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Abstract. To compute flows around a body with a rotating or movable part like 
a tiltrotor aircraft, the multi axes sliding mesh approach has been proposed. This 
approach is based on the unstructured moving grid finite volume method, which 
has adopted the space-time unified domain for control volume. Thus, it can ac-
curately express such a moving mesh. However, due to the difficulty of mesh 
control in viscous flows and the need to maintain the stability of computation, it 
is restricted to only inviscid flows. In this paper, the multi axes sliding mesh ap-
proach was extended to viscous flows to understand detailed flow phenomena 
around a complicated moving body. The strategies to solve several issues not 
present in inviscid flow computations are described. To show the validity of the 
approach in viscous flows, it was applied to the flow field of a sphere in uniform 
flow. Multiple domains that slide individually were placed around the sphere, 
and it was confirmed that the sliding mesh did not affect the flow field. The usa-
bility of the approach is expected to be applied to practical viscous flow compu-
tations. 

Keywords: Computational fluid dynamics, Unstructured moving mesh, Sliding 
mesh approach, Viscous flows. 

1 Introduction 

Numerical simulations of flows around a body with movable parts like a rotorcraft or 
sports athlete has a high utility value for various fields. However, handling a moving 
mesh is challenging in a body-fitted coordinate system. When the movable scope of its 
parts is small, the moving mesh method using a tension spring [1] can be used. On the 
other hand, for large motions, the mesh method is restricted. It is almost impossible to 
express a rotary motion such as the rotor part of a helicopter by using the moving mesh 
method with spring. To resolve this issue, the sliding mesh approach [2] was proposed. 
In this approach, the motion of a body is expressed by sliding the boundary of adjacent 
divided computational domains. This is different from the overset grid method in which 
one domain is put on another domain. An information exchange of physical values be-
tween domains is then conducted by interpolation, which might not satisfy physical 
conservation laws. On the other hand, by using the sliding mesh approach for the infor-
mation exchange, the physical value can be conserved. One of the simplest applications 
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of the sliding mesh approach is the divided cylindrical computational domain for axial 
direction. Its rotating cylinder has been applied to, for example, the simulation of a flow 
around a multistage turbine cascade. Also, one domain can be also embedded in another 
domain. In this case, the embedded sub domain should be cylindrical or spherical. Fur-
thermore, there should not be a gap between two domains during the rotation of the 
embedded domain. 
Although the sliding mesh approach is very useful, it is difficult to express complicated 
motion. For example, the rotor part of a helicopter is expressed with comparative ease, 
but to express the rotor blade of a tiltrotor like the Osprey V-22 is impossible. This is 
because the rotor blade rotates, and moreover, an engine nacelle having a rotor blade 
also rotates on different axis to change the flight mode. In this case, the flows around a 
tiltrotor during rotor-blade mode and fixed-wing mode are computed [3] individually. 
In a simulation focused on changing flight modes, its computations [4] were conducted 
for fixed degrees of the engine nacelle at 0, 30, 60, and 90 degrees as calculating a 
moving engine nacelle was quite difficult. For this issue, we proposed the multi axes 
sliding mesh approach [5], in which the moving engine nacelle is expressed in the mid-
dle size computational domain. The small size domain including the rotating blade is 
then embedded in the middle size domain with both domains embedded in the large 
size main domain. Furthermore, we succeeded in rotating the small and middle domains 
individually. However, the approach is conducted under inviscid flows to prioritize re-
producibility of complicated motion. Therefore, the turbulent flow transition phenom-
enon in the wake of rotor could not be calculated. 
The objective of this paper is to apply the multi axes sliding mesh approach to viscous 
flows. The formulation of the approach and its validity when applying a flow around a 
sphere will be shown. 

2 Numerical Approach 

2.1 Governing equation 

For the governing equation, the following three-dimensional (3D) Navier–Stokes equa-
tion for compressible flows written in conservation law form is adopted. 
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The unknown variables , u, v, w, and e show the gas density, velocity components in 
the x, y, and z directions, and total energy per unit volume, respectively. The working 
fluid is assumed to be a perfect gas, and the pressure p is defined by 
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fE5, fF5, and fG5 are shown in Eq. (4). Here, μ and μt are the coefficients of molecular 
viscosity and eddy viscosity, respectively. Pr, Prt, and Re are the Prandtl number, tur-
bulent Prandtl number, and Reynolds number, respectively. The ratio of specific heats 
 is typically taken as being 1.4. In this study, Pr = 0.72 and Prt = 0.9 are obtained.  
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2.2 Numerical schemes  

The sliding mesh approach is a type of moving mesh approach. In this study, the un-
structured moving grid finite volume method [6] is adopted. The method assures a ge-
ometric conservation law [7] as well as a physical conservation law. A control volume 
in the space-time unified domain (x, y, z, t), which is four-dimensional (4D) for 3D 
flows, is then used. This approach has been mainly applied to Euler equations for in-
viscid compressible flows. In this paper, the approach is discretized for compressible 
viscous Fv flows. For the discretization, Eq. (1), which is written in divergence form, 
is integrated as 

 ∫ ∇෩
ஐ

F෩v𝑑Ω = 0, (5) 

where 
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Since the approach is based on a cell-centered finite volume method, the flow variables 
are defined at the center of the cell in the (x, y, z) space. Thus, the control volume 
becomes a 4D polyhedron in the (x, y, z, t)-domain. For the control volume, Eq. (4) is 
rewritten using the Gauss theorem as: 
 

∫ ∇෩
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௟ୀଵ ,                             (7) 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_4

https://dx.doi.org/10.1007/978-3-030-50436-6_4


4 

where 
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Here, Ns indicates the number of boundary surfaces of the element. l is the volume of 
trajectory generated by the moving boundary surface of the element from t = n to t = 
n+1. Then, Eq. (7) is rewritten as Eq. (9), and by solving Eq. (9), new q is obtained. 
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The inviscid flux vectors are evaluated using the Roe flux difference splitting scheme 
[8] with the MUSCL scheme as well as the Venkatakrishnan limiter [9]. The vectors 
are discretized by central difference. To solve the implicit algorithm, the LU-SGS im-
plicit scheme is adopted.  
 
2.3 Evaluation on a boundary  

On a boundary, the first derivative of a physical value cannot be evaluated using central 
difference. For example, discretization of the first derivative for primitive variable u is 
described. Figure 1 shows a discretization outline of the first derivative. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Discretization outline of the first derivative 
 

The first derivative for primitive variable u is obtained by solving the follow equations. 
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where 
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Here,  v indicates vertex, c indicates the center of an element, and w indicates the center 
of a boundary surface for an element. Also, uw is evaluated as following equation, 
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The vertex of the primitive variable uvi is calculated using the following weighted av-
erage method, where uwj is the physical value at the cell center of the triangle con-
structed by vertex vi and rij is the distance between the vertex and center point of each 
cell around it. 
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3 Sliding Mesh Approach 

3.1 Multi axes sliding mesh approach 

In the sliding mesh approach, a sliding boundary surface exists. Here, the embedded 
sub computational domain is rotated in the main domain. In a 3D system, the embedded 
sub domain should have an almost spherical or cylindrical configuration. Although the 
computational cost using the approach is not expensive, the movable range of vertices 
is limited. In other words, the motions of an object are restricted. Thus, to improve 
flexibility, the axes of the rotating sub domain are added in the approach. However, to 
avoid an interaction between sub domains that have individual axes, one sub domain is 
embedded in the other sub domain, as shown in Fig. 2. In this figure, computational 
domain 3 is embedded in computational domain 2, which is embedded in computational 
domain 1. The whole domain can be moved using the moving computational domain 
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(MCD) method [10]. The advantage of this method is that it does not require a spring 
method to move the object, so it is less likely to create extremely skewed elements. 
Basically, the multi axes sliding mesh approach has the potential to express any object 
motion combined with the MCD method without destroying computational mesh. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Multi axes sliding mesh approach 
 
The physical values on the sliding plane interpolate with each other through the plane. 
Interpolation values are determined depending on the area where domain elements 
overlap. Specifically, the value is calculated in accordance with the area of the overlap-
ping part Sij between the elements of the sliding plane, as shown in Fig. 3. The value of 
the part is defined with Eq. (15). 
 
 
 
 
 
 
 
 

Fig. 3. Overlapping part in slide element 
 








ij
ij

ij
ij

j

i S

Sq

qb
                         (15) 

 

Where  ij
shows the sum of cell j adjacent to cell i. Then, jq is the physical value 

of cell j. 
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3.2 Multi axes sliding mesh for viscous flow computation 

3.2.1 Evaluation of the first derivative on a sliding surface 
 

As the sliding surface is also a boundary, a specific evaluation of the first derivative of 
the primitive variable on the sliding surface is required along with the evaluation of the 
boundary. However, unlike boundaries, there is an element on the opposite side of a 
surface. Thus, the physical value of that element should be used to calculate the first 
derivative of the primitive variable. First, a ghost cell j adjacent to element i through 
the boundary surface of element i is generated. Then, qbj calculated as Eq. (16) is inter-
polated in element j. Here, element k is adjacent to element i across the sliding surface. 
Figure 4 shows a schematic diagram around the sliding surface. 
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Fig. 4. Evaluation of the first derivative on a sliding surface 
 
For example, the first derivative of primitive variable u is calculated using the following 
central difference Eq. (17) and the partially deformed Gauss-Green’s theorem (18). 
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Where hbj is calculated using hk, which is the distance between the center point of ele-
ment k and the center of the adjacent surface of elements i and j, as shown in Eq. (19), 
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In Eq. (18), if adjacent element j is a ghost cell, (j) = 0, else, (j) = 1. 
 
3.2.2 Evaluation of the first derivative on an element having both a sliding surface and 
boundary 

 
In this subsection, an evaluation of the first derivative on an element that has both a 
sliding surface and boundary is described. First, the primitive variable for a vertex lo-
cated on both the sliding surface and boundary is calculated. The first derivative of the 
primitive variable is then calculated using Eqs. (10) to (14). For example, the calcula-
tion procedure of the primitive variable uvi is shown in Eqs. (20) to (22). Its schematic 
figure of this case is shown in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Evaluation of the first derivative on a sliding surface and boundary 
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Where ubj is the primitive variable in the center of the ghost cell of element j that has 
vertex i. The variable is then calculated from Eq. (15). (xck , yck , zck) is the coordinates 
in the center of element k located adjacent to element j across the sliding surface. Fi-
nally, element j has vertex i. If element j is a ghost cell, v(j) = 0, else, v(j) = 1. 
 
3.2.3 Prism element on sliding surface 

 
When viscous flows are computed using an unstructured mesh, it is necessary to use 
quite thin prism elements in the boundary layer. However, if the shape of the body 
boundary is curved, part of an element might overlap the sliding element and static 
element as shown in Fig. 6. If there is no overlap between the elements, the physical 
value cannot be interpolated. Such a problem occurs when the difference between both 
volumes is not small. Thus, the volume difference should be as small as possible. 
 
 
 
 
 
 

 
Fig. 6. Sliding mesh near a body surface 

4 Verification of the Multi Axes Sliding Mesh Approach 

4.1 Application to a flow around a sphere 

The multi axes sliding mesh approach is applied to a viscous flow around a sphere. 
Figure 7 shows a schematic figure of the flow. The sphere is placed in a uniform flow 
with two sliding cylinders, which have rotation axes in different directions. Each sliding 
cylindrical mesh rotates around the static sphere, so the sliding mesh must not affect 
the flow. To confirm the validity of the approach, it is compared with the flow around 
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a sphere in a single mesh. In Fig. 8, case 1 shows a schema of multi axes sliding cylin-
ders around a sphere and case 2 shows its comparison. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Multi axes sliding mesh around a sphere 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Schema of comparative computation 
 
4.2 Initial mesh and computational conditions 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Case 1: Multi axes sliding mesh (Left: atmosphere, Right: sliding cylinders) 
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Fig. 10. Case 2: Single mesh (Left: atmosphere, Right: whole mesh) 
 
Figure 9 shows the initial mesh for case 1. The total number of meshes is 4,219,268. 
Figure 10 shows a single mesh for comparison (case 2). The number of meshes is 
4,578,854. Their elements were created by using MEGG3D [11]. The diameter of the 
computational domain (domain 3 in case 1, whole domain in case 2) is 40 times that of 
the sphere. 
 

Table 1 Conditions to verify the interpolation on the sliding mesh surface in 
consideration of viscosity 

Name Symbol Value 

Initial conditions 

Density  1.0 

Velocity (x-direction) u 0.1 

Velocity (y-direction) v 0.0 

Velocity (z-direction) w 0.0 

Pressure p 1.0 /  

Other conditions 

Time step size t 0.001 

Reynolds number Re 10,000 

Rotational speed of domains  0.05 , 0.03  

Radius (domain 1, domain 2) r1, r2 0.7 , 0.75 

Height (domain 1, domain 2) h1, h2 0.25 , 1.5 

 
Computational conditions are shown in Table 1. The rotations of domains 1 and 2 in 
case 1 are dominated by Eqs. (23) and (24), respectively. Therefore, while both domain 
1 and its axis rotates, only domain 2 rotates and its axis remains fixed. 
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4.3 Computational result 

Figure 11 shows the conditions of the sliding mesh as the result. The sliding motion 
was confirmed to have no skewed and crushed elements. Under the sliding mesh envi-
ronment, a flow around a sphere was computed. Figure 12 shows the velocity contours. 
Around the sphere, the flow in case 1 corresponded reasonably well with that in case 2. 
Thus, highly accurate interpolation was seen on the sliding surface, confirming that the 
sliding mesh did not affect the flow. 
The pressure drag coefficient of the sphere surface in case 1 was compared with that of 
case 2, other calculation results [12], and experimental results [13] as shown in Table 
2. The discrepancy between case 1 and other calculation results is around 1.0%. Fur-
thermore, the deviation from the experimental results is less than 3.0%, which also 
shows the validity of the sliding approach. The discrepancy between case 2 and the 
other calculation and experimental results is larger than case 1 despite no moving and 
sliding mesh around the sphere. This is possibly due to the cylindrical sliding domain 
potentially generating a regular mesh. 
Figure 13 shows the averaged pressure drag coefficient of case 1 and case 2 on a sphere 
surface. As the flow is unsteady, the time-averaged drag coefficient is used. Both match 
in front of the sphere, but there is a slight difference in wake. In general, a complicated 
flow containing vortices occurs behind a sphere. Thus, the mesh behind the sphere 
should be generated delicately. However, interpolation between the first layer of the 
static mesh and sliding mesh might affect such a sensitive flow. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Conditions of the sliding mesh 
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Case 1 
 
 
 
 
 
 
 
 
 

Case 2 
Fig. 12. Velocity contours around sphere 

 
Table 2  Drag coefficient of sphere 

 Case 1 Case 2 Calculated value Experimental value 

Drag coefficient  0.389 0.379 0.393 0.40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Averaged pressure drag coefficient on sphere surface 
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5 Conclusion 

In this paper, the multi axes sliding mesh approach for compressible viscous flows was 
formulated. In particular, the interpolation process between prism elements on sliding 
surfaces was described. As a result of the computation of the flow around a sphere, the 
sliding motion of multiple cylinders without skewed and crushed elements were con-
firmed. The results also showed that there the sliding mesh had no affect on flow. A 
comparison of other experimental and computational results showed the validity of the 
multi axes sliding mesh approach. This approach could potentially be applied to com-
plicated motions like a bicycle rider is computing.  
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