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Abstract. In this work, we develop an efficient energy stable scheme for the 

hydrodynamics coupled phase-field surfactant model with variable densities. 

The thermodynamically consistent model consists of two Cahn–Hilliard–type 

equations and incompressible Navier–Stokes equation. We use two scalar auxil-

iary variables to transform nonlinear parts in the free energy functional into 

quadratic forms, and then they can be treated efficiently and semi-implicitly. A 

splitting method based on pressure stabilization is used to solve the Navier–

Stokes equation. By some subtle explicit-implicit treatments to nonlinear con-

vection and stress terms, we construct a first-order energy stable scheme for the 

two-phase system with soluble surfactants. The developed scheme is efficient 

and easy-to-implement. At each time step, computations of phase-field varia-

bles, the velocity and pressure are decoupled. We rigorously prove that the pro-

posed scheme is unconditionally energy stable. Numerical results confirm that 

our scheme is accurate and energy stable. 
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1 Introduction 

Surfactants, interface active agents, are known to lower the interfacial tension and 

allow for the formation of emulsion [1, 2]. Commonly-used surfactants are am-

phiphilic compounds, meaning they contain both hydrophilic heads and hydrophobic 

tails [1, 3]. This special molecular composition enables surfactants to selectively ab-

sorb on fluid interfaces. Surfactants play a crucial role in everyday life and many 

industrial processes, such as the cleanser essence, the crude oil recovery and pharma-

ceutical materials, thus having an understanding of their behavior is a necessity. Nu-

merical simulation is taking an increasingly significant position in investigating the 

interfacial phenomena, as it can provide easier access to some quantities such as sur-

factant concentration, pressure and velocity, which are difficult to measure experi-

mentally. However, the computational modeling of interfacial dynamics with surfac-

tants remains a challenging task. 

The phase-field model is an effective modeling and simulation tool in investigating 

interfacial phenomena and it has been extensively used with much successes [4]. This 

method introduces a phase-field variable to distinguish two pure phases. The interface 
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is treated as a thin layer, inside which the phase-field variable varies continuously [5, 

6]. Unlike shape interface models, the phase-field model does not need to track the 

interface explicitly, and the interface can be implicitly and automatically captured by 

the evolution of phase-field variable. Therefore, the computations and analysis of the 

phase-field model are easier than other models [7, 8]. 

The phase-field model was first used to study the dynamics of phase separation 

with surfactants in [9]. Two phase-field variables were introduced in their work. Since 

then, a variety of phase-field surfactant models have been proposed and reviews of 

these models can refer to [10-12]. Here we only highlight two representative works. 

The authors in [13] introduced the logarithmic Floy-Huggins potential to restrict the 

range of surfactant concentration. A nonlinear coupling surface energy potential was 

used to account for the high surfactant concentration along the fluid interface. An 

enthalpic term was also adopted to stabilize the phase-field model and control the 

surfactant solubility in the bulk phases. Their model can describe realistic adsorption 

isotherms, e.g., Langmuir isotherm, in thermodynamic equilibrium. In [14], the au-

thors analyzed the well-posedness of the phase-field surfactant model proposed in 

[13], and provided strong evidence that the model was mathematically ill-posed for a 

large set of physically relevant parameters. They made critical modifications to the 

model and substantially increased the domain of validity. In this study, we will use 

this modified model to describe a binary fluid-surfactant system. 

Numerically, it is a challenging issue to discretize the strong couplings between 

two phase-field variables. The introduction of hydrodynamics will further increase the 

complexity for the development of numerical schemes. Several attempts have been 

made to solve the interfacial flows with surfactants [15-18], but none of them can 

provide the energy stability for numerical schemes in theory. Most recently, we con-

structed a first-order and a second-order schemes, which are linear and totally decou-

pled, for a phase-field surfactant model with fluid flow [19]. However, this study only 

considered the case of matched density and viscosity, which greatly reduces difficul-

ties in algorithm developments. Thus, the main purpose of this study is to construct an 

efficient, easy-to-implement and energy stable scheme for the hydrodynamics coupled 

phase-field surfactant model with variable densities.  

The rest of this paper is organized as follows. In Section 2, we describe a hydrody-

namics coupled phase-field surfactant model with variable densities. In Section 3, we 

develop an efficient energy stable scheme carry out the energy stability for the pro-

posed scheme. Several numerical experiments are investigated in Section 4 and the 

paper is finally concluded in Section 5.  

 

2 Governing equation 

In this section, we consider a typical phase-field surfactant model in [14, 19] for a 

two-phase system with surfactants 
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where  F  is the double well potential and  G  the logarithmic Flory–Huggins po-

tential, 
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Two phase-field variables are used in the free energy functional. The first phase-field 

variable uses two constants (–1 and 1 ) to distinguish two phases, and it varies con-

tinuously across the interface between –1 and 1. The other phase-field variable ψ is 

used to represent the surfactant concentration. The parameter Cn determines the inter-

facial thickness and Pi is a temperature-dependent parameter. More details of the free 

energy functional can refer to [6] and [19].  

Although both the double well potential and the Flory–Huggins potential are 

bounded from below, the latter is not always positive in the whole domain. Thus, we 

add a zero term Pi PiB B to the free energy functional, and rewrite (2.1) into 
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where the positive constant B ensures   0,G B   and B = 1 is adopted in this study. 

Note that the free energy is not changed due to the introduction of the zero 

term Pi Pi .B B We now use the scalar auxiliary variable (SAV) approach [12, 20] to 

transform the free functional into a new form. Through the simple substitution of 

scalar variables, the nonlinear parts of the free energy are transformed into quadratic 

forms of new scalar variables. More precisely, we define two scalar variables 

    , ,vuU V EE     (2.3) 

where 
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Then the free energy can be transformed into 
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Through the functional derivatives of Ef with respect to phase-field variables and 

ψ, we can obtain chemical potentials w and w  
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Note that 2 1  are denoted as W in (2.5) and (2.6).  

Evolutions of phase-field variables  and can be described by the conserved 

Cahn–Hilliard–type equations [14, 21],  

  
1

,t w
Pe
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where Pe and Pe are Péclet numbers. A degenerate mobility  1 ,M    which 

vanishes at the extreme points 0  and 1,  is adopted to combine with the loga-

rithmic chemical potential .w  Equations (2.6) – (2.9) are coupled to the Navier–

Stokes equation in the form [4, 14] 
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where ( ) ,TD  u u u and  1 2 .w Pe    J u is the velocity field, p is the pres-

sure, Re is the Reynolds number and Ca is the Capillary number. We usually assume 

the density   and viscosity has the following linear relations, 

 
1 1 1 1

, .
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   
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where  and  are density and viscosity ratios, respectively. 

In particular, if we consider the body force, e.g., the gravitational force, the dimen-

sionless momentum equation read 

    
1

0,
BoCn

1

Re
t D p w w                 u u u u gJ u  (2.11) 

where Bo ReCa is the Bond number, and g is the unit vector denoting the direction of 

body force. 

Periodic boundary conditions or the following boundary conditions 
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can be used to close the above governing system. Here  denotes boundaries of the 

domain.  

The total energy Etot of the hydrodynamic system (2.5) – (2.10) is the sum of kinet-

ic energy Ek and free energy Ef 
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where We ReCaCn, and we can easily derive the following energy dissipation law.  
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Next, we will develop an efficient time-marching scheme for the above governing 

system and carry out the energy estimate. To simplify the presentation, in the next 

section, we will take (2.9) as an example to construct the desired scheme.  

3 Numerical scheme 

3.1 energy stable first-order scheme 

We now present a first-order time-marching scheme to solve the governing system in 

Section 2. To deal with the case of nonmatching density, a cut-off function [4] is de-

fined as 
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Given ,n ,n un and pn, the scheme (3.1) calculates 1,n  1,n  un+1 and pn+1 for n≥0 

in three steps.  

In step 1, we update 1n  and 1n   by solving 
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with periodic boundary conditions or the following boundary conditions 
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In step 2, we update un+1 by solving [22] 
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In step 3, we update pn+1 by solving the pressure Poisson equation with a constant 

coefficient [4, 23] 
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Remark 3.1. (1) Computations of  1 1, ,n n   un+1 and pn+1 are decoupled, which indi-

cate that the scheme (3.1) is efficient and easy-to-implement. At each time step, un+1 

and pn+1 can be obtained by solving only two elliptic equations; Moreover, Vn+1 and 

Un+1 do not involve any extra computational cost, since they can be calculated explic-

itly once we obtain 1n  and 1.n  (2) In the explicit convective velocity * ,n
u we intro-

duce a first-order stabilization term [24], which plays a dominant role in decoupling 

the computation of  1 1,n n   from un+1 and constructing the unconditionally energy 

stable scheme.  

 

Theorem 3.1. The scheme (3.1) is unconditionally energy stable, and satisfies the 

following discrete energy dissipation law:  

  1 1
2 22

1 1CaCn
0,

2

n n nn

tot tot

n n nE
t t t

M w wE D
Pe Pe

  

 

  
        u  (3.2) 

where 

 
     

   

2 2
2 2

2 2

2 22We
Pi

2 4

1 1

4Ex 4

We Cn
,

2

, , Pi ,

n nn n n n

n n

t

n

t

n

n

o

t
p V

B

E

W

U


 


  

    





  

u

  

here  denotes the L2-norm in Ω. Now we will rigorously prove the discrete energy 

dissipation law in (3.2). We first introduce an intermediate kinetic energy [25] as 
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Substituting (3.1i) into (3.1a), we obtain the following identity 
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We can also easily derive from (3.1g) that 
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Using the identity (3.6), we have 
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By taking the L2 inner product of (3.7) with un+1, and using (3.4) and the following 

identities 
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we can derive that 
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Using the equation (3.1g), we obtain 
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 (3.9) 

Summing up equations (3.8) and (3.9), we get 
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 (3.10) 

By taking the L2 inner product of (3.1j) with δt2We(pn+1-2pn+pn-1)/χ and with-

δt2Wepn+1/χ separately, we obtain 
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and 
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Combining (3.11) and (3.12), yields 
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We take the difference of (3.1j) at step tn+1 and tn, pair the resulting equation with 

δt2We(pn+1-2pn+pn-1)/(2χ) then take integration by parts for both sides to derive 
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Summing up equations (3.10), (3.13) and (3.14), and using the triangle inequality 
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we can derive that 
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By taking the inner product of (3.1a) with 1,ntw   we can easily derive that 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50436-6_1

https://dx.doi.org/10.1007/978-3-030-50436-6_1


10 

     
2

1 1 11,, .n n nn n n n nt
t w Mw w

Pe
  






     



     u  (3.17) 

By taking the inner product of (3.1b) with  1 ,n n   we can derive that 
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where     .nn

v

na G E   Taking the inner product of (3.1c) with 2δtPiVn+1 to 

obtain 

        
2 2 2

1 11 1Pi , .Pi n n n n nn n nV V V V V a        



 

 (3.19) 

Summing up equations (3.17) – (3.19), we get 
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By taking the inner product of (3.1d) with 1,ntw  we have 
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By taking the inner product of (3.1e) with  1 ,n n    we can derive that 

 

     

    

   

     

 

2
1 1 1

2
2 2 2

1

1 1 1

1 1 1 1 1 1

1 1 1

2 2 2
1 1 1 1 1

2
1 1 1

Cn
, ,

2

2Ex

Cn
,

4

1

4Ex

1

4

,

1 1
, ,

2

, , ,

,

n n n n n

n

n n n n n

n n n n n n n n n n

n n n n n n

n n n n n n n

n

n

n n

w U b

U

W

W

b

     

        

     

      

 

    

     

  

    



  



 

    

 

   

   

   

  

     


  

     2 2
1 1, , .n n n nW W W    

  

 (3.22) 

where     .n
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n nEb F   Taking the inner product of (3.1f) with 2δtUn+1 to obtain 
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Summing up equations (3.20) – (3.23), and dropping off some positive terms, we 

have 
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Finally, combining (3.16) and (3.24), we arrive at the desired result. 

4 Numerical results 

To implement the scheme (3.1), we use a finite difference method on staggered grids 

to discretize space. We pay special attention to the discretization of the convection 

terms in the Cahn-Hilliard and Navier-Stokes equations. A composite high resolution 

scheme, known as the MINMOD scheme, is used to reduce the undershoot and over-

shoot around the interface. The computations of 1,n  1,n  un+1 and pn+1 can be totally 

decoupled if we replace 1n  in (3.1e) with .n The simplified scheme is extremely 

efficient and easy-to-implement. However, this simplification will definitely destroy 

the unconditional energy stability of our scheme. The implementation of such a sim-

plified scheme requires small time step-sizes to obtain the desired accuracy and ener-

gy stability. The above scheme is adopted in [26] and numerical results demonstrate 

the energy stability of the proposed scheme. Here we will not present these results due 

to the limit of article length.  

We simulate the droplet deformation under the horizontal body force and a shear 

flow in a computational domain Ω = [0, 3] × [0, 1]. Periodic boundary conditions are 

applied on the left and right sides. A circular droplet with the radius of r = 0.3 is ini-

tially placed at (1, 0.5). Other simulation parameters are listed as follows:  

Peϕ = 10, Peψ = 100, Re = 10, Bo = 1, Cn = 0.01, Ex = 1, Pi = 0.1227, λρ = λv = 10. 

Fig. 1 shows the time evolution plots of droplet deformation and surfactant concen-

tration. The droplet continuously deforms and moves forward under the action of the 

shear flow and the body force. We can divide the whole process into two stages based 

on the droplet deformation and surfactant migration. At the first stage, the body force 

has limited effect on the droplet deformation compared with the shear flow. Surfac-

tants gradually migrate toward droplet tips, as shown in Fig. 1(b), resulting in the non-

uniformity of interfacial tension along the interface. As we mentioned before, the 

surfactant concentration gradient induces the Marangoni stress, which will resist the 

further migration of surfactants. However, the Marangoni stress is not large enough to 

balance the effect of shear flow, and surfactants continue to move toward tips. In Fig. 

1 (c), surfactants are swept into the bulk phases when concentration reaches the max-

imum at the droplet tips. At the second stage, the body force plays an important role 

in the droplet deformation and surfactant migration. In Fig. 1(d), surfactants on the tip 
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A are slowly swept towards the ABC segment under the effect of the body force. 

Surfactants along the ADC segment continuously move to the tips under the com-

bined action of the shear flow and the body force. 

Fig. 2 demonstrates the profiles of phase-field variable at three different
b val-

ues. A more prolate profile of is observed for a higher surfactant bulk concentration, 

which confirms the effect of surfactants in reducing the interfacial tension.  

 

Fig. 1. Evolutions of pressure field (background color), quiver plot of velocity (u, v), phase-

field variables ϕ and ψ. For each subfigure, the right is the profile of ψ. (ψb =1.5×10-2). 
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Fig. 2. Profiles of phase-field variable ϕ at t=1 (left) and t=2 (right). (black dash line: ψb=1×10-

6; blue solid line: ψb=1.5×10-2; red solid line: ψb=5×10-2) 

5 Conclusion 

The numerical approximation of incompressible and immiscible two-phase flows with 

soluble surfactants is the main topic in this paper. An efficient, accurate and energy 

stable time-marching scheme is constructed using the SAV approach for the hydrody-

namics coupled phase-field surfactant model with variable densities. We rigorously 

prove the unconditional energy stability of the semi-implicit scheme. Numerical re-

sults demonstrate the energy stability of the proposed scheme.  
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