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Abstract. In this paper, we investigate flow with solute transport in
fractured porous media. The system of the governing equations consists
of the continuity equation, Darcy’s law, and concentration equation. A
discrete-fracture model (DFM) has been developed to describe the prob-
lem under consideration. The multiscale time-splitting method was used
to handle different sizes of time-step for different physics, such as pres-
sure and concentration. Some numerical examples are presented to show
the efficiency of the multi-scale time-splitting approach.
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1 Introduction

The flow and solute transport in fractured porous media is very important in
many applications such as contaminants migration in fractured aquifer systems.
The fractured porous medium consists of two domains, namely, matrix blocks
and fractures. The fractures are more permeable than the matrix blocks, but they
contain very little fluid than the matrix. Different scales are therefore invoked
in fractured porous media such as discrete fracture models (DFMs) and dual
continuum models, can describe flow and transport in fractured porous media.
The model of solute transport in fractured and porous media has been solved
analytical by Park and Lee [1] and Roubinet et al. [2]. In order to model solute
transport in fractured porous media, Bodin et al. [3] and Graf and Therrien
[4] have used the discrete network model; and Refs. [5–7] have used equivalent
continuum models, while Refs. [8, 9] have used the continuum model. In order
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to represent the fractures explicitly in the fractured porous media the discrete-
fracture model (DFM) has been used. This procedures can remove the contrast
of the length-scale resulting of the direct representation of the fracture aperture
as in the dual-porosity model.

Time discretization, on the other hand, has a significant impact on the effi-
ciency of numerical solutions. Therefore, the use of traditional single-scale time
schemes is limited by the rapid variation in pressure and concentration in ma-
trix or fracture, where applicable. The multi-scale time-splitting technique is
therefore considered to be one of the major improvements in the treatment of
the gap between pressure and concentration. In a number of publications, such
as [10–13], the multi-scale time splitting method was considered. El-Amin et
al. [14] have developed a discrete-fracture-model with multi-scale time-splitting
two-phase flow including nanoparticles transport in fractured porous media. In
this work, we develop a discrete-fracture-model with multi-scale time-splitting
of solute transport in fractured porous media. The modeling and mathemati-
cal formulation is considered in the second section. In Sec. 3, the time-stepping
technique with spatial discretization have been presented. The fourth section is
devoted to numerical test, and then, the conclusions are given in the last section.

2 Modeling and Formulation

2.1 Governing equations

This paper considers the problem of mass transfer and flow in fractured porous
media. The system of equations consists of continuity, momentum, and concen-
tration,

Momentum Conservation (Darcy’s Law):

u = −K∇Φ (1)

where K is the permeability tensor K = k
µI, I is the identity matrix and k/µ is

a positive real number. u, Φ, µ, k are, respectively, the velocity, the pressure, the
viscosity and the permeability.

Mass Conservation:
∇ · u = q, (2)

where q is the external mass flow rate.

Mass Transfer: The solute transport equation in porous media may be given
as,

φ
∂C

∂t
+∇ · (uC − φD∇C) = Qc, (3)

where C is the solute concentrations, φ is the porosity, D is the diffusion coeffi-
cient, and Qc is the rate of change of volume belonging to a source/sink term.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_8

https://dx.doi.org/10.1007/978-3-030-50436-6_8


Solute Transport in Fractured Porous Media 3

2.2 Initial and Boundary Conditions:

Consider the computational domain Ω with the boundary ∂Ω which is subjected
to Dirichlet ΓD and Neumann ΓN boundaries, where ∂Ω = ΓD ∪ ΓN and ΓD ∩
ΓN = ø. At the beginning of the injection process, we have,

C = 0 in Ω at t = 0, (4)

The boundary conditions are given as,

P = PD on ΓD, (5)

u · n = qN , C = C0, on ΓN . (6)

where n is the outward unit normal vector to ∂Ω, PD is the pressure on ΓD and
qN the imposed inflow rate on ΓN , respectively.

2.3 Discrete Fracture Model:

In the discrete-fracture-model (DFM), the fracture gridcells are simplified to
represent as the interfaces of the matrix gridcell and fractures are surrounded
by matrix blocks. Thus, the dimension of fracture reduced by one than the
dimension of matrix, i.e., if matrix is of n-dimension, then, fracture is of (n−1)-
dimension. The domain is decomposed into the matrix domain, Ωm and fracture
domain, Ωf. The pressure equation in the matrix domain is given by,

−∇ ·Km∇Φm = qm, (7)

Assuming that the pressure along the fracture width are constants, and by in-
tegration, the pressure equation in the fracture becomes,

−∇ ·Kf∇Φf = qf +Qf, (8)

The matrix-fracture interface condition is given by,

Φm = Φf, on ∂Ωm ∩Ωf. (9)

where the subscript m represents the matrix domain, while the subscript f rep-
resents the fracture domain. Qf is the mass transfer across the matrix-fracture
interfaces.

The solute transport equation in the matrix domain may be expressed as,

φm
∂Cm
∂t

+∇ · (umCm − φmD∇Cm) = Qc,m, (10)

where Cm is the concentration in the matrix domain. Qc,m is the rate of change
of volume belonging to a source/sink term in the matrix domain. On the other
hand, the solute transport equation in fractures is represented by,

φf
∂Cf
∂t

+∇ ·
(
ufCf − φfD∇Cf

)
= Q

c,f +Q
c,f, (11)
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where Cf is the mass concentration in the fracture domain. Q
c,f is the rate of

change of particle belonging to a source/sink term in the fracture domain. Q
c,f

represents the rate of change of volume across the matrix-fracture interfaces.
The interface condition of the solute concentration is,

Cm = Cf, on ∂Ωm ∩Ωf. (12)

3 Multiscale Time-Splitting and Spatial Discretization:

In the multiscale time-splitting method, we employ a different time step-size for
each time derivative term as they have different physics. For example, the time-
step size for the pressure can be larger than it of the solute concentration. Also,
the fractures pressure may be has a larger time-step size than one for the matrix.
So, we may use a small time step-size for the pressure in fractures, and so on.
We use the CCFD method for the spatial discretization. The CCFD method is
locally conservative and equivalent to the quadratic mixed finite element method.

3.1 Multiscale Time-Splitting Approach for Pressure:

Now, let us introduce the time discretization for the pressure in the matrix
domain. The total time interval [0, T ] is divided into Np,m steps, i.e., 0 = t0 <
t1 < · · · < tNp,m = T and the time step length is 4ti = ti+1 − ti. Therefore,
we divide each subinterval (ti, ti+1] into N

p,f sub-subintervals as (ti, ti+1] =⋃N
p,f−1

j=0 (ti,j , ti,j+1], where ti,0 = ti and t
i,N

p,f = ti+1 and 4ti,j = ti,j+1 − ti,j .
In the following, b refers to the boundary of the matrix gridcells K such that
its area is |K|, and |b| is its length. nb is a unit normal vector pointing from K
to K ′ on each interface b ∈ ∂K ∩ ∂K ′. The flux across the boundary b of the
gridcell K is denoted by ξ. dK,b is the distance from the central points of the cell
K and the cell boundary b. dK,K′ is distance between the central points of the
cells K and K ′. When b is located on the entire domain boundary, the pressure
is provided by Dirichlet boundary conditions, b ∈ ΓD. Otherwise, the Neumann
conditions b ∈ ∂ΩN is used to calculate fluxes.

The pressure equation in the matrix domain and fractures is written, respec-
tively as,

−∇ ·Km∇Φi+1
m = qi+1

m , (13)

and

−∇ ·Kf∇Φ
i+1

f
= qi+1

f
+Qi+1

f
. (14)

Now, applying the CCFD scheme on (13), one obtains,∑
b∈∂K

ξi+1
a,m,b = qi+1

m,K|K|, (15)
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If b ∈ ∂K ∩ ∂K ′ and b * Ωf, the fluxes in (15) are given by,

ξi+1
a,m,b = −|b|χi

t,b

Φi+1
m,K′ −Φi+1

m,K

dK,K′
, (16)

where χit,b is given by

χit,b =
dK,K′Km,KKm,K′

dK,bKm,K′ + dK′,bKm,K
, (17)

On the other hand, if b ∈ Ωf∩∂K∩∂K
′ and b is a gridcell of the fracture system,

we have,

ξi+1
a,m,b ≡ ξ

i+1
a,m,b,K = −|b|χi

t,mf,b

Φi+1

f,b
−Φi+1

m,K

dK,b + ε
2

, (18)

where χi
t,mf,b is given by,

χi
t,mf,b =

(dK,b + ε
2 )Kf,KKm,K

ε
2Km,K + dK,bKf,K

, (19)

Similarly, let b be a gridcell of the fracture network. Eq. (14) may be dis-
cretized by the CCFD method to get,∑

γ∈∂b

ξi+1

a,f,γ
= qi+1

f,b
|b|+ Qi+1

f,b
|b|, (20)

where γ is the face of the gridcell b in the fracture network. ξ is the flux across
the boundary γ of the fracture gridcell b. The matrix-fracture transfer is treated
as a source term in the fracture system.

Qi+1

f,b
= −(Qi+1

f,b,K
+Qi+1

f,b,K′)/ε, (21)

Qi+1

f,b,K
= ξi+1

a,m,b,K, (22)

Qi+1

f,b,K′ = ξi+1
a,m,b,K′ , (23)

where ξi+1
a,m,b is defined in (18).

In the case of multiple fractures that connected by the interface γ. Assume
that Λγ is the set of the fracture grid cells joint by γ. The mass conservation
equation discretization is, ∑

b∈Λγ

ξi+1

a,f,γ,e
= 0, (24)

where ξa,f,γ,b = ξa,f,γ |γ∈b and ξc,f,γ,b = ξc,f,γ |γ∈b.
The discretization of the total mass conservation of the matrix domain and

the fractures network is represented as,[
Ai
a,m,m Ai

a,m,f
Ai
a,f,m Ai

a,f,f

][
Φi+1

m
Φi+1

f

]
=

[
Qi+1
ac,m

Qi+1

ac,f

]
. (25)
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The pressure equation in the fractures at each time subtime-step is given by,

−∇ ·Kf∇Φ
i,j+1

f
= qi,j+1

f
+Qi,j+1

f
. (26)

It is obtained by using the CCFD scheme to (26) that∑
γ∈∂e

ξi,j+1

a,f,γ
= qi,j+1

f,e
|e|+ Qi,j+1

f,e
|e|, (27)

The matrix-fracture transfer is given by,

Qi,j+1

f,b
= −(Qi,j+1

f,b,K
+Qi,j+1

f,b,K′)/ε, (28)

Qi,j+1

f,b,K
= ξi,j+1

a,m,e,K, (29)

Qi,j+1

f,e,K′ = ξi,j+1
a,m,b,K′ , (30)

where

ξi,j+1
a,m,b,K ≡ ξ

i,j+1
a,m,b = −|e|χi,j

t,mf,b

Φi,j+1

f,b
−Φi+1

m,K

dK,b + ε
2

, (31)

along with,

χi,j
t,mf,b

=
(dK,b + ε

2 )Kf,KKm,K

ε
2Km,K + dK,bKf,K

, (32)

For the case of multiple fractures, the pressure equation may be given as,

Ai,j

f
Φi,j+1

f
= Qi,j

f
, (33)

where
Ai,j

f
= Ai,j

a,f,f
, (34)

and

Qi,j

f
= Qi,j+1

ac,f
−Ai,j

a,f,m
Φi+1

m . (35)

At the time step (ti, ti+1), (25) is solved implicitly to get Φi+1
m . Then, at the

time substep (ti,j , ti,j+1), we compute Φi,j+1

f
using (33). After that, we calculate

fluxes as explained below. For the boundary b of the matrix gridcell K, nb is the
unit normal vector pointing towards outside K. If e ∈ ∂K ∩ ∂K ′ and b * Ωf,

ξi,j+1
a,m,b = −|b|χi,j

t,b

Φi+1
m,K′ −Φi+1

m,K

dK,K′
, (36)

where

χi,jt,b =
dK,K′Km,KKm,K′

dK,bKm,K′ + dK′,bKm,K
. (37)

If b ∈ Ωf ∩ ∂K ∩ ∂K
′ and b is a fracture gridcell.
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3.2 Multiscale Time-Stepping of the Concentration Equation

On the other hand, as the solute concentration vary more rapidly than the pres-
sures. We also use a smaller time-step size for the concentration in matrix domain
and the smallest time-step size for the concentration in fractures. The backward
Euler time discretization is used for the equation of concentration. Therefore, the
system of governing equations is solved based on the multiscale time-splitting
technique. Now, let us divide the time-step (ti,j , ti,j+1] of the fractures pressure

into Nc,m sub-steps such that (ti,j , ti,j+1] =
⋃Ns,m−1
k=0 (ti,j,k, ti,j,k+1], ti,j,0 = ti,j

and ti,j,Ns,m = ti,j+1. This time discretization is employed for the concentration
in the matrix domain. Moreover, we use a smaller time-step size for the fracture
concentration. Thus, we partition the time-step, (ti,j,k, ti,j,k+1] into N

c,f time

sub-steps as (ti,j,k, ti,j,k+1] =
⋃N

c,f−1
l=0 (ti,j,k,l, ti,j,k,l+1], where ti,j,k,0 = ti,j,k and

t
i,j,k,N

c,f = ti,j,k+1. The concentration is computed implicitly as follow,

φm
Ci,j,k+1

m − Ci,j,km
∆ti,j,k

+∇ ·
(
ui+1

m Ci,j,k+1
m − φmD∇Ci,j,k+1

m

)
= Qi,j,k+1

c,m (38)

In a similar manner, we consider variation of the concentration in the frac-
tures are faster than those in the matrix domain. So, the concentration in the
fractures is expressed as follow,

φf

Ci,j,k,l+1

f
− Ci,j,k,l

f
∆ti,j,k,l

+∇·
{

ui+1

f
Ci,j,k,l+1

f
− φfD∇C

i,j,k,l+1

f

}
= Qi,j,k,l+1

c,f
+Qi,j,k,l+1

c,m,f
(39)

We use the upwind CCFD method to discretize the concentration equation (38),

|K|φm,K

Ci,j,k+1
m,K − Ci,j,km,K

∆ti,j,k
+
∑
b∈∂K

Ĉi,j,k+1
m,K Fi,j+1

a,m,b +
∑
b∈∂K

Fi,j,k+1
D,m,b = Qi,j,k+1

c,m,K |K|.

(40)
where

Fi,j+1
m,b = ui,j+1

m,b |b|

Let b be the interface between the matrix gridcells K and K ′; that is, b =
∂K ∩ ∂K ′. If b * Ωf, the term Ĉi,j,k+1

m,K in (40) is given by,

Ĉi,j,k+1
m,K =

{
Ci,j,km,K , Fi,j+1

m,b > 0,

Ci,j,km,K′ , Fi,j+1
m,b < 0.

(41)

Now for the diffusion term; if b ∈ ∂K ∩ ∂K ′ and b * Ωf, the fluxes in (40)
are given by,

Fi,j,k+1
D,m,b = −|b|χi,j,k+1

t,b

Ci,j,k+1
m,K′ − Ci,j,k+1

m,K

dK,K′
, (42)

where χi,j,kt,b is given by the harmonic mean as,
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χi,j,k+1
t,b =

dK,K′Di,j,k
m,KD

i,j,k
m,K′φ

i,j,k
m,Kφ

i,j,k
m,K′

dK,bD
i,j,k
m,K′φ

i,j,k
m,K′ + dK′,bD

i,j,k
m,Kφ

i,j,k
m,K

, (43)

On the other hand, if b ∈ Ωf ∩ ∂K ∩ ∂K
′ and b is a gridcell of the fracture

system, we have,

Fi,j,k,l+1
D,m,b ≡ Fi,j,k+1

D,m,b,K = −|b|χi,j,k
t,mf,b

Ci,j,k+1

f,b
− Ci,j,k+1

m,K

dK,b + ε
2

, (44)

where χi,j,k,l+1

t,mf,b
is defined as,

χi,j,k,l+1

t,mf,b
=

(dK,b + ε
2 )Di,j,k

m,KD
i,j,k

f,K
φi,j,km,Kφ

i,j,k

f,K
ε
2D

i,j,k
m,Kφ

i,j,k
m,K + dK,bD

i,j,k

f,K
φi,j,k

f,K

, (45)

Table 1. Physical and computational parameters

Parameter Example (1) Example (2) Example (3)

Domain dimensions (m) 10 × 10 × 1 10 × 10 × 1 20 × 15 × 1
Fracture aperture (m) 0.01 0.01 0.01
φm 0.2 0.2 0.15
φf 1 1 1
Km (md) 1 1 50
Kf (md) 105 106 106

µ (cP) 1 1 1
Injection rate (PVI) 0.1 0.15 0.1
Total gridcells 2500 2500 3300
N

p,f 5 5 5

Nc,m 2 2 2
N

c,f 8 8 8

c0 0.1 0.1 0.1

4 Numerical Tests

In order to examine the proposed scheme, three examples of fractured media with
different dimensions, namely, 20 m × 15 m × 1 m, 10 m × 10 m × 1 m, and 10 m
× 10 m × 1 m are presented with different multiple interconnected fractures as
shown in Fig. 1. The matrix permeability is taken as 1 md in Examples (1) and
(2), while in Example (3) is taken as 50 md. On the other hand, the fractures
permeability is taken as 106 md for Examples (2) and (3), while in Example (1)
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is taken as 105 md. The total number of gridcells is 2500 in Examples (1) and
(2), while in Example (3) is 3300. The solute is injected into a water aquifer with
a rate of 0.1 PV with initial concentration of 0.1. The remaining of the physical
and computational parameters are given for the three examples in Table 1. The
outer (pressure) time-step size is taken as ∆t = 1.9, while we chose, N

p,f = 5,
Nc,m = 2 and N

c,f = 8 for the three examples.
The distribution of the contours and profiles of solute concentration in the

fractured medium of Example (1) at different dimensionless times 25, 35, 45 and
85 are shown in Fig. 2. This figure indicates that the solute-water mixture moves
rapidly in the horizontal fractures due to their high permeability compare to the
matrix permeability. The concentration profiles (shown in the right section of
Fig. 2) are plotted at three vertical sections at y = 3.5, 7 and 10. Again, one
may notice that the concentration in fractures is much higher than it in matrix
blocks. Similarly, Fig. 3) shows the contours and profiles of solute concentration
in the fractured medium of Example (2) at different dimensionless times 15, 35,
55 and 85. One may observe that the mixture flow in fractures is higher than it in
the matrix blocks. Finally, the distribution of the contours and profiles of solute
concentration at different dimensionless times 15, 25, 35 and 60 of Example (3)
are presented in Fig. 4. Similar interpretation to Examples (1) and (2) can be
given for Example (3).

5 Conclusions

In this work, we investigate the solute transport using a multi-scale time-stepping
method for a single-phase flow in fractured porous media. For the spatial discre-
tion, we used the CCFD method. In the matrix domain a large time-step is used,
while in fractures a smaller one is used. The time-step of the fracture pressure is
divided into smaller sub-steps, so we explicitly update the concentration at the
same time-discretization level. Likewise, the concentration has a bigger time-step
in the matrix blocks, while finer ones in the fractures. Three numerical examples
were provided to show the efficiency of the proposed scheme. We found that the
water-solute quickly transfers through fractures. Therefore, existing fractures in
the aquifer improves the distribution of the solute.
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Fig. 1. Distribution of fractures: Example (1), Example (2), Example (3).
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Fig. 2. Distribution of the contours and profiles of solute concentration at different
dimensionless times 25, 35, 45 and 85.
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Fig. 3. Distribution of the contours and profiles of solute concentration at different
dimensionless times 15, 35, 55 and 85.
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Fig. 4. Distribution of the contours and profiles of solute concentration at different
dimensionless times 15, 25, 35 and 60.
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