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Abstract. The construction of quantum computer simulators requires
advanced software which can capture the most significant characteristics
of the quantum behavior and quantum states of qubits in such systems.
Additionally, one needs to provide valid models for the description of the
interface between classical circuitry and quantum core hardware. In this
study, we model electron transport in semiconductor qubits based on an
advanced CMOS technology. Starting from 3D simulations, we demon-
strate an order reduction and the steps necessary to obtain ordinary
differential equations on probability amplitudes in a multi-particle sys-
tem. We compare numerical and semi-analytical techniques concluding
this paper by examining two case studies: the electron transfer through
multiple quantum dots and the construction of a Hadamard gate simu-
lated using a numerical method to solve the time-dependent Schrödinger
equation and the tight-binding formalism for a time-dependent Hamil-
tonian.

Keywords: CMOS quantum dots · charge qubits · position-based charge
qubits · tight binding formalism · split-operator method · electron trans-
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1 Introduction

This work is motivated by the development of Complementary Metal-Oxide-
Semiconductor (CMOS) charge qubits in one of the most advanced technolo-
gies, 22FDX by GlobalFoundries employing a 22 nm Fully-Depleted Silicon-On-
Insulator (FDSOI) process. Building charge, spin or hybrid qubits by exploiting
the fine-feature lithography of CMOS devices is currently a dominant trend to-
wards a large-scale quantum computer [3, 8, 13, 19, 20, 23, 25]. Although of all
the mentioned CMOS silicon qubits, charge qubits have quite short decoherence
time [17,24], they are revisited now in light of the high material interface purity,
fine feature size and fast speed of operation of the latest mainstream nanometer-
scale CMOS process technology (see the review section in Ref. [5]). The speed
of operation of quantum gates can now be ultra short due to the transistor cut-
off frequency reaching half-terahertz in advanced CMOS. Thus, the number of
quantum gate operations can be on the same order as with spin-based or hybrid
qubits. For this reason, the paper is focused on the modelling of charge qubits.
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The development of quantum computer emulators requires high-level soft-
ware representing the physics of quantum structures under study with high ac-
curacy. At the same time, it should incorporate the control of quantum states
of a large number of qubits, the realization of quantum gates, the act of mea-
surement and transport of quantum information including the interface between
classical circuitry and quantum registers, mentioning some of the major com-
ponents needed for such an attempt. To facilitate an accurate modeling of in-
teracting qubits, one is required to solve a many-body quantum system, which
is a very resource intense task for classical simulators. There are some methods
from computational quantum physics that could be used as a first approach for
such problems. The density function theory (DFT) is one of the most known
and, in principle, exact ab initio method [18, 26]. However, it is not applicable
in practice for strongly correlated electron problems, since the exact exchange
correlation functional is not known. In principle, the electrons in the position-
based charge qubits described in this study are strongly interacting by Coulomb
interaction [22]. From this point of view, any single-electron method such as
DFT cannot be reliably used. Configuration interaction methods from quantum
chemistry may also be considered exact ab initio methods, but of course they
are limited to extremely small system sizes due to the well-known exponential
scaling of the Hilbert space with system size, making such methods essentially
useless for our present purposes. By contrast, virtually all methods in quantum
physics employ effective (or reduced) models that capture the essential physics of
interest while throwing away irrelevant details [7]. Such approaches can even be
quantitative semi-empirical, by fitting model parameters to experimental data.

In this study, we will focus on the modelling of a specific type of CMOS silicon
qubits known as position-based charge qubits (or simply as charge qubits) [5].
Starting from 3D simulations, we demonstrate an order reduction and the steps
necessary to obtain ordinary differential equations on probability amplitudes in
a multi-particle system. We compare numerical and semi-analytical techniques
concluding this paper by examining two case studies: electron transfer through
multiple quantum dots and construction of a Hadamard gate simulated using
the time-dependent Schrödinger equation and the tight-binding formalism.

2 Coupled Quantum Dot Chains and Structures in 3D

In this section, we provide the general description of the structures containing
coupled quantum dots (QDs) under study and key results of their Fine-Element
Method (FEM) modelling employing COMSOL Multiphysics. As we aim to pen-
etrate the behaviour of a quantum processor fabricated in a commercial technol-
ogy [3], FEM simulations have been carried out on the structures whose dimen-
sions and composition are inspired by the 22FDX technology of GlobalFoundries.
The schematic 3D structure under study is shown in Fig. 1(a). The parameters
and normalisation units used are presented in Table 1. Each structure can be
seen as transistor-like devices arranged in a chain. Each ‘transistor’ contains a
control gate (which we call an imposer) made of a very thin SiO2 layer, high-k
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Simulations Methodology for Transport in CMOS Quantum Dots 3

Fig. 1. (a) Schematic diagram of a CMOS structure implementing three QDs including
two imposers between the QDs and two injectors/detectors at the edges. (b) Normalised
potential energy as a function of the position obtained from FEM electromagnetic
simulations (orange line) and a simplified piece-wise potential energy function (blue
line).

Table 1. Parameters used for simulations in this study

Elementary charge, e 1.602 × 10−19 C

Effective mass, m∗
e 1.08 × 9.109 × 10−31 kg

Length unit, x0 20 nm

Energy unit, E0
~2/2m∗

ex
2
0 = 1.41 × 10−23 J

= 87.6 µeV

Time unit, t0 2π~/E0 = 47.3 ps

dielectric layer and a thick heavily doped polysilicon layer. Beneath a gate, there
is a thin depleted silicon channel and a thin buried oxide (BoX) layer deposited
on a thick lightly doped silicon wafer. An insulating coat is usually deposited
on the top of the entire structure for electric isolation. The edges of the struc-
ture are connected to classic circuit devices known as single-electron injectors
(detectors).

Semiconductor equilibrium simulations using the Semiconductor module of
COMSOL Multiphysics have been carried out for temperatures ranging from 10
to 100 K to confirm that the silicon channel is completely depleted and there
are no thermally generated carriers or carriers diffused from the interconnec-
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tions with the heavily doped regions belonging to the injectors and detectors [3].
Electromagnetic simulations have been carried out to investigate the electric po-
tential and electric field propagation through the structure when a given voltage
is applied at the imposers. The electric potential developed in the silicon channel
allows us to calculate the modulation of the edge of the conduction band and the
formation of potential energy wells in the channel. An example of the potential
energy on the surface of the silicon channel as a function of the coordinate along
the channel is shown in Fig. 1(b) where one can observe three potential wells
forming in the region between the imposers.

In general, there exist specific imposer voltages so that potential energy “bar-
riers” are formed under the imposers and “wells” are formed in between the
imposers. We refer to the region between the imposers where a potential energy
well is formed as a quantum dot. In the figure, the minimum of the potential
energy is conventionally placed at 0 meV. In a typical scenario, barriers of 1 to
4 meV can be formed when a sub-threshold voltage is applied at the imposers.
The resulting potential energy can be effectively approximated by an equivalent
piece-wise linear function. The time-independent Schrödinger equation (TISE)
with a piece-wise linear potential energy can be solved analytically or numerically
in one, two or three dimensions to find a set of eigenfunctions and eigenenergies.
The time-dependent Schrödinger equation (TDSE) can also be solved (as we
will show later in the paper), but even in the 1D case, it requires substantial
computational resources. The next section outlines the problem overview and
the assumptions taken in this study.

3 Outline of Quantum Mechanical Modelling

As the main model, we consider an isolated quantum system without exter-
nal fluctuations. However, we will also present some results including effects of
decoherence, which arise from the coupling between the quantum system un-
der consideration with the environment. In this paper, the coupling appears as
time-dependent noise terms in the effective Hamiltonian, but it should be noted
that there are a number of approaches to model decoherence effects. Coupling
to a fermionic bath leads to Kondo-type physics and the low-energy quenching
of spin qubits, while coupling to a bosonic environment, leads to the localiza-
tion through the Caldeira-Legget mechanism [15]. In general, we note that both
kinds of processes occur at some characteristic timescale (not instantaneously).
In addition, we neglect other degrees of freedom (spin, valley and orbital) since
we are interested in electron transfer in charge qubits (also called position-based
qubits, as stated earlier).

We start from the fundamental equation in Quantum Mechanics, the Schrö-
dinger equation. We have made some assumptions, which reduce the complexity
of the problem:

1. We are interested in the transfer of an electron through the silicon channel of
a quantum register containing multiple QDs. Since the channel is very thin,
the electron wave function is “shallow” and we can neglect one dimension. In
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addition, FEM simulations show the symmetry of the wave function, hence
we use the reduction of the wave function along the symmetry line. In this
case, it is reasonable to use the 1D modelling [10].

2. The complexity of the multi-electron model is significantly higher than that
of a single-electron one. Our first step is to consider the transfer of one
electron through the channel by changing the imposer voltages.

3. In general, any changes of imposer voltages may cause non-trivial changes
to the potential energy which can cause second-order effects on the wave
function evolution. At the moment we do not take into account second-
and third-order effects associated with abrupt imposer voltage changes of
electronic noise.

The starting point is the 1D time-dependent Schrödinger equation:

i~
∂Φ(x, t)

∂t
=

[
− ~2

2m∗e

∂2

∂x2
+ V (x, t)

]
Φ(x, t), (1)

where ~ is the reduced Plank’s constant, m∗e is the effective mass of the elec-
tron, Φ(x, t) is the wave function of the particle, and V (x, t) is the 1D potential
energy function. The the potential energy of the electron is obtained from the
simulations presented in Sec. 2, see Fig. 1. The potential energy calculated from
the FEM simulations and its changes due to the variation of imposer voltages
are exported as a table function from the COMSOL electrostatic simulator and
is used as a ‘pre-generated’ input parameter of the quantum simulator.

In order to have a useful simulator of the studied quantum structure, one
needs to define a possible “localised” state of an electron injected in the structure,
simulate its evolution with time at a given potential energy along the structure
and calculate the probability of the electron to be measured at the edges of
the structure by a detector device. The eigenenergies and eigenfunctions of the
time independent case are particularly useful since they define the frequency of
transitions, and, as the next step, we address the calculation eigenfunctions for
an arbitrary shaped potential energy.

4 Eigenenergy and Eigenfunction Calculation Using the
Matrix Diagonalisation Method

In this section, we discuss a method for obtaining an approximate solution to a
one-dimensional TISE [14]. A distinguishable feature of this method is that it
allows one to obtain all the bound states and their corresponding wave functions
at once. The method is closely related but not equivalent to the perturbation
theory [12]. Assume that an electron is confined by a finite potential V (x) and
this finite potential is located inside an infinite potential well V∞(x), so that the
Hamiltonian Ĥ of such a system reads

Ĥ = Ĥ0 + V̂ . (2)
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Here Ĥ0 is the Hamiltonian operator that corresponds to the problem of a par-
ticle (an electron) in an infinite potential well, Ĥ0 = −~2/2m · d2/dx2 + V∞(x).

The eigenvalues E
(0)
n and eigenfunctions ψ

(0)
n of such an operator are well known.

The eigenfunctions ψn and eigenvalues En of the operator (2) are the solutions
to the equation

(Ĥ0 + V̂ )ψn = Enψn. (3)

Since the functions ψ
(0)
n form a complete basis set, for the required functions ψn

we can write the expansion

ψn =
∑
m

cnmψ
(0)
m , (4)

where cnm are unknown coefficients. Thus, the initial equation (3) yields∑
m

cnm(Ĥ0 + V̂ )ψ(0)
m = En

∑
m

cnmψ
(0)
m . (5)

Multiplying both sides of the latter equation by ψ
(0)∗
k and integrating over the

variable x, we obtain∑
m

cnmHkm = Encnk, where Hkm = E
(0)
k δkm + Vkm. (6)

The matrix element Vkm is determined by the potential V (x):

Vkm =

∫
ψ
(0)∗
k V (x)ψ(0)

m dx.

=
2

L

L∫
0

sin

(
kπx

L

)
V (x) sin

(mπx
L

)
dx (7)

Thus, the problem of solving the differential equation (3) is reduced to the square
matrix equation problem (6) that involves the integrals (7). The coefficients
cnm form the eigenvectors of the Hamiltonian matrix Hkm where n stays for
the index of a given bound energy level. Such a problem is usually solved by
a matrix diagonalisation procedure, hence the name of the method. Below we
discuss different potentials V (x) and their impact on the solution.

In case of a square well (potential barrier) structure, the integration in (7) is
trivial. Indeed, for a piece-wise potential that takes either zero or some constant
value Vi for x ∈ [a, b], we have

Vkm = Vi ×


1

2

(
x− L

πk2
sin

k2π

L
x

)∣∣∣∣b
a

, k = m;

L

2π

(
sin(k −m)πx/L

k −m
+

sin(k +m)πx/L

k +m

)∣∣∣∣b
a

, k 6= m.

(8)

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_50

https://dx.doi.org/10.1007/978-3-030-50433-5_50


Simulations Methodology for Transport in CMOS Quantum Dots 7

0

10

20

30

40

50

60
En

er
gy

Real Potential

0

10

20

30

40

50

60

Coarse Piecewise

0

10

20

30

40

50

60

Fine Piecewise

0 2 4 6 8 10 12 14
x/x0

5

6

7

8

9

10

En
er

gy

E = 5.09E0

E = 6.47E0

E = 8.05E0

E = 8.72E0

E = 9.18E0

E = 10.02E0

0 2 4 6 8 10 12 14
x/x0

0.0

0.5

1.0

1.5

2.0

2.5

E = 0.55E0 E = 0.55E0 E = 0.55E0

E = 2.19E0 E = 2.19E0 E = 2.19E0

0 2 4 6 8 10 12 14
x/x0

4

5

6

7

8

9

E = 3.54E0

E = 4.98E0

E = 6.81E0

E = 7.24E0

E = 7.98E0

E = 8.86E0

Fig. 2. Energy spectra of the potential generated from FEM simulations (COMSOL)
and the six lowest energy levels with the corresponding wave functions for the three
cases: realistic potential function integrated with splines (left), coarse piece-wise ap-
proximation (middle) and fine piece-wise approximation (right). Left, realistic potential :
the lowest energy levels (as well as the corresponding wave functions) exhibiting bound
states ‘localised’ in each well. Middle, coarse piece-wise approximation: the lowest en-
ergy levels are grouped in three, exhibiting ‘non-localised’ bound states. Right, fine
piece-wise approximation: the lowest energy levels are of the same order as those of the
realistic potential energy; the wave functions match qualitatively.

When the potential V (x) is given by some continuous but known function,
the integration in (7) should not be problematic. While it can be tedious, in
principle this is a solvable problem.

In the present study, we use the smooth potential energy generated by FEM
simulations as shown in Fig. 1. For comparison, we create its coarse piece-wise
approximation and also its fine piece-wise approximations as shown in Fig. 2.
The realistic smooth potential energy function is given in form of data points,
and thus the easiest approach to the calculation of (7) is numerical integration
(e.g., using splines). Placing the potential inside an infinite well of length L
and separating it from the edges with a distance h, as described above, we
obtain equivalent formulation of the problem within the Matrix Diagonalisation
Method.

The result of the eigenenergy and eigenfunction calculations for the realistic
potential energy3 is shown in Fig. 2 in the left column. We have used 320 ba-
sis functions, and the width of the surrounding infinite well was L = 44.472 of

3 The source code for this section is available from www.github.com/mishagli/qsol
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Fig. 3. High-level algorithm illustrating the steps of the split-operator method.

dimensionless units, which gave 32 bound states. One can see that such a po-
tential has a nontrivial asymmetric allocation of the wave functions. The coarse
and fine piece-wise approximations to the realistic function are shown in the
same figure in the middle and right columns correspondingly. In the case of the
coarse approximation, when the fine features of the potential energy such as
“double-wells”are ignored, the lowest energy levels are grouped so that they are
hardly distinguishable. There is also a significant difference in the values of the
eigenenergies compared to the realistic case. On the other hand, the fine piece-
wise approximation allows one to preserve both qualitative and quantitative
properties of the real potential energy.

Solving the time independent problem gives a good understanding of the
system’s properties at early stages of modelling. The time-dependent solution is
discussed next.

5 Split-Operator Method

Since we would like to model the evolution of an electron injected into a reg-
ister of coupled QDs and subject to a variable potential energy, we employ a
Split-Operator Method (SOM) to solve the time-dependent problem [2,11]. This
method has been chosen due to its effectiveness at a moderate computational
cost. Since the method is well documented, we provide only its brief description,
discuss its computational cost and show its application to the studied system.

The split-operator method is based on the fact that in conventional cases
it is possible to split the Hamiltonian operator into two components, one be-
ing position dependent Ĥr and the other being momentum dependent Ĥk [16].
Moreover, it is possible to show that in the position space, the Ĥr operator is
reduced to the multiplication of the wave function by a position dependent func-
tion. The same reduction can be done for the momentum dependent component
of the Hamiltonian operator in the momentum space. This concept is illustrated
in Fig. 3.

This method allows one to observe the evolution of the wave function with
time, which is particularly useful in the case of a time-dependent Hamiltonian. It
also allows one to calculate the ground state of a system (in this case one can use
the imaginary time step idt). In our case, when we deal with multiple potential
wells (or as we say coupled quantum dots), it allows us to obtain corresponding
localised states. The construction of the localised states in a system with the
potential energy from Section 2 by the use of SOM is compared with that ob-
tained by applying a unitary transformation on the eigenfunction set (obtained
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in Sec. 4). Both methods show a good agreement. However, it is more convenient
to use the matrix diagonalisation method in order to obtain the full spectrum
of possible states.

With regard to the computational cost of this method, it has two contributing
aspects:

� The calculation of the forward and inverse Fast Fourier Transforms (FFT
and iFFT correspondingly) is proportional to the number of discretisation
points n as n ln(n). A higher number n provides a higher resolution for the
wave function, and therefore for the probability density function. Note that
in order to use the FFT algorithm, the number of coordinate points should
be a power of 2 (in our case, 512).

� This operation is repeated over a desired number of time steps dτ . The
accuracy of the SOM is O(dt3), and thus the time step operation should be
done with a relatively small time step (in our case 10−4 of dimensionless
units of time).

After we have implemented the split-operator method and ensured that it
gives consistent results, our next task is to simulate the behaviour of an electron
in a quantum register. We will show two examples: the transport of an electron
from the first to the last QD in the register combined with electron probability
oscillations and “spliting” electron’s wave function between a number of QDs.
These simulations are presented in a later section using the coarse piece-wise
approximation and by adjusting the height of the potential barriers separating
the QDs.

6 Multiple Quantum Dot Model in the Tight Biding
Formalism

In this section, we will introduce the tight binding formalism. This will allow one
to capture the time dependent dynamics assuming an ideal quantum transport in
the quantum structure (register) and can be easily extended to multi-particle and
multi-energy level systems [5,9]. We use this approach for additional verification
of the SOM modelling.

In the tight binding formalism, we assume that electrons can be represented
by wave functions associated with localised states in a discrete lattice. We can
visualize the quantum register of Fig. 1(a) as a pseudo-1D lattice. For each
QD, we consider one effective quantum state, which can be represented as |j〉,
where j = 1, 2, 3... is an integer denoting the position of each QD. Then, the
Hamiltonian of the system can be written as:

Ĥ = −ts

∑
jk

ĉ†j ĉk + ĉ†k ĉj

 (9)

where ĉ†j (ĉj) are the creation (annihilation) operators, which create (annihilate)
a particle at site j. The terms ts,jk are describing tunnelling, i.e., the hopping
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of electrons from site j to site k in the lattice. Here, we will consider the sym-
metrical case, and therefore we will omit the potential energy of each QD (since
it only shifts the total energy of the system by a constant and has no physical
contribution to its evolution). We will also assume that sites k and j are im-
mediate neighbors, and we will disregard any probability of a particle hopping
to a distant QD. It should be noted that for single-electron tunneling processes
through potential barriers, the tunneling rate is exponentially suppressed in the
barrier height and width, therefore this is a reasonable assumption. In this rep-
resentation, the wave function can be expressed as a linear combination in the
position basis:

|Ψ〉 =
∑
k

ck(t) |k〉 (10)

where ck(t) are the complex probability amplitudes of the states |k〉, and the
normalisation restriction applies

∑
k |ck(t)|2 = 1. Furthermore, by considering

the time-dependent Schrödinger equation [5], one can write:

i~
dC(t)

dt
= Ĥ(t)C (11)

where C(t) = {c1(t), c2(t), . . . , ck(t)} is the vector of the probability amplitudes.
In this work, we are interested in describing the dynamics of the system

for a time-dependent case where the hopping coefficients ts,jk do not remain
constant with time (and can be increased or decreased by means of controlling
the potential energy function). In order to perform quantum operations, one
needs to apply a correct sequence of voltage pulses at the imposers (gates) at
specific time instances, changing the tunnelling probabilities. In such a case, the
Hamiltonian of the system is changing with time. In the system under study
we can consider a sudden change in the Hamiltonian [21]. Also, the applied
external fields (square voltage pulses) will be assumed of small magnitudes. As
a consequence, the Hamiltonian of the system takes the form:

Ĥ(t) =

 0 th,21(t) 0
th,12(t) 0 ts,32(t)

0 ts,23(t) 0

 (12)

where each of the th,jk hopping terms is a piece-wise time dependent-function
of the form:

th,jk =

 th,low t < tjk,0
th,high tjk,0 ≤ tjk ≤ tjk,0 + tjk,width

th,low t > tjk,0 + tjk,width.
(13)

where tjk,0 is the initial time instance when the pulse is applied at the imposer
separating the quantum dots j and k, and tjk,width is the time duration for which
the pulse is applied. Note that one needs to match the initial conditions between
the solutions of (11), before and after the application of the pulse. The values
used in this simulation are: th,high = 2.82E0, th,low = 0.0013E0.
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Fig. 4. Transport of a single injected electron from dot 1 to dot 3. (a) Control pulses
applied to imposers and corresponding hopping terms. (b) Probability heatmap gen-
erated by the SOM showing electron transfer and Rabi oscillations between pairs of
dots. (c) Probability of detecting an electron in each quantum dot (lines correspond to
the SOM, circles — to the tide-binding formalism).

Fig. 5. Rotation gate operation applied onto a single injected electron in dot 1 and
detected at both detectors. (a) Control pulses applied to imposers and corresponding
hopping terms. (b) Probability heatmap generated using the SOM showing the reaction
of the electron to the pulses. (c) Probability of detecting the electron in each quantum
dot.

7 Discussion of Simulation Results

Figure 4 demonstrates the transfer of an electron injected to dot 1 and detected
by two detectors (1 and 2) placed at the opposite edges of the structure. Two
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Fig. 6. Simulation of decoherence on example of a triple well system, where the left
and right walls are 200 units tall. The barrier that separates wells II and III is fixed and
equals 64 units. The barrier between wells I and II switched randomly between Vmin = 4
and Vmax = 5 units in accordance to the telegraph noise. The average switching time
is ≈ 0.2 ns.

pulses of 2.6 ns duration and 60 mV amplitude are applied at imposers 1 and
2 respectively (Fig. 4(a)). The heatmap (Fig. 4(b)) demonstrates the PDF of
the injected electron as a function of time (the horizontal axis) and coordinate
along the register (the vertical axis), and its reaction to the applied pulses. The
most informative is Fig. 4(c) which shows the probability of electron being in
each of the dots, and the final measurement in form of a probability histogram.
It is obvious that in this case it is possible to transport the electron faster, but
this graph was also made to demonstrate the feasibility of Rabi oscillations with
period T0 between the two dots when the barrier separating the dots is lowered.
Thus, to make the transport operation, we need to have the pulse duration
T0/2 + kT0 with integer k.

An X-rotation gate is an operation which allows one to control the probability
of detecting an electron. In order to “split” the electron’s wavefunction into
two equal parts, one needs to apply a pulse of duration equal to T0/4 + kT0
(Fig. 5(a)). Note that the second pulse applied is two times longer since we
aimed at transporting a ‘part’ of the wave function to the third well. As one
can see, the shown pulses allow one to realise an X-rotation gate. However, it is
evident that each operation leaves some residual wave function in the dots, and
thus it affects the accuracy (fidelity) of each operation.

The presented results do not take into account decoherence effects or non-zero
temperatures. However, it would have been unfair not to mention the decoher-
ence that results from fluctuations, which always take place in a real system.
Using a simple two-levels telegraph noise model [1, 4, 6], we modified the al-
gorithm described in Section 5. We run 100 simulations with the same initial
conditions, where the height of the first potential barrier switches from Vmin to
Vmax randomly. For each simulation, the switching time intervals were gener-
ated independently in accordance to the exponential distribution with the mean
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switching interval much grater than the simulation length. The corresponding
results are shown in Fig. 6. They demonstrate that the fluctuations of the po-
tential energy result in the decay of Rabi oscillations. The green shadowed area
corresponds to the Student’s 95% confidence interval.

8 Conclusions

In this paper, we discussed the the development of a quantum simulator for
charge qubits based on FDSOI CMOS technology. We started from the descrip-
tion of the system and proceeded with the discussion and comparison of numeri-
cal and semi-analytical techniques to model the behaviour of a single electron in
such a structure. We presented a high-level multi-particle model to simulate the
evolution of the various quantum states in such a system using the tight binding
approach. We demonstrated two case studies: the electron transport through
multiple QDs and the construction of an X-rotation gate, and showed the effect
of decoherence due to potential energy fluctuations.
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