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Abstract. One of the main problems in quantum information systems is the pres-
ence of errors due to noise. Many quantum error correcting codes have been de-
signed to deal with generic errors. In this paper we construct new stabilizer codes
able to correct a given number eg of generic Pauli X,Y and Z errors, plus a
number eZ of Pauli errors of a specified type (e.g., Z errors). These codes can
be of interest when the quantum channel is asymmetric, i.e., when some types of
error occur more frequently than others. For example, we design a [[9, 1]] quan-
tum error correcting code able to correct up to one generic qubit error plus one
Z error in arbitrary positions. According to a generalized version of the quantum
Hamming bound, it is the shortest code with this error correction capability.

1 Introduction

The possibility to exploit the unique features of quantum mechanics is paving the way
to new approaches for acquiring, processing and transmitting information, with appli-
cations in quantum communications, computing, cryptography, and sensing [1–10]. In
this regard, one of the main problem is the noise due to unwanted interaction of the
quantum information with the environment. Error correction techniques are therefore
essential for quantum computation, quantum memories and quantum communication
systems [11–14]. Compared to the classical case, quantum error correction is made
more difficult by the laws of quantum mechanics which imply that qubits cannot be
copied or measured without perturbing state superposition [15]. Moreover, there is con-
tinuum of errors that could occur on a qubit. However, it has been shown that in order
to correct an arbitrary qubit error it suffices to consider error correction on the discrete
set of Pauli operators, i.e., the bit flip X , phase flip Z, and combined bit-phase flip
Y [11, 16–18]. Hence, we can consider in general a channel introducing qubit errors
X , Y , and Z with probabilities px, py, and pz, respectively, and leaving the qubit in-
tact with probability 1 − ρ, where ρ = px + py + pz. A special case of this model is
the so-called depolarizing channel for which px = py = pz = ρ/3. Quantum error
correcting codes for this channel are naturally designed to protect against equiprobable
Pauli errors [19–21].
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However, not all channels exhibit this symmetric behaviour of Pauli errors as, in
some situations, some types of error are more likely than others [22]. In fact, depend-
ing on the technology adopted for the system implementation, the different types of
Pauli error can have quite different probabilities of occurrence, leading to asymmet-
ric quantum channels [23, 24]. An example is the Pauli-twirled channel associated to
the combination of amplitude damping and dephasing channels [23]. This model has
px = py and pz = Aρ/(A + 2), where ρ is the error probability, and the asymmetry
is accounted for by the parameter A = pz/px. This parameter is a function of the re-
laxation time, T1, and the dephasing time, T2, which are in general different, leading to
A > 1 [24, 25].

Owing to this considerations, it can be useful to investigate the design of quantum
codes with error correction capabilities tailored to specific channel models. For exam-
ple, codes for the amplitude damping channel have been proposed in [26–31], while
quantum error correcting codes for more general asymmetric channels are investigated
in [22–25]. In particular, asymmetric Calderbank Shor Steane (CSS) codes, where the
two classical parity check matrices are chosen with different error correction capabil-
ity (e.g., Bose Chaudhuri Hocquenghem (BCH) codes for X errors and low density
parity check (LDPC) codes for Z errors), are investigated in [22, 23]. Inherent to the
CSS construction there are two distinct error correction capabilities for the X and the
Z errors; the resulting asymmetric codes, denoted as [[n, k, dx/dz]], can correct up to
tx = b(dx − 1)/2c Pauli X errors and tz = b(dz − 1)/2c Pauli Z errors per codeword.
In fact, due to the possibility of employing tools from classical error correction, many
works have been focused on asymmetric codes based on the CSS construction, which,
however, may not lead to the shortest codes (e.g., for the symmetric channel compare
the [[7, 1]] CSS Steane code with the shortest [[5, 1]] code [20, 21]).

In this paper, we relax the CSS constraint in order to obtain the shortest asymmetric
stabilizer codes able to correct a given number eg of generic Pauli errors, plus a number
eZ of Pauli errors of a specified type (e.g., Z errors). We denote these as the asym-
metric [[n, k]] codes with (eg, eZ). To this aim we first derive a generalized version of
the quantum Hamming bound, which was developed to correct generic errors, for an
asymmetric error correction capability (eg, eZ). Then, we construct a [[9, 1]] code with
(eg = 1, eZ = 1) which, according to the new quantum Hamming bound, is the shortest
possible code. Finally, we extend the construction method to the class of [[n, 1]] codes
with eg = 1 and arbitrary eZ.

2 Notation

A qubit is an element of the two-dimensional Hilbert space H2, with basis |0〉 and
|1〉 [32]. An n-tuple of qubits (n qubits) is an element of the 2n-dimensional Hilbert
space, H2n, with basis composed by all possible tensor products |i1〉 |i2〉 · · · |in〉, with
ij ∈ {0, 1}, 1 ≤ j ≤ n. The Pauli operators, denoted as I,X,Z, and Y , are defined
by I |a〉 = |a〉, X |a〉 = |a⊕ 1〉, Z |a〉 = (−1)a |a〉, and Y |a〉 = i(−1)a |a⊕ 1〉 for
a ∈ {0, 1}. These operators either commute or anticommute.

With [[n, k]] we indicate a quantum error correcting code (QECC) that encodes k
data qubits |ϕ〉 into a codeword of n qubits |ψ〉. We use the stabilizer formalism, where a
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stabilizer code C is generated by n−k independent and commuting operators Gi ∈ Gn,
called generators [32–34]. The code C is the set of quantum states |ψ〉 satisfying

Gi |ψ〉 = |ψ〉 , i = 1, 2, . . . , n− k . (1)

Assume a codeword |ψ〉 ∈ C affected by a channel error described by the opera-
tor E ∈ Gn. For error correction, the received state E |ψ〉 is measured according to
the generators G1,G2, . . . ,Gn−k, resulting in a quantum error syndrome s(E) =
(s1, s2, . . . , sn−k), with each si = 0 or 1 depending on the fact that E commutes
or anticommutes with Gi, respectively. Note that, due to (1), the syndrome depends on
E and not on the particular q-codeword |ψ〉. Moreover, measuring the syndrome does
not change the quantum state, which remains E |ψ〉. Let S = {s(1), s(2), . . . , s(m)}
be the set of m = 2n−k possible syndromes, with s(1) = (0, 0, . . . , 0) denoting the
syndrome of the operators E (including the identity I , i.e., the no-errors operator) such
that E |ψ〉 is still a valid q-codeword. A generic Pauli error E ∈ Gn can be described by
specifying the single Pauli errors on each qubit. We use Xi,Yi,Zi to denote the Pauli
X,Y ,Z error on the i-th qubit.

3 Hamming Bounds for Quantum Asymmetric Codes

The standard quantum Hamming bound (QHB) gives a necessary condition for the exis-
tence of non-degenerate error correcting codes: a quantum code which encodes k qubits
in n qubits can correct up to t generic errors per codeword only if [17, 35]

2n−k ≥
t∑

j=0

(
n

j

)
3j . (2)

The bound is easily proved by noticing that the number of syndromes, 2n−k, must be
at least equal to that of the distinct errors we want to correct. Since for each position
there could be three Pauli errors (X , Y or Z), the number of distinct patterns having j
qubits in error is

(
n
j

)
3j , and this gives the bound (2).

In this paper we investigate non-degenerate QECCs which can correct some generic
errors (X , Y or Z), plus some fixed errors (e.g., Z errors). We derive therefore the
following generalized quantum Hamming bound (GQHB).

Theorem 1 (Generalized Quantum Hamming Bound). A quantum code which en-
codes k qubits in n qubits can correct up to eg generic errors plus up to eZ fixed errors
per codeword only if

2n−k ≥
eg+eZ∑
j=0

(
n

j

) eg∑
i=0

(
j

i

)
2i . (3)

Proof. For the proof we need to enumerate the different patterns of error. The number
of patterns of up to eg generic errors is given by (2) with t = eg. Then, we have to add
the number of configurations with eg < j ≤ eg + eZ errors, composed by eg generic
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errors and the remaining j − eg Pauli Z errors. We can write

2n−k ≥
eg∑
j=0

(
n

j

)
3j +

eg+eZ∑
j=eg+1

(
n

j

)[
3j − f(j; eg)

]
(4)

where f(j; eg) is a function that returns the number of non-correctable patterns of j
errors. This is the solution of the following combinatorial problem: given j positions of
the errors, count the number of all combinations with more than eg symbols from the
set PXY = {X,Y } and the remaining from the set PZ = {Z}. We have therefore

f(j; eg) =

j−eg−1∑
i=0

(
j

i

)
2j−i (5)

which allows to write

g(j; eg) = 3j − f(j; eg)

=

j∑
i=0

(
j

i

)
2j−i −

j−eg−1∑
i=0

(
j

i

)
2j−i

=

j∑
i=j−eg

(
j

i

)
2j−i =

eg∑
i=0

(
j

i

)
2i . (6)

It is easy to see that g(j; eg) is equal to 3j if j ≤ eg, so substituting and incorporating
the summation in (4) we finally obtain

2n−k ≥
eg+eZ∑
j=0

(
n

j

)
g(j; eg) =

eg+eZ∑
j=0

(
n

j

) eg∑
i=0

(
j

i

)
2i . (7)

The GQHB can be used to compare codes which can correct t generic errors with codes
correcting a total of t errors with eg of them generic and the others fixed. In Table 1
we report the minimum code lengths nmin resulting from the Hamming bounds, for
different values of the total number of errors t, and assuming eg = 1 for the GQHB.
From the table we can observe the possible gain in qubits for the asymmetric case.

t = 1 t = 2 t = 3 t = 4

k = 1 5,5 10,9 15,12 20,15
k = 2 7,7 12,10 16,14 21,17
k = 3 8,8 13,12 18,15 23,19

Table 1: Comparison between the minimum code lengths nQHB
min , n

GQHB
min according to the

Hamming bounds (2), (3). For the GQHB t = eg + eZ with eg = 1.
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4 Construction of short asymmetric codes by syndrome
assignment

In this section we present a construction of short stabilizer asymmetric codes with k =
1 and eg = 1, i.e., for [[n, 1]] QECCs with error correction capability (1, eZ). The
design is based on the error syndromes: specifically, we proceed by assigning different
syndromes to the different correctable error patters.

Let us first observe that the vector syndrome of a composed error E = E1E2, with
E1,E2 ∈ Gn, can be expressed as s(E) = s(E1E2) = s(E2E1) = s(E1) ⊕ s(E2)
where ⊕ is the elementwise modulo 2 addition. Moreover, XZ = iY , and for the
syndromes we have s(XiZi) = s(Yi), s(XiYi) = s(Zi), and s(YiZi) = s(Xi).
Hence, once we have assigned the syndromes for the single error patterns Xi and Zi,
with i = 1, . . . , n, the syndromes for all possible errors are automatically determined.

The key point in the design is therefore to find an assignment giving distinct syn-
dromes for all correctable error patterns.

In the following, if not specified otherwise, the indexes i, j will run from 1 to n, and
the index ` will run from 1 to n − 1. Also, the weight of a syndrome is the number of
non-zero elements in the associated vector.

4.1 Construction of [[n, 1]] QECCs with eg = 1, eZ = 1

For this case we need to solve the following problem: assign 2n syndromes s(Xi) and
s(Zi) such that the syndromes of the errors I , Xi, Yi, Zi, XiZj , YiZj , ZiZj , ∀i 6= j,
are all different.
Now, we aim to construct the shortest possible code according to the GQHB, i.e., a code
with n = 9 (see Table 1). We start by assigning the syndromes of Zi as reported in the
following table.

s8 s7 s6 s5 s4 s3 s2 s1

Z1 0 0 0 0 0 0 0 1
Z2 0 0 0 0 0 0 1 0
Z3 0 0 0 0 0 1 0 0
Z4 0 0 0 0 1 0 0 0
Z5 0 0 0 1 0 0 0 0
Z6 0 0 1 0 0 0 0 0
Z7 0 1 0 0 0 0 0 0
Z8 1 0 0 0 0 0 0 0
Z9 1 1 1 1 1 1 1 1

Table 2: Assigned syndromes for single Pauli Z errors.

With this choice we have assigned all possible syndromes of weight 1 and 8. Also, the
combinations of ZiZj with i 6= j, cover all possible syndromes of weight 2 and 7.
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To assign the syndromes of Xi we then use a Monte Carlo approach. To reduce the
search space, i.e., the set of possible syndromes, we observe the following:

– The weight of s(Xi) cannot be 3 or 6. This is because otherwise s(ZjXi) would
have weight 2 or 7 for some i and j, which are already assigned for errors of the
type ZiZj . Therefore the possible weights for s(Xi) are only 4 and 5. The same
observation applies to s(Yi). We then fix the weight for s(Xi) equal to 4.

– We can obtain s(Y`) with weight 5 for ` = 1, . . . , 8, by imposing to “0” the `-th
element of the syndrome of X`. Note that Y9 has weight 4 since X9 has weight 4.

By following the previous rules, a possible assignment obtained by Monte Carlo is
reported in Table 3.

s8 s7 s6 s5 s4 s3 s2 s1

X1 1 0 1 1 1 0 0 0
X2 1 0 0 1 0 1 0 1
X3 0 0 1 0 1 0 1 1
X4 1 1 1 0 0 1 0 0
X5 0 1 0 0 1 1 0 1
X6 1 1 0 0 0 0 1 1
X7 0 0 1 1 0 1 1 0
X8 0 1 0 1 1 0 1 0
X9 1 0 0 0 1 1 1 0

Table 3: Possible syndromes for single Pauli X errors.

From Table 2 and Table 3 we can then build the stabilizer matrix with the following
procedure, where sj (Xi) indicates the j-th elements of the Xi’s syndrome:

– if sj (Xi) = 0 and sj (Zi) = 0 put the element I in position (j, i) of the stabilizer
matrix because it is the only Pauli operator which commutes with both.

– if sj (Xi) = 1 and sj (Zi) = 0 put the element Z in position (j, i) of the stabilizer
matrix because it is the only Pauli operator which commutes with Z and anti-
commute with X .

– if sj (Xi) = 0 and sj (Zi) = 1 put the element X in position (j, i) of the stabilizer
matrix because it is the only Pauli operator which commutes with X and anti-
commute with Z.

– if sj (Xi) = 1 and sj (Zi) = 1 put the element Y in position (j, i) of the stabilizer
matrix because it is the only Pauli operator which anti-commutes with both.

The resulting stabilizer matrix, after checking the commutation conditions, is repre-
sented in Table 4.
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1 2 3 4 5 6 7 8 9

G1 X Z Z I Z Z I I X
G2 I X Z I I Z Z Z Y
G3 I Z X Z Z I Z I Y
G4 Z I Z X Z I I Z Y
G5 Z Z I I X I Z Z X
G6 Z I Z Z I X Z I X
G7 I I I Z Z Z X Z X
G8 Z Z I Z I Z I X Y

Table 4: Stabilizer for a [[9, 1]] QECC with eg = 1 and eZ = 1.

4.2 Construction of [[n, 1]] QECCs with eg = 1 and eZ > 1

The construction presented in the previous section can be generalized to the case of
more fixed errors, eZ > 1. In this section we indicate t̃ = eg+eZ. By adopting the same
assignment proposed in Table 2, it is easy to see that we use all possible syndromes with
weight in the range

[
0, t̃
]

and
[
n− t̃, n− 1

]
, covering all possible error operators with

up to t̃ errors of type Z. For the assignment of the syndromes s(Xi) we can generalize
the previously exposed arguments, as follows:

– The weight of s(Xi) cannot be less than 2t̃ or greater than n− 2t̃. This is because
otherwise s(Zj1 . . .ZjLXi) would have weight in the range

[
0, t̃
]

or
[
n− t̃, n−1

]
for some L ≤ eZ and some choices of j1, . . . , jL. These syndromes are already
assigned for errors of the type Zj1 . . .ZjM for some M ≤ eZ and some choices of
j1, . . . , jM. Therefore the possible weights for s(Xi) are in the range

[
2t̃, n− 2t̃

]
.

The same observation applies to s(Yi).
– Setting the `-th element of the syndrome of X` to “0” we obtain that s(Y`) has the

weight of s(X`) increased by 1, with ` = 1, . . . , n − 1. Hence, in order to have
both s(X`) and s(Y`) in the permitted range, we must have n− 4t̃ ≥ 1. Note that
this constraint can be stricter than the GQHB. For example, we cannot construct
the [[12, 1]] code with eg = 1, eZ = 2.

– With the previous choice, the sum of the weights of the syndromes s(Yn) and
s(Xn) is n − 1. Then, a good choice is to assign to s(Xn) a weight d(n − 1)/2e
or b(n− 1)/2c. In this case, if n is odd s(Yn) would have the same weight, which
is in the correct range because n− 4t̃ ≥ 0 is guaranteed by the previous point; if n
is even the weights are still in the correct range because n− 4t̃ ≥ 1.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_49

https://dx.doi.org/10.1007/978-3-030-50433-5_49


8 Marco Chiani and Lorenzo Valentini

The resulting algorithm is reported below.

Result: Stabilizer matrix from Assignment Construction
Choose n and t̃ to satisfy the constraint n− 4t̃ ≥ 1;
Assign s(Zi) as in Table 2;
Pick a random syndrome for s(Xn) with weight b(n− 1)/2c;
Assign s(Yn), s(XnZj1 . . .ZjL) and s(YnZj1 . . .ZjL) for each

L = 1, . . . , eZ and for each possible combination of j1, . . . , jL 6= n;
for ` = 1 to n− 1 do

goodPick = 0;
while goodPick == 0 do

Pick a random syndrome for s(X`) with weight in
[
2t̃, n− 2t̃− 1

]
and

s` (X`) = 0;
if s(Y`), s(X`Zj1 . . .ZjL) and s(Y`Zj1 . . .ZjL) are not already

assigned for all possible combinations then
goodPick = 1;
Assign s(Y`) and all s(X`Zj1 . . .ZjL), s(Y`Zj1 . . .ZjL);

end
if No more possible syndromes then

Restart the algorithm;
end

end
end
Construct the Stabilizer Matrix from s(Xi) and s(Zi);
Check if all of the generators commute with each other.

Algorithm 1: Construction by syndrome assignment, k = 1, eg = 1.

5 Performance Analysis

It is well known that the Codeword Error Rate (CWER) for a standard [[n, k]] QECC
which corrects up to t generic errors per codeword is

Pe = 1−
t∑

j=0

(
n

j

)
(1− ρ)n−jρj (8)

where ρ = px + py + pz is the error probability.
We now generalize this expression to an [[n, k]] QECC which corrects up to eg

generic errors and up to eZ Pauli Z errors per codeword. By weighting each pattern of
correctable errors with the corresponding probability of occurrence, it is not difficult to
show that the performance in terms of CWER is

Pe = 1−
eg+eZ∑
j=0

(
n

j

)
(1− ρ)n−jξ(j; eg) (9)
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where

ξ(j; eg) =


ρj if j ≤ eg

j∑
i=j−eg

(
j

i

)
piz

j−i∑
`=0

(
j − i
`

)
p`xp

j−i−`
y otherwise .

(10)

In the case of asymmetric channels with px = py = ρ/(A+ 2), pz = Aρ/(A+ 2), and
A = pz/px [36], the expression in (9) can be simplified to

Pe = 1−
eg+eZ∑
j=0

(
n

j

)
(1− ρ)n−jρj

(
1− 2j+1 (A/2)j−eg − 1

(A− 2)(A+ 2)j
uj−eg−1

)
(11)

where ui = 1 if i ≥ 0, otherwise ui = 0.
Using the previous expressions, we report in Fig. 1 the performance in terms of

CWER for different codes, assuming an asymmetric channel. The parameterA accounts
for the asymmetry of the channel, and for A = 1 we have the standard depolarizing
channel. In the figure we plot the CWER for the new asymmetric [[9, 1]] code specified
in Table 4 with eg = 1 and eZ = 1, over channels with asymmetry parameter A = 1, 3
and 10. For comparison, in the same figure we report the CWER for the known 5-qubits
code, the Shor’s 9-qubits code, both correcting t = 1 generic errors, and a [[11, 1]] code
with t = 2 [37].

First, we note that for the symmetric codes the performance does not depend on the
asymmetry parameter A, but just on the overall error probability ρ. For these codes, for
a given t the best CWER is obtained with the shortest code. As expected, the perfor-
mance of the new asymmetric [[9, 1]] code improves as A increases. In particular, for
the symmetric channel, A = 1, the 5-qubits code performs better than the new one, due
to its shorter codeword size. However, already with a small channel asymmetry, A = 3,
the new code performs better than the 5-qubits code. ForA = 10 the new code performs
similarly to the [[11, 1]] symmetric code with t = 2. Asymptotically for large A, the
channel errors tend to be of type Z only, and consequently the new code behaves like a
code with t = 2.

6 Conclusions

We have investigated a new class of stabilizer short codes for quantum asymmetric
Pauli channels, capable to correct up to eg generic errors plus eZ errors of type Z. We
generalized the quantum Hamming bound and derived the analytical expressions for the
performance for the new codes. Then, we designed a [[9, 1]] QECC capable to correct
up to 1 generic error plus 1 Z error, which is the shortest according to the new bound.
The comparisons with known symmetric QECCs confirm the advantage of the proposed
code in the presence of channel asymmetry.
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10−3 2 · 10−3 5 · 10−3 10−2 2 · 10−2 5 · 10−2
10−5

10−4

10−3

10−2

10−1

ρ

C
W

E
R

Sym. [[9,1]]
Sym. [[5,1]]
Sym. [[11,1]]
Asym. [[9,1]] A = 1
Asym. [[9,1]] A = 3
Asym. [[9,1]] A = 10

Fig. 1: Performance of short codes over an asymmetric channel, k = 1. Symmetric
codes: 9-qubits code and 5-qubits code with t = 1, 11-qubits code with t = 2. Asym-
metric 9-qubits code with eg = 1, eZ = 1.
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