers, we did not used implicit time integration schemes, and we did
not perform operator splitting on top of the residual minimization method. In [20], we investigate
different time integration schemes for two-dimensional residual minimization method for advection-
diffusion problems. We do not go for three-dimensional computations, and we do not apply parallel
computations there.

In this paper, we apply the residual minimization with direction splitting for the first time
in three-dimensions. We also investigate the parallel scalability of our solver, using the GALOIS
framework for parallelization. For more details on the GALOIS framework itself, we refer to [37–40].

The structure of this paper is the following. We start in Section 2 with the derivation of the iso-
geometric alternating direction implicit method for the advection-diffusion problem. The following
Section 3 derives the residual minimization method formulation of the advection-diffusion problem
in three-dimensions. Next, in Section 4, we present the linear computational cost numerical results.
We summarize the paper with conclusions in Section 5

2 Model problem of three-dimensional advection-diffusion

Let Ω = Ωx × Ωy × Ωz ⊂ R3 an open bounded domain and I = (0, T ] ⊂ R, we consider the
three-dimensional linear advection-diffusion equation

ut −∇ · (α∇u) + β · ∇u = f in Ω × I,
u = 0 on Γ × I,

u(0) = u0 in Ω,

(6)

where Ωx, Ωy and Ωz are intervals in R. Here, ut := ∂u/∂t, Γ = ∂Ω denotes the boundary of the
spatial domain Ω, f : Ω × I −→ R is a given source and u0 : Ω −→ R is a given initial condition.
We consider constant diffusivity α and constant velocity field β = [βx βy βz].

We split the advection-diffusion operator Lu = −∇ · (α∇u) + β · ∇u as Lu = L1u+ L2u+ L3u
where

L1u := −α ∂u

∂x2
+ βx

∂u

∂x
, L2u := −α ∂u

∂y2
+ βy

∂u

∂y
, L3u := −α ∂u

∂z2
+ βz

∂u

∂z
.

Based on this operator splitting, we consider different Alternating Direction Implicit (ADI) schemes
to discretize problem (6).

First, we perform a uniform partition of the time interval Ī = [0, T ] as

0 = t0 < t1 < . . . < tN−1 < tN = T,

and denote τ := tn+1 − tn, ∀n = 0, . . . , N − 1.
In the Douglas-Gunn scheme, we integrate the solution from time step tn to tn+1 in three

substeps as follows:
(1 +

τ

2
L1)un+1/3 = τfn+1/2 + (1− τ

2
L1 − τL2 − τL3)un,

(1 +
τ

2
L2)un+2/3 = un+1/3 +

τ

2
L2u

n,

(1 +
τ

2
L3)un+1 = un+2/3 +

τ

2
L3u

n.

(7)
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The variational formulation of scheme (7) is



(un+1/3, v) +
τ

2

(
α
∂un+1/3

∂x
,
∂v

∂x

)
+
τ

2

(
βx
∂un+1/3

∂x
, v

)
= (un, v)− τ

2

(
α
∂un

∂x
,
∂v

∂x

)
− τ

2

(
βx
∂un

∂x
, v

)
− τ

(
α
∂un

∂y
,
∂v

∂y

)
− τ

(
βy
∂un

∂y
, v

)
− τ

(
α
∂un

∂z
,
∂v

∂z

)
− τ

(
βz
∂un

∂z
, v

)
+ τ(fn+1/2, v),

(un+2/3, v) +
τ

2

(
α
∂un+2/3

∂y
,
∂v

∂y

)
+
τ

2

(
βy
∂un+2/3

∂y
, v

)
= (un+1/3, v) +

τ

2

(
α
∂un

∂y
,
∂v

∂y

)
+
τ

2

(
βy
∂un

∂y
, v

)
,

(un+1, v) +
τ

2

(
α
∂un+1

∂z
,
∂v

∂z

)
+
τ

2

(
βz
∂un+1

∂z
, v

)
= (un+2/3, v) +

τ

2

(
α
∂un

∂z
,
∂v

∂z

)
+
τ

2

(
βz
∂un

∂z
, v

)
,

(8)
where (·, ·) denotes the inner product of L2(Ω). Finally, expressing problem (8) in matrix form we
have 

[
Mx +

τ

2
(Kx +Gx)

]
⊗My ⊗Mzun+1/3

=
[
Mx − τ

2
(Kx +Gx)

]
⊗My ⊗Mzun

− τMx ⊗ (Ky +Gy)⊗Mzun − τMx ⊗My ⊗ (Kz +Gz)un + τFn+1/2

Mx ⊗
[
My +

τ

2
(Ky +Gy)

]
⊗Mzun+2/3

= Mx ⊗My ⊗Mzun+1/3 +Mx ⊗ τ

2
(Ky +Gy)⊗Mzun,

Mx ⊗My ⊗
[
Mz +

τ

2
(Kz +Gz)

]
un+1

= Mx ⊗My ⊗Mzun+2/3 +Mx ⊗My ⊗ τ

2
(Kz +Gz)un,

(9)

where Mx,y,z, Kx,y,z and Gx,y,z are the 1D mass, stiffness and advection matrices, respectively.

3 Isogeometric residual minimization method

In our method, in every time step we solve the problem with identical left-hand-side: Find u ∈ U
such that

b (u, v) = l (v) ∀v ∈ V, (10)

b (u, v) = (u, v) + τ/2

((
βi
∂u

∂xi
, v

)
+ αi

(
∂u

∂xi
,
∂v

∂xi

))
, (11)

Here i ∈ {1, 2, 3}, so we have denoted here (x1, x2, x3) = (x, y, z), and i means that we are not using
the Einstein summation here. The right-hand-side depends on the sub-step and the time integration
scheme used. In the Douglas-Gunn time integration scheme, in the first, second and third sub-step
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the right-hand side is defined as:

l (w, v) = (w, v)− τ

2

(
α
∂w

∂x
,
∂v

∂x

)
− τ

2

(
βx
∂w

∂x
, v

)
− τ

(
α
∂w

∂y
,
∂v

∂y

)
− τ

(
βy
∂w

∂y
, v

)
− τ

(
α
∂w

∂z
,
∂v

∂z

)
− τ

(
βz
∂w

∂z
, v

)
+ τ(fn+1/2, v),

l (w, v) = (w, v) +
τ

2

(
α
∂w

∂y
,
∂v

∂y

)
+
τ

2

(
βy
∂w

∂y
, v

)
,

l (w, v) = (w, v) +
τ

2

(
α
∂w

∂z
,
∂v

∂z

)
+
τ

2

(
βz
∂w

∂z
, v

)
.

(12)

In our advection-diffusion problem we seek the solution in space

U = V =

{
v :

∫
Ω

(
v2 +

(
∂v

∂xi

)2
)
<∞

}
. (13)

where i = 1, 2, 3 denotes the spatial directions. The inner product in V is defined as

(u, v)V = (u, v)L2
+

(
∂u

∂xi
,
∂v

∂xi

)
L2

, (14)

where i = 1, 2, 3 depending on the sub-step index in the alternating directions method, and we do
not use here the Einstein convention. For a weak problem, we define the operator

B : U → V ′, (15)

such that

〈Bu, v〉V ′×V = b(u, v), (16)

so we can reformulate the problem as

Bu− l = 0. (17)

We wish to minimize the residual

uh = argminwh∈Uh

1

2
‖Bwh − l‖2V ′ . (18)

We introduce the Riesz operator being the isometric isomorphism

RV : V 3 v → (v, .) ∈ V ′. (19)

We can project the problem back to V

uh = argminwh∈Uh

1

2
‖R−1V (Bwh − l)‖2V . (20)

The minimum is attained at uh when the Gâteaux derivative is equal to 0 in all directions:

〈R−1V (Buh − l), R−1V (Bwh)〉V = 0, ∀wh ∈ Uh. (21)
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We define the error representation function r = R−1V (Buh − l) and our problem is reduced to

〈r,R−1V (Bwh)〉 = 0, ∀wh ∈ Uh, (22)

which is equivalent to
〈Bwh, r〉 = 0, ∀wh ∈ Uh. (23)

From the definition of the residual we have

(r, v)V = 〈Buh − l, v〉, ∀v ∈ V. (24)

Our problem reduces to the following semi-infinite problem: Find (r, uh)V×Uh
such as

(r, v)V − 〈Buh, v〉 = 〈l, v〉, ∀v ∈ V,
〈Bwh, r〉 = 0 ∀wh ∈ Uh.

(25)

We discretize the test space Vm ∈ V to get the discrete problem: Find (rm, uh)Vm×Uh
such as

(rm, vm)Vm
− 〈Buh, vm〉 = 〈l, v〉 ∀v ∈ Vm
〈Bwh, rm〉 = 0 ∀wh ∈ Uh.

(26)

Note that the residual minimization method is a Petrov-Galerkin method (test and trial spaces
are different). We stabilize the problem by increasing the dimension of the test space. Notice that
the residual minimization system here is of the following form[

G −B
BT 0

] [
r
u

]
=

[
l
0

]
, (27)

where the right-top and left-bottom matrices B and BT can be split according to (9), and the inner
product (14) part G can be split in the following way:

G =


[M̃x + K̃x]⊗ M̃y ⊗ M̃z,

M̃x ⊗ [M̃y + K̃y]⊗ M̃z,

M̃x ⊗ M̃y ⊗ [M̃z + K̃z],

(28)

where we consider three different splittings for three sub-steps, and M̃x,y,z, and K̃x,y,z are the 1D
mass and stiffness matrices over the test space in direction x, y, or z, respectively.

Now, in the first sub-step, we approximate the solution with tensor product of one dimensional
B-splines basis functions of order p, uh =

∑
i,j,k ui,j,kB

x
i;p(x)Byj;p(y)Bzk;p(z). We test with tensor

product of one dimensional B-splines basis functions, where we enrich the order in the direction of
the x axis from p to o ≥ p, and we enrich the test space only in the direction of the alternating
splitting vm ← Bxi;o(x)Byj;p(y)Bzk;p(z). We approximate the residual with tensor product of one

dimensional B-splines basis functions of order p, rm =
∑
s,t,q rs,t,qB

x
s;t(x)Byt;p(y)Bzt;p(z), and we

test with tensor product of 1D B-spline basis functions of order o and p, in the corresponding
directions wh ← Bxk;o(x)Byl;p(y)Bzm;p(z).

Notice that we stabilize the problem by enriching the test space with respect to the trial space
in the alternating direction manner. Now, in the first sub-step we have My = M̃y, Mz = M̃z and
Mx 6= M̃x, and MyT = My,MzT = Mz. Now, in the first sub-step we have(

G B
BT 0

)
=

(
[M̃x + K̃x]

[
Mx + τ

2 (Kx +Gx)
][

Mx + τ
2 (Kx +Gx)

]T
0

)
⊗My ⊗Mz (29)
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in the second sub-step(
G B
BT 0

)
= Mx ⊗

(
[M̃y + K̃y]

[
My + τ

2 (Ky +Gy)
][

My + τ
2 (Ky +Gy)

]T
0

)
⊗Mz (30)

and in the third sub-step(
G B
BT 0

)
= Mx ⊗My ⊗

(
[M̃z + K̃z]

[
Mz + τ

2 (Kz +Gz)
][

Mz + τ
2 (Kz +Gz)

]T
0

)
(31)

All these matrices are the Kronecker products of three multi-diagonal sub-matrices, and they can
be factorized in a linear O(N) computational cost.

4 Numerical results

4.1 Manufactured solution problem

In order to verify the order and accuracy of the Douglas-Gunn time-integration schemes with IGA-
FEM discretization and the direction splitting solver, we construct a time-depedent advection-
diffusion problem with manufactured solution.

du

dt
−∇ · (α∇u) + β · ∇u = f,

with α = 10−2, β = (1, 0, 0), with zero Dirichlet boundary conditions solved on a square [0, 1]3

domain. We setup the forcing function f(x, y, z; t) in such a way that it delivers the manufactured
solution of the form uexact(x, y, z; t) = sin(πx) sin(πy) sin(πz) sin(πt) on a time interval [0, 2].

We solve the problem with residual minimization method on 32 × 32 × 32 mesh with different
time steps, as presented in Figure 1, using the Douglas-Gunn time integration scheme and the
direction splitting solver using the Kronecker product structure of the matrices.

We compute the error between the exact solution uexact and the numerical solution uh. We
present the comparisons with different time step size τ . We compute relative error ‖uexact(t) −
uh(t)‖L2/‖uexact(t)‖L2 · 100% and plot it in Figure 1. The horizontal lines represent the time step
size selected for the entire simulation, and the vertical lines present the numerical error with respect
to the known exact solution.

The Douglas-Gunn scheme is of the second order accurate, down to the accuracy of 10−5.

4.2 Pollution propagation simulations

In this section, we describe the numerical simulation of three-dimensional model advection-diffusion
problem over a 3D cube shape domain with dimensions 5000× 5000× 5000 meters.

du

dt
−∇ · (α∇u)− β · ∇u = f, (32)

In our equation we have the diffusion coefficients α = (50, 50, 0.5). We utilize tensor products of
1D B-splines along the x, y, and z. We apply the alternating direction implicit solver with three
intermediate time steps. The velocity field is β = (βx(t), βy(t), βz(t)) = (cos a(t), sin a(t), v(t))
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Fig. 1. Numerical error for Douglas-Gunn time integration scheme on 32× 32× 32 mesh for different time
steps.

where a(t) = π
3 (sin(s) + 1

2 sin(2.3s)) + 3
8π, v(t) = 1

3 sin(s), s = t
150 . The source is given by f(p) =

(r− 1)2(r+ 1)2, where r = min(1, (|p− p0|/25)2), p represents the distance from the source, and p0
is the location of the source p0 = (3, 3, 2). The initial state is defined as the constant concentration
of the order of 10−6 in the entire domain (numerical zero).

The physical meaning of this setup is the following. We model the propagation of the pollutant
generated by a single source modeled by the f function, distributed by the wind blowing with
changing directions, modeled by β function, and the diffusion phenomena modeled by the coefficients
α The computational domain unit is meter [m], the wind velocity β is given in meters per second

[ms ], and the diffusion coefficient α is given in square meters per second [m
2

s ]. The units for the

solution are then kilograms per cube meter [ kgm3 ]. We expect from the numerical results to observe
the propagation of the pollutant as distributed by the wind and the diffusion process.

Our first numerical results concern the computational mesh with a size of 50× 50× 50 elements
with quadratic B-splines. We employ standard Galerkin formulation here with direction splitting,
without the residual minimization method. We perform 300 time steps of the numerical simulation.
The snapshots presented in Figure 2 represent time steps 100, 200 and 300. We observe unexpected
“oscillations” and “reflections”. Since the simulation is supposed to model the propagation of the
pollutant from a chimney by means of the advection (wind) and diffusion phenomena, the oscillations
and reflections on the boundary are not expected there. Both these phenomena appear and disappear
during the entire simulation; they do not cause a blowup of the entire simulations, just unexpected
local behavior.

To improve the spatial stability of the simulation, we add now the residual minimization method
on top of the Galerkin setup. Thus, the second simulation was performed again on the mesh size
with 50 × 50 × 50 elements, with quadratic B-splines for trial and cubic B-Splines for test. The
snapshots from the numerical results are presented in Figure 2. We perform 300 time steps, and we
present the snapshots in time steps 100, 200, and 300.

We use the implicit extension of the parallel code [14] for shared memory Linux cluster nodes.
The total simulation time was 100 minutes on a laptop with i7 6700Q processor 2.6GHz (8 cores
with HT) and 16B or RAM. We emphasize that ADI is not an iterative solver. It is just a linear
O(N) computational cost solver that performs Gaussian elimination for matrices having Kronecker
product structure. Thus, the solution obtained by the solver is exact (up to the round-off errors). In
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Fig. 2. Top panel: Simulation with Galerkin method. Snapshots from the time steps 10, 20, and 30 of
with quadratic C1 B-splines over 50 × 50 × 50 mesh, without stabilization. Bottom panel: Simulation
with residual minimization method. Snapshots from the time steps 100, 200 and 300 of the first problem
simulation with quadratic C1 B-splines for trial and cubic C2 B-splines for test over 50× 50× 50 mesh.
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Fig. 3. Speedup (top line) and efficiency (bottom line) for p = 1 for trial, p = 2 for testing (first column),
p = 2 for trial, p = 3 for testing (second column), and p = 3 for trial, p = 4 for testing (third column).
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this sense, we do not present the iterations or convergence of the ADI solver, since it is executed once
per each time step. In other words, we can perform 300 Gaussian elimination, each with 1,000,000
unknowns, with the high accuracy resulting from the ADI direct solver (only round-off errors are
involved), on a laptop with eight cores, with the implicit method, within 1.5 hours.

5 Parallel scalability

Implementation of the ideas described in the preceding sections has been created in C++ and
parallelized using our code for IGA-FEM simulations with ADI solver [14], extended to the implicit
method. We use the GALOIS framework for parallelization [37–40].

The parallelization concerns mainly the algorithm of the integration of the right-hand-side vec-
tor. The cost of generation of the one-dimensional matrices and the factorization with multiple-
right-hand sides is negligible in comparison to the integration of the higher-order B-splines over
the three-dimensional mesh. The parallel implementation in GALOIS involves the usage of Ga-
lois::for each, Galois::Runtime::LL::SimpleLock.

1. for each element E = [ξlx , ξlx+1]×
[
ξly , ξly+1

]
× [ξlz , ξlz+1] in parallel do

2. U loc ← 0

3. for each quadrature point ξ =
(
Xkx , Xky , Xkz

)
do

4. x← ΨE (ξ), W ← wkxwkywkz, u,Du← 0
5. for I ∈ I(E) do

6. u← u+ U
(t)
I BI(ξ), Du← Du+ U

(t)
I ∇BI(ξ)

7. endfor
8. for I ∈ I(E) do
9. v ← BI(ξ), Dv ← ∇BI(ξ), U locI ← U locI +W |E| (uv +∆tF (u,Du, v,Dv))

10. endfor
11. endfor
12. endfor
13. synchronized
14. for I ∈ I(E) do

15. U
(t+1)
I ← U

(t+1)
I + U locI

16. endfor
17. end

The speedup and efficiency of the code are presented in Figure 3. We can draw the following
conclusions from the presented plots:

– For linear B-splines for trial and quadratic B-splines for testing and large grids 32×32×32 and
64×64×64 the speedup grows up to 16 cores. It is around 10-11 for 16 cores. The corresponding
efficiency for 16 cores is around 0.7. Then, for 32 cores the speedup went down since for more
than 20 cores used the hyperthreading is utilized.

– For quadratic B-splines for trial and cubic B-splines and large grids 32×32×32 and 64×64×64
the speedup grows up to 16 cores. It is around 12-14 for 16 cores. The corresponding efficiency
for 16 cores is around 0.8-0.9. Then, for 32 cores and 32 × 32 × 32 mesh the speedup grows
up to 17, and for 64 × 64 × 64 mesh is decreases slightly since for more than 20 cores the
hyperthreading is used.
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– For cubic B-splines for trial and quartic B-splines for testing and large grids 32× 32× 32 and
64 × 64 × 64 the speedup grows up to 32 cores. It is around 15 for 16 cores (near perfect
speedup) and around 20 for 32 cores, where we use the hyperthreading (more than 20 cores).
The corresponding efficiency for 16 cores is around 0.9-1.0. Then, for 32 cores the efficiency
decreases slightly down to 0.6-0.7.

– Increasing the mesh size increases the parallel scalability up to 32×32×32 mesh. Larger mesh,
64× 64× 64 performs slightly worse than 32× 32× 32 mesh.

– The most interesting observation is that while increasing the B-splines order we observe the
improvement of the parallel scalability. This is important from the point of view of the stabiliza-
tion with the residual minimization method. The order of B-splines in the test space is increased
to enforce the stabilization, and when we increase the order to obtain the stabilization, we also
improve the parallel scalability.

6 Conclusions

We introduced an isogeometric finite element method for an implicit simulations of the advection-
diffusion problem with Douglas-Gunn time-integration scheme that results in a Kronecker product
structure of the matrix in every time step. The application of B-spline basis functions for the
approximation of the numerical solutions results in a smooth, higher order approximation of the
solution. It also enables for the residual minimization stabilization with a linear computational cost
O(N) of the direct solver. The method has been verified on a three-dimensional advection-diffusion
problem. Our future work will involve the extension of the model to more complicated equations
and geometries. In particular, we plan to use the isogeometric alternating direction implicit solver
for tumor growth simulations in two- and three-dimensions [13, 17]. Our equations can also be ex-
tended to model a pollution problem, with different chemical components, propagating and reacting
together through space in time, as described in [18].
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13. M.  Loś, M. Paszyński, A. K lusek, W. Dzwinel, Application of fast isogeometric L2 projection solver
for tumor growth simulations, Computer Methods in Applied Mechanics and Engineering, 316 (2017)
1257-1269.
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15. M.  Loś, M. Paszyński, Applications of Alternating Direction Solver for simulations of time-dependent
problems, Computer Science 18(2) (2017) 117-128.
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17. M.  Loś, A. K lusek, M. Amber Hassam, K. Pingali, W. Dzwinel, M. Paszyński, Parallel fast isogeometric
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Mathématique et Analyse Numérique 8.R2 (1974): 129-151

28. T. J. R. Hughes, G. Scovazzi, T. E. Tezduyar, Stabilized methods for compressible flows, Journal of
Scientific Computing, 43 (3) (2010) 343-368

29. L. P. Franca, S. L. Frey, T. J. R. Hughes, Stabilized finite element methods: I. Application to the
advective-diffusive model, Computer Methods in Applied Mechanics and Engineering, 95(2) (1992)
253–276

30. L. P. Franca, S. L. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equa-
tions, Computer Methods in Applied Mechanics and Engineering, 99(2-3) (1992) 209–233

31. F. Brezzi, M.-O. Bristeau, L. P. Franca, M. Mallet, G. Rogé, A relationship between stabilized finite ele-
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