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Abstract. In this work we show how to approach the problem of ma-
nipulating the numerical range of a unitary matrix. This task has far-
reaching impact on the study of discrimination of quantum measure-
ments. We achieve the aforementioned manipulation by introducing a
method which allows us to find a unitary matrix whose numerical range
contains the origin where at the same time the distance between unitary
matrix and its perturbation is relative small in given metric.
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1 Introduction

One of the most important tasks in quantum information theory is a problem
of distinguishability of quantum channels [1,2]. Imagine we have an unknown
device, a black-box. The only information we have is that it performs one of two
channels, say Φ and Ψ . We want to tell whether it is possible to discriminate
Φ and Ψ perfectly, i.e. with probability equal to one. Helstrom’s result [3] gives
the analytical formula for upper bound of probability of discrimination quantum
channels using the special operators norm called diamond norm or sometimes
referred to as completely bounded trace norm [4]. The Holevo-Helstrom theorem
says that the quantum channels Ψ and Φ are perfectly distinguishable if and only
if the distance between them is equal two by using diamond norm. In general,
numerical computing of diamond norm is a complex task. Therefore, researchers
were limited to smaller classes of quantum channels. One of the first results
was the study of discrimination of unitary channels ΦU : ρ → UρU† where ρ is
a quantum state. The sufficient condition for perfect discrimination of unitary
channels ΦU and Φ1l is that zero belongs to the numerical range of unitary matrix
U [5].

The situation in which zero belongs to numerical range of unitary matrix U
paves the way toward simple calculating of probability of discrimination unitary
channels without the necessity of computing the diamond norm. Now consider
the following scenario. We have two quantum channels ΦU and Φ1l such that
zero does not belong to the numerical range of U . Hence, we know that we
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cannot distinguish between ΦU and Φ1l perfectly. Therefore, we can assume some
kind of noise and consider the unitary channel ΦV instead of ΦU such that the
distance between unitary matrix V and U is relative small where at the same
time zero belongs in numerical range of V . Such a unitary matrix V will be
called perturbation of U .

In this work we are interested in determining the perturbation form of V .
Our motivation is two-fold. On the one hand considering the unitary channels
ΦV and Φ1l we know that they will be perfectly distinguishable. On the other
hand our method of computing V does not change the measurement result in
standard basis.

Our work is naturally divided into three parts. In the first part we show the
mathematical preliminaries needed to present our main result. The second part
presents the theorem which gives us the method of manipulation of numerical
range of unitary matrices. In third part we show the example illustrative our
theorem. Concluding remarks and some future work are presented in the end of
our work.

2 Mathematical preliminaries

Let us introduce the following notation. Let Cd be complex d-dimensional vector
space. We denote the set of all matrix operators by L(Cd1 ,Cd2) while the set of
isometries by U(Cd1 ,Cd2). It easy to see that every square isometry is a unitary
matrix. The set of all unitary matrices we will be denoted by U ∈ U(Cd). We will
be also interested in diagonal matrices and diagonal unitary matrices denoted
by Diag(Cd) and DU(Cd) respectively. Next classes of matrices that will be used
in this work are Hermitian matrices denoted by Herm(Cd). All of the above-
mentioned matrices are normal matrices i.e. AA† = A†A. Every normal matrix A
can be expressed as a linear combination of projections onto pairwise orthogonal
subspaces

A =

k∑
i=1

λi |xi〉〈xi| , (1)

where scalar λi ∈ C is an eigenvalue of A and |xi〉 ⊂ Cd is an eigenvector
corresponding to the eigenvalue λi. This expression of a normal matrix A is
called a spectral decomposition of A [6]. Many interesting and useful norms,
not only for normal matrices, can be defined on spaces of matrix operators. In
this work we will mostly be concerned with a family of norms called Schatten [7]
p-norms defined as

||A||p =
(

tr
((
A†A

) p
2

)) 1
p

(2)

for any A ∈ L(Cd1 ,Cd2). The Schatten ∞-norm is defined as

||A||∞ = max
{
||A |u〉 || : |u〉 ∈ Cd1 , || |u〉 || ≤ 1

}
. (3)

For a given square matrix A the set of all eigenvalues of A will be denoted by
λ(A) and r(λi) will denote the multiplicity of each eigenvalue λi ∈ λ(A). For any
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square matrix A, one defines its numerical range [8,9] as a subset of the complex
plane

W (A) = {z ∈ C : z = 〈ψ|A |ψ〉 , |ψ〉 ∈ Cd, 〈ψ|ψ〉 = 1}. (4)

It is easy to see that λ(A) ⊆ W (A). One of the most important properties of
W (A) is its convexity which was shown by Hausdorff and Toeplitz [10,11]. For
any normal matrix A the set W (A) is a convex hull of spectrum of A which
will be denoted by conv(λ(A)). Another well-known property of W (U) for any
unitary matrix U ∈ U(Cd) is the fact that its numerical range forms a polygon
whose vertices are eigenvalues of U lying in unit circle on complex plane. In our
work we introduce the counterclockwise order of eigenvalues of unitary matrix
U [12] such that we choose any eigenvalue named λ1 ∈ λ(U) on the unit circle
and next eigenvalues are labeled counterclockwise.

In our setup we consider the space L(Cd). Imagine that the matrices are
points in space L(Cd) and the distance between them is bounded by small con-
stant 0 < c � 1. We will take two unitary matrices - matrix U ∈ U(Cd) and
its perturbation V ∈ U(Cd) i.e. ||U − V ||∞ ≤ c by using ∞-Schatten norm. We
want to determine the path connecting these points given by smooth curve. To
do so, we fix continuous parametric (by parameter t) curve U(t) ∈ U(Cd) for any
t ∈ [0, 1] with boundary conditions U(0) := U and U(1) := V . The most natural
and also the shortest curve connecting U and V is geodesic [13] given by

t→ U exp
(
tLog

(
U†V

))
, (5)

where Log is the matrix function such that it changes eigenvalues λ ∈ λ(U) into
log(λ(U)), where −i log(λ(U)) ⊂ (−π, π].

We will study how the numerical range W (U(t)) will be changed depending
on parameter t. Let H := −iLog

(
U†V

)
. Let us see that H ∈ Herm(Cd) and

W (H) ⊂ (−π, π] for any U, V ∈ U(Cd). Taking the spectral decomposition
H = Y DY †, Y ∈ U(Cd), D ∈ Diag(Cd) we get

W (U exp (itH)) = W
(
U exp

(
itY DY †

))
= W

(
UY exp (itD)Y †

)
= W

(
Y †UY exp (itD)

)
= W

(
Ũ exp (itD)

)
,

(6)

where Ũ := Y †UY ∈ U(Cd). Hence, without loss of generality in our analysis we
will assume that H is a diagonal matrix. Moreover, we can assume that D ≥ 0
which follows from simple calculations

W (U exp (itD)) = W (U exp (itD+) (exp (itα1l))) = W
(
eitαU exp (itD+)

)
≡W (U exp (itD+)) .

(7)

Let us see that the numerical range of U(t) for any t ∈ [0, 1] is invariant to
above calculations although the trajectory of U(t) is changed. Therefore, we will
consider the curve

t→ U exp (itD+) , (8)

where t ∈ [0, 1] and U ∈ U(Cd), D+ ∈ Diag(Cd) such that D+ ≥ 0.
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3 Main result

In this section we will focus on the behavior of the spectrum of the unitary matri-
ces U(t), which will reveal the behavior of W (U(t)) for relatively small parameter
t. Without loss of generality we can assume that tr (D+) = 1. Together with the

fact that D+ ∈ Diag(Cd) and D+ ≥ 0 we can note that D+ =
∑d
i=1 pi |i〉〈i|,

where p ∈ Cd is a probability vector. Let us also define the set

SMλ =
{
|x〉 ∈ Cd : (λ1ld −M) |x〉 = 0, ‖ |x〉 ‖2 = 1

}
(9)

for some matrix M ∈ L(Cd) which consists of unit eigenvectors corresponding
to the eigenvalue λ of the matrix M . We denote by k = r(λ) the multiplicity
of eigenvalue λ whereas by IM,λ ∈ U(Ck,Cd) we denote the isometry which
columns are formed by eigenvectors corresponding to eigenvalue λ of a such
matrix M . Let λ(t), β(t) ∈ C for t ≥ 0. We will write λ(t) ≈ β(t) for relatively
small t ≥ 0, whenever λ(0) = β(0) and ∂

∂tλ(0) = ∂
∂tβ(0).

Theorem 1. Let U ∈ U(Cd) be a unitary matrix with spectral decomposition

U =

d∑
j=1

λj |xj〉〈xj | . (10)

Assume that the eigenvalue λ ∈ λ(U) is such that r(λ) = k. Let us define a
matrix E(t) given by

E(t) = exp(itD+) =

d∑
i=1

eipit |i〉〈i| ∈ DU(Cd), t ≥ 0. (11)

Let λ(t) := λ(UE(t)) and let every λj(t) ∈ λ(t) corresponds to eigenvector
|xj(t)〉. Assume that λ1(t), . . . , λk(t) are such eigenvalues that λj(t) → λ, as
t→ 0. Then:

(a) If min
|x〉∈SUλ

d∑
i=1

pi| 〈i|x〉 |2 = 0, then λ is an eigenvalue of UE(t).

(b) If |{pi : pi > 0}| = l < k, then λ is an eigenvalue of UE(t) and r(λ) ≥ k− l.
(c) Each eigenvalue of product UE(t) moves counterclockwise or stays in the

initial position as parameter t increases.
(d) If k = 1, then

λ1(t) ≈ λ exp

(
it

d∑
i=1

pi| 〈i|x1〉 |2
)

for small t ≥ 0.
(e) Let Q := I†U,λD+IU,λ and λ1(Q) ≤ λ2(Q) ≤ . . . ≤ λk(Q). Then we have

λj(t) ≈ λ exp (iλj(Q)t)

for small t ≥ 0 and eigenvector |xj〉 corresponding to λj ∈ λ(U) is given by

|xj〉 = IU,λ |vj〉 ,

where |vj〉 ∈ SQλj(Q).
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(f) For each j = 1, . . . , d we have

∂

∂t
λj(t) = iλj(t)

d∑
i=1

pi| 〈i|xj(t)〉 |2.

Moreover,
d∑
j=1

∣∣∣∣ ∂∂tλj(t)
∣∣∣∣ = 1.

This theorem gives us equations which one can use to predict behavior of
W (UE(t)). Observe the postulate (f) fully determines the movement of the
spectrum. However, this is a theoretical statement and in practice determining
the function t 7→ |xj(t)〉 is a numerically complex task. The postulates (a)− (e)
play a key role in numerical calculations of W (UE(t)). The most important fact
comes from (c) which says that all eigenvalues move in the same direction or
stay in the initial position. The instantaneous velocity of a given eigenvalue in
general case is given in (e), while in the case of eigenvalue with multiplicity equal
one, the instantaneous velocity is determined by (d). We can see that whenever
the spectrum of the matrix U is not degenerated, calculating these velocities
is easy. What is more, when some eigenvalue is degenerated, the postulate (e)
not only gives us method to calculate the trajectory of this eigenvalue, but also
determines the form of corresponding eigenvector. It is worth noting that the
postulates (d), (e) give us only an approximation of the velocities, so despite
being useful in numerical calculations, these expressions are valid only in the
neighborhood of t = 0. Moreover, sometimes we are able to precisely specify
this velocities. This happens in the cases presented in (a), (b). Whenever the
calculated velocity is zero we know for sure that this eigenvalue will stay in
the initial position. According to the postulate (b) the same happens when the
multiplicity of the eigenvalue is greater than the number of positive elements of
vector p.

4 Example

We start with sampling some random unitary matrix U ∈ U(C3) such that
0 6∈W (U)

U =

 0.267868 + 0.026891i 0.752935− 0.510663i −0.314404− 0.0313982i
−0.83413− 0.0693252i 0.245915− 0.275811i 0.34174− 0.214685i
0.472125 + 0.0635826i 0.0211772− 0.18793i 0.795835− 0.322391i

 .
(12)

We would like to construct matrix E ∈ DU(Cd) to obtain 0 ∈W (UE). The first
feature we need to analyze is the numerical range of U given as conv({λ1, λ2, λ3})
for λ1, λ2, λ3 ∈ λ(U). The Figure 1 presents numerical range W (U), which
boundary is determined by dashed triangle. The most distant pair of eigen-
values, which determine the distance between W (U) and the origin is the pair
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Fig. 1: The figure consists two triangles representing boundaries of the numerical
ranges: W (U) (dashed black) and W (UE(t)) for t = 1.5 (solid red).

(λ1, λ3). Therefore, our analysis will be focused on eigenvectors corresponding
to λ1 and λ3. Let us calculate eigenvectors of matrix U and then according to
the postulate (d) choose appropriate probability vector p. The squared modules
of eigenvectors entries form the matrix

Q =

 0.426542 0.543517 0.0299407
0.0480551 0.105588 0.846357
0.525403 0.350895 0.123702

 (13)

Rows of the matrix Q correspond to the considered eigenvectors, i.e. first row
corresponds to λ1, second to λ2 and third to λ3. Analyzing the first and the third
row, we can see the greatest difference in values is in the second column, namely
between values Q1,2 = 0.543517 and Q3,2 = 0.350895. If we consider probability

vector p = (0, 1, 0) with associated matrix E(t) =
∑3
i=1 e

ipit |i〉〈i|, then according
to Theorem 1, the values Q1,2 and Q3,2 will indicate the instantaneous velocities
of eigenvalues λ1 and λ3, respectively. Therefore, the first eigenvalue will move
faster than the third, and hence, in order to minimize the distance between
the numerical range and the origin, we have to rotate spectrum clockwise. This
can be done by substituting E(t) ← E(t)†, namely E(t) =

∑3
i=1 e

−ipit |i〉〈i|.
The postulate (d) of Theorem 1 provides our calculations accurate only in the
neighborhood of t = 0, but this may be not sufficient to satisfy 0 ∈ W (UE(t)).
Therefore, we utilize the postulate (f) and calculate instantaneous velocities
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| 〈2|x1(t)〉 |2 and | 〈2|x3(t)〉 |2 of eigenvalues λ1(t) and λ3(t) accurately for each
t > 0. As long as | 〈2|x1(t)〉 |2 > | 〈2|x3(t)〉 |2 the eigenvalue λ1(t) will be faster
than λ3(t), which will progressively minimize the value min |W (UE(t))|. The
Figure 2 shows velocities | 〈2|x1(t)〉 |2 and | 〈2|x3(t)〉 |2 calculated for t ∈ [0, 1.5].
As we can see, for t ∈ [0, 1.5] the relation | 〈2|x1(t)〉 |2 > | 〈2|x3(t)〉 |2 is satisfied,

Fig. 2: The instantaneous velocities of eigenvalues λ1(t) (solid line), λ2(t)
(dotted line) and λ3(t) (dashed line) of matrices U(t). The eigenvectors
|x1(t)〉 , |x2(t)〉 , |x3(t)〉 correspond to eigenvalues λ1, λ2, λ3, respectively.

so it remains to check the motion of W (U(t)), where we define U(t) := UE(t).
First of all, in the Figure 1 we showed the numerical range W (UE(1.5)) and
we can see that 0 ∈ W (UE(1.5)). The behavior of function t 7→ W (U(t)) is
presented in Figure 3. At last, numerical calculations reveal that the time t when
zero enters numerical range W (U(t)) is approximately t ≈ 1.45 (see Figure 4 for
more details).

5 Conclusion and discussion

In this work we considered an approach to manipulation of the numerical range
of unitary matrices. That was done by multiplying given unitary matrix U by
some unitary matrix E which is diagonal in the fixed computational basis (we
took the standard basis) and is relatively close to identity matrix. We established
differential equations describing behavior of eigenvalues and presented their ap-
proximated solutions, which we find useful in numerical calculations. Our moti-
vation was to find for given unitary matrix U the closest unitary matrix of the
form V = UE such that channels ΦV and Φ1l are perfectly distinguishable. It is
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Fig. 3: Time dependence of W (U(t)) for t ∈ [0, 1.5].

Fig. 4: The distance between numerical range W (U(t)) and the origin, calculated
for t ∈ [0, 1.5]. Zero enters W (U(t)) around value ≈ 1.45.

important to stress that applying channel ΦV to the quantum states leaves their
classical distribution unchanged.

The results in Theorem 1 are suitable to solve various tasks. For example,
one would like to maximize the distance between the numerical range and the
point zero. Such task was introduced in [14] and plays crucial role in calculating
diamond norm of difference of two von Neumann measurements.
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In the end, we would like to note that solving numerical tasks with the use of
postulates (d) and (e) of Theorem 1 requires one to find the bounds on maximal
value of the parameter t still allowing to apply these results. Such bounds should
depend on variability of functions t 7→ | 〈i|xj(t)〉 |2. Numerical analysis (e.g.
Figure 2) shows smoothness of functions of this type, giving an argument for
existence of practical bounds and hence providing direction of future research.
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A Proof of Theorem 1

Proof. (a) This fact is implicated by equation
d∑
i=1

pi| 〈i|x〉 |2 = 0 for some eigen-

vector |x〉 of eigenvalue λ. Eventually, we obtain UE(t) |x〉 = U |x〉 = λ |x〉.
(b) We will show that there are at least k − l orthogonal eigenvectors |x〉

of eigenvalue λ, for which
d∑
i=1

pi| 〈i|x〉 |2 = 0, so (a) will imply (b). W.l.o.g.

assume pi > 0 for i = 1, . . . , l. For each matrix W ∈ U(Ck) the columns of
isometry IU,λW consist of eigenvectors of eigenvalue λ. We can choose such
a matrix W for which first k − l columns are orthogonal to each of vectors
I>U,λ |1〉 , . . . , I>U,λ |l〉. One can note that for |x〉 ∈ {IU,λW |1〉 , . . . , IU,λW |k − l〉}

we obtain
d∑
i=1

pi| 〈i|x〉 |2 = 0.

(c) Fix some eigenvalue λ with r(λ) = k. We introduce the notation of

Π = IU,λI
†
U,λ. We consider the subspace {|x〉 : D+ |x〉 = 0, Π |x〉 = |x〉} along

with projection Π0 on this subspace. Denote Π+ = Π −Π0. Let

c := min
|x〉:Π+|x〉=|x〉,‖|x〉‖2=1

〈x|D+ |x〉 . (14)

One can note that c > 0. Take unit vector |x〉 and define |v〉 = (1ld−Π) |x〉. First
of all, we will show that tr(1ld −Π) |x〉〈x| ∈ O(ε) if |λ − 〈x|U |x〉 | = ε. Direct
calculations reveal that

ε = |λ− 〈x|U |x〉 | = |λ tr |x〉〈x| − trUΠ |x〉〈x| − trU(1ld −Π) |x〉〈x| |
= |λ tr(1ld −Π) |x〉〈x| − tr(1ld −Π)U(1ld −Π) |x〉〈x| |.

(15)

If ‖v‖ = 0 the statement is true, so assume ‖v‖ 6= 0. We obtain

ε = |λ 〈v|v〉 − 〈v|U |v〉 | ≥ 〈v|v〉dist(λ, conv(λk+1, . . . , λd)) > 0, (16)

which finishes this part of proof.
In the second part we will check the behavior of points 〈x|U |x〉 in the neigh-

borhood of point λ. We assume that |λ−〈x|U |x〉 | = ε for relatively small ε ≥ 0,
so tr(1ld −Π) |x〉〈x| ∈ O(ε). The derivative of trajectory of such a point is

∂

∂t
(〈x|UE(t) |x〉)(0) = i 〈x|UD+ |x〉 . (17)

We can rewrite the above as

i 〈x|UD+ |x〉 = i 〈x| (Π+ +Π0 + 1ld −Π)UD+(Π+ +Π0 + 1ld −Π) |x〉 =

= iλ 〈x|Π+D+Π+ |x〉+ i 〈x|Π+UD+(1ld −Π) |x〉
+ i 〈x| (1ld −Π)UD+Π+ |x〉+ i 〈x| (1ld −Π)UD+(1ld −Π) |x〉).

(18)

The above equation means that the instantaneous velocity of point 〈x|U |x〉 is
the sum of the velocity

iλ 〈x|Π+D+Π+ |x〉 (19)
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which is responsible for counterclockwise movement and which speed is 〈x|Π+D+Π+ |x〉
and the “noise” velocity which for the most pessimistic scenario can be rotated
in any direction and which speed is at most

| 〈x|Π+UD+(1ld−Π) |x〉 |+| 〈x| (1ld−Π)UD+Π+ |x〉 |+| 〈x| (1ld−Π)UD+(1ld−Π) |x〉 |.
(20)

The speed of velocity with direction iλ can be lower bounded by

c 〈x|Π+ |x〉 , (21)

while the speed of the second velocity can be upper bounded by

2
√
〈x|Π+ |x〉

√
〈x| (1ld −Π) |x〉+ 〈x| (1ld −Π) |x〉 ≤ 2

√
〈x|Π+ |x〉

√
ε+ ε. (22)

There exists constant d > 0 depending on the geometry of the numerical range
of the matrix U , such that if

c 〈x|Π+ |x〉 ≥ d(2
√
〈x|Π+ |x〉

√
ε+ ε), (23)

then the point 〈x|U |x〉 moves counterclockwise. This is true if

〈x|Π+ |x〉 ≥
cd+ 2d2 + 2d

√
d2 + cd

c2
ε. (24)

In the case when the above inequality does not hold, the speed of the second
velocity is upper bounded by a some linear function of variable ε. That means
there exists t0 such that for t ≤ t0 there can not exists eigenvalue λ̃ ∈ UE(t)

which λ̃ → λ as t → 0 and λ̃ is before λ in the counterclockwise order. To
finish the proof we can see the above holds for any t ≥ 0 due to fact that
E(t0 + t) = E(t0)E(t).

(d) To see this we first need to describe local dynamics of point β(t) =
〈x1|UE(t) |x1〉 = λ 〈x1|E(t) |x1〉 . One can note that β(0) = λ and ∂

∂tβ(0) =

iλ
d∑
i=1

pi| 〈i|x1〉 |2. That means β(t) ≈ λ exp
(
it
∑d
i=1 pi| 〈i|x1〉 |2

)
. To see that

β(t) ≈ λ1(t) we need to utilize the following facts:

– Eigenvalues of UE(t) are continuous functions.
– β(t) ∈W (UE(t)).

– Trajectory of β(t) is curved in such a way that holds 1−|β(t)|
|β(t)−λ| → 0.

The above means that if R(t) ⊂ {|z| = 1} is an arch in which we can potentially
find eigenvalue λ1(t) according to the fact that β(t) ∈W (UE(t)), then it is true

that |R(t)|
|β(t)−λ| → 0 and consequently λ1(t) ≈ β(t) for small t ≥ 0.

(e) The see this point we need to utilize the postulate (c) along with the
proof of the postulate (d) for eigenvectors |x〉 ∈ {IU,λ |v1〉 , . . . , IU,λ |vk〉}, where

Q := I†U,λD+IU,λ and |vj〉 ∈ SQλj(Q) for j = 1, . . . , k.

(f) This relation follows from (e).
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