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Abstract. In this paper, we proposed the morphing simulation method
on the Cartesian grid in order to realize flow simulations for shape opti-
mization with lower cost and versatility. In conventional morphing sim-
ulations, a simulation is performed while deforming a model shape and
the computational grid using the boundary fitting grid. However, it is
necessary to deform the computational grid each time, and it is diffi-
cult to apply to a model with complicated shape. The present method
does not require grid regeneration or deformation. In order to apply the
present method to models with various shapes on the Cartesian grid, the
seamless immersed boundary method (SIBM) is used. Normally, when
the SIBM is applied to a deformed object, the velocity condition on the
boundary is imposed by the moving velocity of the boundary. In the
present method, the velocity condition is imposed by zero velocity even
if the object is deformed because the purpose of the present morphing
simulation is to obtain simulation results for a stationary object. In order
to verify the present method, two-dimensional simulations for the flow
around an object were performed. In order to obtain drag coefficients
of multiple models, the object was deformed in turn from the initial
model to each model in the present morphing simulation. By using the
present method, the drag coefficients for some models could be obtained
by one simulation. It is concluded that the flow simulation for shape op-
timization can be performed very easily by using the present morphing
simulation method.

Keywords: Computational Fluid Dynamics · Morphing Simulation Method
· Immersed Boundary Method · Incompressible Flow · Shape Optimiza-
tion.

1 Introduction

There are many products around us that are closely related to the flow phe-
nomenon. Improvements in the performance of these products are always ex-
pected. On the other hand, reducing the time and cost required to develop these
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products is also an important issue. Shape optimization through flow simulations
at the stage of design is one of these efforts. By determining the optimum shape
from many candidate product shapes (candidate models) at the early stage of
product development, the effort of the redesign is reduced. As a result, develop-
ment costs are reduced. Conventionally, flow simulations have been performed for
each of these many candidate models. However, in recent years, the cost required
for flow simulations has increased because the number of candidate models has
increased in order to develop higher performance products. In order to reduce
the number of these simulations, simulations are performed while deforming the
model shape and the computational grid in shape optimization using flow simu-
lations[1]. In this method, the number of flow simulations for shape optimization
can be reduced, and the optimum shape can be determined in the flow simulation
because results for many models can be obtained in one simulation. However,
it is necessary to deform the computational grid each time, and it is difficult
to apply to a model with complicated shape. In addition, the simulation on the
boundary fitted grid can be expected to have high computational accuracy, how-
ever, the computational efficiency is inferior to the simulation on the Cartesian
grid. In this paper, in order to realize flow simulations for shape optimization
with lower cost and versatility, a method is proposed to perform simulation while
deforming a model on the Cartesian grid that does not require grid regeneration
or deformation. We call this method the morphing simulation method.

In order to apply the present method to models with various shapes on the
Cartesian grid, the seamless immersed boundary method (SIBM)[2], which is an
improved method of the immersed boundary method (IBM)[3] is used. In the
IBM, additional force terms are added to the momentum equations to satisfy
the velocity conditions on the virtual boundary points where the computational
grid and the boundary of the object intersect. In order to apply the IBM to
an object with arbitrary shape, it is only necessary to know the position of the
virtual boundary on the grid. Therefore, the IBM can be easily applied to an
object with a complicated shape. As for the estimation of the additional forcing
term, there are mainly two methods, that is, the feedback[4, 5] and direct[6]
forcing term estimations. Generally, the direct forcing term estimation is adopted
because of the simplicity of the algorithm. However, the conventional IBM with
the direct forcing term estimation generates the unphysical pressure oscillations
near the virtual boundary because of the pressure jump between inside and
outside of the virtual boundary. The SIBM was proposed in order to remove these
unphysical pressure oscillations. In the past study, the SIBM was applied not
only to stationary objects but also to moving or scaling objects[7, 8]. Therefore, it
is possible to use the SIBM in the morphing simulation method proposed in this
paper. Normally, when the SIBM is applied to a moving or scaling object, the
velocity condition in the estimation of the additional forcing term is determined
by the moving velocity of the object. In the present method, the additional
forcing term is estimated under the condition that the velocity is zero even if
the object is deformed because the purpose of the present morphing simulation
is to obtain simulation results for a stationary object.
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In this paper, the morphing simulation by the present method is performed
for some models and compared with the conventional static SIBM where simu-
lation is performed for each model and the effectiveness of the present method
is discussed.

2 Morphing Numerical Simulation Using Seamless
Immersed Boundary Method

2.1 Governing Equations

The governing equations are the continuity equation and the incompressible
Navier-Stokes equations. Moreover, the forcing term is added to the Navier-
Stokes equation for the SIBM. The non-dimensional continuity equation and
incompressible Navier-Stokes equations are written as,

∂ui
∂xi

= 0, (1)

∂ui
∂t

= Fi −
∂p

∂xi
+Gi, (2)

Fi = −uj
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+
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, (3)

where, Re denotes the Reynolds number defined by Re = L0U0/ν0. U0, L0 and
ν0 are the reference velocity, the reference length and the kinematic viscosity,
respectively. ui = (u, v) and p are the velocity components and the pressure.
Gi in Eq. 2 denotes the additional forcing term for the SIBM. Fi denotes the
convective and diffusion terms.

2.2 Numerical Method

The incompressible Navier-Stokes equations (Eq. 2) are solved by the second
order finite difference method on the collocated grid arrangement. The convective
terms are discretized by the the fully conservative finite difference method [9]
and is written, for example, as,
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where, v is the y component of velocity I, J are the grid index and ∆ is grid
spacing. The velocity at the midpoint (for example, J + 1

2 ) of the grid is calcu-
lated by linear interpolation. The diffusive and pressure terms are discretized by
the conventional second order centered finite difference method. For the time in-
tegration, the fractional step approach [12] based on the forward Euler method
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is applied. For the incompressible Navier-Stokes equations in the SIBM, the
fractional step approach can be written by

u∗i = uni +∆tFn
i , (5)

un+1
i = u∗i +∆t

(
−∂p

n

∂xi
+Gn

i

)
, (6)

where u∗i denotes the fractional step velocity and ∆t is the time increment. The
resulting pressure equation is solved by the successive over-relaxation (SOR)
method.

2.3 Seamless Immersed Boundary Method

In order to adopt the SIBM, the additional forcing term in the momentum
equations, Gi, should be estimated. In the SIBM, the additional forcing term
is estimated by the direct forcing term estimation [2]. The direct forcing term
estimation is shown in Fig. 1. We explain in two-dimensions but the extension
to three-dimensions is straightforward. For the forward Euler time integration,
the forcing term can be determined by

Gn
i = −Fn

i +
∂pn

∂xi
+
Ūn+1
i − uni
∆t

, (7)

where Ūn+1
i denotes the velocity linearly interpolated from the velocity on the

near grid point and the velocity (uvb) determined by the velocity condition on
the virtual boundary. Namely, the forcing term is specified as the velocity com-
ponents at next time step satisfy the relation, un+1

i = Ūn+1
i . In the IBM, the grid

points added forcing term are restricted near the virtual boundary only (show
Fig. 1(a)). In this approach, the non-negligible velocity appears inside the virtual
boundary. Also, the pressure distributions near the virtual boundary show the
unphysical oscillations because of the pressure jump. In the SIBM, the forcing
term is added not only on the grid points near the virtual boundary but also in
the region inside the virtual boundary shown in Fig. 1(b) in order to remove the
unphysical oscillations near the virtual boundary. In the region inside the virtual
boundary, the forcing term is determined by satisfying the relation, Ūn+1

i = Ūb,
where Ūb is the velocity which satisfies the velocity condition at the grid point.
When applying the SIBM to a stationary object, the velocity condition on and
inside the virtual boundary is zero velocity. As mentioned above, an algorithm of
the SIBM is very simple and can easily be extended to three dimensions. There-
fore, it is applied to flow around moving or scaling objects[7, 8]. When applying
the SIBM to a moving or scaling object, the velocity condition on and inside
the virtual boundary are obtained by the moving velocity of the object at that
point. Moreover, there are also examples of application to turbulence flow[10,
11].
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(a) Conventional IBM. (b) Seamless IBM.

Fig. 1. Grid points added forcing terms.

2.4 Morphing Numerical Simulation

The morphing of a model on the Cartesian grid is shown in Fig. 2. In the present
method, the object is deformed in turn from the first model to the model that re-
quires simulation results. In the SIBM, only the position of the virtual boundary
of the object on the fixed grid is updated even if the object deforms. In the SIBM,
the virtual boundary of the object with arbitrary shape is represented by bound-
ary nodes in the two-dimensional simulation as shown in Fig. 2. The boundary
between these boundary nodes is approximated by straight lines. By determining
the intersection between the boundary and the grid that is the virtual bound-
ary point, SIBM can be applied to an object having an arbitrary shape. In the
three-dimensional simulation, the virtual boundary of the object with arbitrary
shape is represented by triangular polygons and boundary nodes [7]. In the
present morphing simulation, the object is deformed from one model to another
model by moving these boundary nodes every time step. Once the position of
the boundary nodes at each time step is determined, it is easy to apply the
SIBM to the model. In the present method, the boundary nodes for the model
before deformation is linearly moved to the position of the boundary nodes for
the next model. Therefore, the algorithm in the present method is extremely
easy. Normally, in the SIBM for the moving or deforming object, the additional
forcing term is determined by the moving velocity of the object or boundary.
In the present method, the additional forcing term is estimated under the con-
dition that the velocity is zero even if the object is deformed. It is because the
purpose of the present morphing simulation is to obtain simulation results for a
stationary each model.

3 Application to two-dimensional Model

In this paper, in order to verify the present method, two-dimensional simulations
for the flow around an object are performed. In order to obtain drag coefficients
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Fig. 2. Morphing of model on the Cartesian grid.

of multiple models, the object is deformed in turn from the initial model to each
model in the present morphing simulation. In another case, the morphing has
downtime in each model. In this paper, two-dimensional flows around square,
circular and elliptic cylinder whose drag coefficients can be compared with the
reference results are considered. The computational domain is shown in Fig. 3.
In this simulation, a model is set as shown in Fig. 4 and the model is deformed
in order from 1 to 5. Each process indicates morphing processes. For example,
the model is deformed from 1 to 2 in the process 1, and the model is deformed
from 3 to 2 in the process 3. In the present morphing simulation, firstly, the
static SIBM simulation is performed for the model 1 and then the processes 1
to 4 are performed in the morphing simulation. This deformation may be larger
than the deformation in general shape optimization. In each model, the length
of the side of the square cylinder, the diameter of the circular cylinder, and the
length of the major axis of the elliptic cylinder are the reference length L = 1.
The length of the minor axis of the elliptic cylinder is 0.5. As a result, the
processes 1 and 2 are scaling down the model and the processes 3 and 4 are
scaling up the model. In addition, the processes 1 and 4 are two-dimensional
deformations and the processes 2 and 3 are one-dimensional deformations. As
for the computational conditions, the impulsive start determined by the uniform
flow (u = 1, v = 0) is adopted. On the inflow boundary, the velocity is xed by the
uniform flow and the pressure is imposed by the Neumann condition obtained
by the normal momentum equation. On the outflow and side boundaries (right,
top and bottom boundaries), the velocity is extrapolated from the inner points
and the pressure is obtained by the Sommerfeld radiation condition [13]. On the
virtual boundary and inside the boundary, the velocity condition is the velocity
is zero. The Reynolds number is set as Re = 40. The flow around each model
is steady flow under this Reynolds number. In order to reduce the number of
grid points, the hierarchical Cartesian grid with level 4 is introduced. The grid
resolution near the model is ∆ = 1/80. The number of boundary nodes in each
model is 400 and the distance between the nodes in the case of the square cylinder
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(models 1, 5) which is the largest model is smaller than the grid spacing. In
addition, the boundary node also exists at each vertex of the square cylinder as
shown in Fig. 2.

Fig. 3. Computational domain.

Fig. 4. Configuration of model morphing.

Firstly, in order to obtain the reference results for each model, the conven-
tional static simulations by SIBM without morphing are performed under the
above conditions. In Table 1, the drag coefficient is shown with the reference
results [14–16]. In this paper, the drag coefficient is estimated by

CD =
−2
∫
O

(Gx − uj
∂ui

∂xj
− ∂ui

∂t )ds

ρ0U2
0L

, (8)
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where O denotes the region to which the forcing term is added in the SIBM. ρ0
and U0 denote the reference density and velocity of the flow. The drag coefficient
by the conventional static SIBM is in good agreement with the reference result
in each model. Therefore, these drag coefficients are used as reference results for
verifying the present morphing simulation method.

Table 1. Drag coefficient of each model in static SIBM.

Square cylinder Circular cylinder Elliptic cylinder

Static SIBM (Presents) 1.728 1.568 1.631
Sen et al. [14] 1.787 - -

Dennis et al. [15] - 1.522 -
Sen et al. [16] - - 1.567

In this paper, the morphing simulation is performed under some deforma-
tion speeds. The deformation speed is set by the non-dimensional time for each
process in Fig. 4. In the present simulation, there is no difference in deformation
time between processes. Then, simulations are performed in the case of non-
dimensional time is 1, 2, 4, 8 and 16 for the processes (Case 1 to 5). In other
words, the deformation speed is slower in Case 5 than in Case 1. In addition, in
order to investigate the possibility that the deformation time can be set shorter,
a simulation is performed in which downtime of deformation is set after the de-
formation to each model. In this simulation, the deformation time is the same
1 as Case 1, and the downtime of deformation is 1 (Case 6). That is, the total
time for each process in Case 6 is shorter than Case 3 to 5. The above conditions
are summarized in Table 2.

Table 2. Non-dimensional time for a process in each condition.

Total time for a process
Deformation time Downtime

Case 1 1 -
Case 2 2 -
Case 3 4 -
Case 4 8 -
Case 5 16 -
Case 6 1 1

Figures 5- 8 show the pressure contours of each model. Note that the pressure
contours of the models 2 and 4 by the static SIBM is same. In all cases, the
pressure contours obtained by the present method are similar to those obtained
by the static SIBM. In particular, those in Cases 5 and 6 are in good agreement
with those in the static SIBM.
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(Static SIBM) (Case 1)

(Case 5) (Case 6)

Fig. 5. Pressure contours of model 2.

(Static SIBM) (Case 1)

(Case 5) (Case 6)

Fig. 6. Pressure contours of model 3.
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(Static SIBM) (Case 1)

(Case 5) (Case 6)

Fig. 7. Pressure contours of model 4.

(Static SIBM) (Case 1)

(Case 5) (Case 6)

Fig. 8. Pressure contours of model 5.
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Figure 9 shows time histories of the comparison of the drag coefficients at
each deformation speed. The horizontal axis shows the non-dimensional time
converted into the model number. For example, the model number is 2 when
the horizontal axis is 2 and the model is being deformed from 2 to 3 (process
2) when the horizontal axis is between 2 and 3. Table 3 shows the comparison
of the drag coefficients of each model at each deformation speed. In Case 1-
5, the drag coefficients of each model are closer to the reference values as the
deformation speed is slower. When the model is deformed, oscillations of the
drag coefficient due to the virtual boundary moving across the grid are observed.
These oscillations are remarkable in the case of two-dimensional deformation. In
particular, the results for each model in Case 4 and 5 are close to the reference
results. Therefore, it was shown that the results equivalent to the results by the
conventional static SIBM can be obtained by the present morphing method. In
Case 6, the drag coefficients are shown different from the reference value just like
Case 1 immediately after deformation, however, the values become to the same
level as in Cases 4 and 5 in the deformation downtime. Therefore, it was shown
that the present morphing simulation with downtime can set the deformation
speed faster than the present morphing simulation without downtime.

(Case 1 to 5) (Case 4 to 6)

Fig. 9. Comparison of drag coefficients at each deformation speed.

Table 4 shows the comparison of the rate of computational time of each
morphing process at each deformation speed. Each computational time is based
on the computational time of the process 1 in Case 1. It can be observed that the
longer the non-dimensional time for deformation is, the longer the computational
time is. The computational time of Case 6 is almost the same as Case 2 where
the non-dimensional time of each process is the same. According to the above
results, it was shown that the present method can be accelerated by adding in
the morphing process the downtime.
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Table 3. Drag coefficient of each model.

Model 2 Model 3 Model 4 Model 5

Case 1 1.175 1.288 1.802 2.327
Case 2 1.342 1.461 1.677 2.048
Case 3 1.428 1.567 1.615 1.908
Case 4 1.487 1.617 1.587 1.840
Case 5 1.525 1.638 1.577 1.801
Case 6 1.500 1.607 1.527 1.760

Static SIBM 1.568 1.631 1.568 1.728

Table 4. Rate of computational time of each morphing process.

Process 1 Process 2 Process 3 Process 4

Case 1 1.00 0.67 1.04 1.88
Case 2 1.46 1.19 1.54 2.19
Case 3 2.02 2.03 2.22 2.55
Case 4 2.77 3.05 3.13 3.20
Case 5 3.68 4.50 4.49 4.03
Case 6 1.25 1.01 1.46 2.10

4 Conclusions

In this paper, we proposed the morphing simulation method on the Cartesian
grid in order to realize flow simulations for shape optimization with lower cost
and versatility. By using SIBM that is the Cartesian grid approach, the present
method could be applied very easily to an object with arbitrary shape. In order to
verify the present method, the two-dimensional simulations for the flow around
an object were performed. In order to obtain drag coefficients of multiple models,
the object was deformed in turn from the initial model to each model in the
present morphing simulation. By using the present method, the drag coefficients
for some models could be obtained by one simulation. These drag coefficients
became closer to the reference values by decreasing the deformation speed of
the model. Furthermore, by setting the downtime after the deformation, drag
coefficients close to the reference values were obtained even when the deformation
speed was high. Therefore, it can be concluded that the flow simulation for shape
optimization can be performed very easily and the number of times of flow
simulation for many models can be significantly reduced by using the present
morphing simulation method.
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