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Abstract. This work shows an approach to reduce the dimensionality
of matrix representations of quantum channels. It is achieved by find-
ing a base of the cone of positive semidefinite matrices which represent
quantum channels. Next, this is implemented in the Julia programming
language as a part of the QuantumInformation.jl package.
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1 Introduction

Nowadays the fields of quantum information processing and machine learning
are coming together leading to the emergence of quantum machine learning [1,2].
This area can be broadly divided into three, depending whether the data, algo-
rithms or both are of quantum or classical nature. In this work we are interested
in the case of quantum data being processed by a classical algorithm. The nat-
ural question arises: how this data should be represented and loaded into our
algorithm? To be more precise, we are interested how to represent quantum
channels in a succinct manner so that it can be an input into a classical neural
network.

The goal of such a network would be to approximate, up to a reasonable error
the distance between two channels Φ and Ψ . As Φ and Ψ are linear mappings
transforming matrices into matrices it may not seem obvious how to define the
distance between them. Turns out, there exists one notion of distance between
channels which has an operational interpretation. The distance between Φ and
Ψ can be expressed in the terms of so called diamond norm

‖Φ− Ψ‖� = max
‖X‖1=1

‖ ((Φ− Ψ)⊗ 1l) (X)‖1. (1)

This quantity plays a central role in the problem of quantum operation discrim-
ination which has gained a lot of traction recently. This is due to the fact that
this distance provides an upper bound on the probability of discrimination of Φ
and Ψ .
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Consider a following setup. We are given a black box which is said to contain,
with equal probability, either Φ or Ψ . What is the probability of guessing which
of these is in the box if we are allowed to use the box only once? Turns out that
this probability p is connected with the distance between Φ and Ψ [3]

p =
1

2
+

1

4
‖Φ− Ψ‖�. (2)

However the explicit form of the diamond norm contains an optimization
over all input matrices X. In principle this can be solved via semidefinite pro-
gramming, but regrettably this quickly becomes intractable with the growing
dimension of the input matrix. That is why it would desirable to have the possi-
bility to train a classical algorithm, like a neural network, on a relatively small
set of quantum channels and have the ability to quickly approximate the distance
between arbitrary channels utilizing this network.

That is why this paper aims at finding an optimal representation of quantum
channels for the purposes of machine learning. By optimal we understand the
lowest possible number of real parameters needed to define a quantum chan-
nel [4]. Further, we would like this representation to be technically usable so
that we could train, for instance, neural networks to approximate functions of
this objects. This approach could provide a large speed boost in the problem of
quantum channel discrimination [3,5].

Our work is naturally divided into three parts. In the first part we show
the mathematical structures needed to find the optimal representation. This in-
volves dealing with cones of positive semidefinite matrices. The second part we
present the example of whereas the last part presents the implementation of
this example in the Julia language. This implementation is now a part of the
QuantumInformation.jl [6,7] numerical library available on-line at https://
github.com/iitis/QuantumInformation.jl. Surprisingly, despite the complex
mathematical structure and quite technical proofs, the implementation is rela-
tively simple and therefore useful.

2 Mathematical framework

2.1 Quantum channels

Let X , Y be complex finite-dimensional vector spaces, let L(X ,Y) be the set of all
linear operators transforming vectors from X to Y and denote L(X ) := L(X ,X ).
Further, consider mappings of the form

Φ : L(X )→ L(Y). (3)

The set of all such mappings will be denoted T(X ,Y) and T(X ) := T(X ,X ).
Quantum channels are such Φ ∈ T(X ,Y) which are trace preserving and com-
pletely positive. The former means that

∀A ∈ L(X ) Tr(Φ(A)) = Tr(A). (4)
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The latter is a bit more complicated. Formally this condition can be written as

∀Z ∀A ∈ L(X ⊗ Z) A ≥ 0 =⇒
(
Φ⊗ 1lL(Z)

)
(A) ≥ 0. (5)

The intuitive explanation is as follows. First, consider a ρ ∈ L(X ) such that
Tr(ρ) = 1 and ρ ≥ 0. Such an operator is called a quantum state. We would
like our channels not only to transform states into states, but also we would like
the ability to perform a channel on only a part of the system. In other words
we would like the output of

(
Φ⊗ 1lL(Z)

)
(ρ) to also be a proper quantum state

for an arbitrary space Z and all ρ ∈ L(X ⊗ Z). This can only be fulfilled when
we introduce the need for completely positivity. We will denote the set of all
quantum channels as C(X ,Y) and C(X ) = C(X ,X ).

The mappings T(X ,Y) may be represented in a number of ways. For our
purposes only the Choi-Jamiołkowski isomorphism [8,9] will be relevant. This
representation states that there exists a bijection J between the sets T(X ,Y)
and L(Y ⊗ X ). This bijection can be explicitly written as

J(Φ) =

dim(X )∑
i,j

Φ(|i〉〈j|)⊗ |i〉〈j| . (6)

Φ is completely positive if and only if J(Φ) ≥ 0; Φ is trace preserving if and
only if TrY J(Φ) = 1lX . Finally, Φ is Hermiticity preserving if and only if J(Φ) ∈
Herm(Y⊗X ), where Herm(X ) denotes the set of all Hermitian matrices in L(X ).

2.2 Convex cone structures

Consider X is a real finite-dimensional vector space and C ⊂ X is a closed convex
cone. We assume that C is pointed, i.e. C ∩ −C = {0} and generating, i.e. for
each x ∈ X there exists u,w ∈ C such that x = u − w. Such a cone C is called
a proper cone in the space X . The proper cone C becomes a partially ordered
vector space x ≥ y ⇐⇒ x− y ∈ C for each x, y ∈ X . Let X ∗ be the space dual
to X defined by the inner product 〈· | ·〉. Then, we may introduce a partial order
in X ∗ as well with the dual cone

C∗ = {f ∈ X ∗ : 〈f | z〉 ≥ 0,∀z ∈ C}. (7)

The cone C∗ is also closed and convex cone. If C is generating in space X , then
C∗ is pointed and we may introduce partial order in X ∗ given by

f ≥ g ⇐⇒ f − g ∈ C∗ (8)

for all f, g ∈ X ∗.
An interior point e ∈ int(C) of a cone C is called an order unit [10] if for each

x ∈ X , there exists λ > 0 such that λe− x ∈ C whereas a base of C is defined as
compact and convex subset B ⊂ C such that for every z ∈ C \ {0}, there exists
unique t > 0 and an element b ∈ B such that z = tb. The following theorem
shows there exists relation between the order unit e and a base of cone C.
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Theorem 1. The set Be = {z ∈ C : 〈e | z〉 = 1} is the base of C (determined by
element e) if and only if an element e is an order unit and e ∈ int (C∗).

The proof of this theorem is presented in Appendix A.

2.3 Base of Hermiticity preserving maps

Let us now define the finite-dimensional linear space

{Φ ∈ T(X ,Y) : Φ – Hermiticity preserving}. (9)

Due to the Choi–Jamiolkowski isomorphism, the set of all Hermiticity preserving
linear maps of a finite-dimensional space is mathematically closely related to
the set

V = {J(Φ) : J(Φ) ∈ Herm(Y ⊗ X )}, (10)

of all Choi matrices of Hermiticity preserving maps.
In every linear space of Hermitian matrices Herm(Z) we can introduce an

orthonormal basis B(Z). The basis B(Z) is a collection of dim(Z)2 matrices.
The standard orthonormal basis is denoted by the set

B(Z) ={
1lZ√

dim(Z)
,

∑k
a=1 |a〉〈a| − k |k + 1〉〈k + 1|√

k + k2
, for k = 1, . . . ,dim(Z)− 1,

|a〉〈b|+ |b〉〈a|√
2

,
i |a〉〈b| − i |b〉〈a|√

2
, for a, b = 1, . . . ,dim(Z) and a 6= b

}
.

(11)

If we consider the space V of all Choi matrices of Hermiticity preserving maps
we receive the dim(X )2 dim(Y)2 dimensional space. To reduce the number of
dimensions of V we introduce the concept of a cone in this space and the base
of cone.

Now we introduce a proper cone in the space V as

C = {J(Φ) ∈ V : J(Φ) ≥ 0}, (12)

and a subspace S ⊂ V such that

S = {J(Φ) ∈ V : TrY J(Φ) = c1lX , c ∈ R}. (13)

Fact 1 The set of Choi matrices of quantum channels C(X ,Y) is the intersec-
tion of sets

C ∩ {J(Φ) ∈ V : TrY J(Φ) = 1lX } . (14)
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We can also introduce the orthogonal complement S⊥ of S which is given by

S⊥ := {X ∈ V : Tr (XY ) = 0, Y ∈ S}. (15)

Fact 2 The set S⊥ is given by

S⊥ = {1lY ⊗H : H ∈ Herm(X ),Tr(H) = 0}. (16)

The proof of this fact is presented in Appendix B.
We can also consider a proper cone CS in space S given by CS = S ∩C and a

base BS ⊂ CS of the cone CS . We can prove, using Theorem 1, that the set BS is
the base of cone CS if and only if BS = S ∩BE for some order unit E ∈ int(C∗).
The base BS determined by an order unit E will be denoted as BES and is given
by

BES = {X ∈ CS : 〈X | E〉 = 1}. (17)

One can easily see that identity matrix 1lY ⊗ 1lX is an order unit in cone C. Thus
we have the following observation.

Fact 3 For E := 1lY⊗1lX
dim(X ) the base BES is determined by the set of Choi matrices

of quantum channels Φ ∈ C(X ,Y) i.e.

BES = {J(Φ) : Φ ∈ C(X ,Y)}. (18)

We are ready to establish the main result of our work.

Theorem 2. The linear space S is the smallest linear subspace containing the
set of quantum channels C(X ,Y) with orthonormal basis B(S) given by{

1lY ⊗ 1lX√
dim(X ) dim(Y)

}
∪

{
G⊗H : G ∈ B(Y)\

{
1lY√

dim(Y)

}
, H ∈ B(X )

}
.

(19)
Moreover,

dim(S) = dim(X )2 dim(Y)2 − dim(X )2 + 1. (20)

The proof of this theorem is presented in Appendix C.
Combining Theorem 2 with Fact 1 we obtain the following corollary.

Corollary 1. Every quantum channel Φ ∈ C(X ,Y) can be uniquely determined
by dim(X )2 dim(Y)2 − dim(X )2 real numbers.

Moreover, there exists extra, single non-zero coefficient which is fixed for all
quantum channels C(X ,Y). Existence of this coefficient is a consequence of trace
preserving condition TrY J(Φ) = 1lX and it can be calculated via〈

1lY ⊗ 1lX√
dim(X ) dim(Y)

∣∣∣∣∣ J(Φ)
〉

=

√
dim(X )
dim(Y)

. (21)

As a conclusion, we reduced the dimension of computational space by dim(X )2,
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3 Example

In this section we present how one can use the Julia language and QuantumInformation.jl
library in order express quantum channels as vectors in the space S.

Let us consider X = C2 and Y = C3 along with quantum channels Φ ∈ C(X )
given by

Φ(X) =
1

2

[
1 1
1 −1

]
X

[
1 1
1 −1

]
, X ∈ L(X ), (22)

and Ψ ∈ C(Y) defined as

Ψ(Y ) =

 1 0.92− 0.14i 0.84− 0.19i
0.92 + 0.14i 1 0.81 + 0.06i
0.84 + 0.19i 0.81− 0.06i 1

� Y, Y ∈ L(Y), (23)

where � denotes the Hadamard product.

First we calculate the Choi matrices of Φ given by

J(Φ) =


0.5 0.5 0.5 −0.5
0.5 0.5 0.5 −0.5
0.5 0.5 0.5 −0.5
−0.5 −0.5 −0.5 0.5

 . (24)

Analogously for Ψ we have

J(Ψ) =



1 0 0 0 0.92− 0.14i 0 0 0 0.84− 0.19i
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0.92 + 0.14i 0 0 0 1 0 0 0 0.81 + 0.06i
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0.84 + 0.19i 0 0 0 0.81− 0.06i 0 0 0 1


. (25)

Now we use the function channelbasis. The inputs of this function are the
dimensions of spaces X and Y of channels Φ, Ψ . The function returns an or-
thonormal basis of S. Then, we are able to use the function represent which
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factor out Choi matrices J(Φ), J(Ψ) on basis elements and returns a vector rep-
resentations vJ(Φ), vJ(Ψ) of basis coefficients. In our examples we have

vJ(Φ) =


1.0

0.70711
0.70711
−0.70711
−0.70711

1.0

⊕ 07, vJ(Ψ) =



0.70711
−0.70711
−0.20356
−0.26978
1.29553
0.40825
0.40825
−0.8165
0.08119
1.18231
1.14206
1.0



⊕ 061 (26)

where 0i denotes vector of zeros of length i. If we want to reverse vector rep-
resentation process, we can use function combine. The output matrix elements
shall be accurate with original Choi matrix elements to 10−16 or better.

The explicit code of implementation in Julia language is presented in Ap-
pendix D.

4 Conclusion

In this work we find a matrix basis for quantum channels and provide strict
mathematical proofs supporting our result. This basis allows us to reduce the
dimensionality of the matrix which represents a quantum channel. This, in turn,
allows us to speed up computation of a class of functions of these channels, which
is applicable in, for instance, the study of quantum channel discrimination. Our
analytical results are accompanied by functions written in the Julia language
which decompose a given quantum channel in our basis. This implementation is
now a part of the QuantumInformation.jl package [6,7].
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A Proof of Theorem 1

Proof. ” =⇒ ” Consider that Be is a base of C. An element e ∈ int(C∗) if and
only if there exists r > 0 such that the ball K(e, r) ⊂ C∗, which is equivalent
above condition

∃r>0∀f∈X∗ (||f − e|| < r =⇒ ∀z∈C 〈f | z〉 ≥ 0) . (27)

By using the fact that in finite-dimensional spaces all norms are equivalent, we
use the definition of induced norm given by

||f − e|| = inf {M ∈ [0,∞) : ∀x∈X | 〈f | x〉 − 〈e | x〉 | ≤M ||x||} . (28)

Then, we have

||f − e|| < r ⇐⇒ ∃0<M<r∀x∈X | 〈f | x〉 − 〈e | x〉 | ≤M ||x||. (29)

Assume that f ∈ K(e, r), M := max{||b|| : b ∈ Be} and 0 < r < 1
M . Then, we

have
| 〈f | b〉 − 〈e | b〉 | ≤ ||f − e|| · ||b|| ≤ r||b|| ≤ rM < 1. (30)

If b ∈ Be, then 〈e | b〉 = 1. Hence | 〈f | b〉 − 1| < 1. That entails that 〈f | b〉 > 0.
By using the assumption we have 〈f | z〉 = t 〈f | b〉, which implies that 〈f | z〉 >
0.

”⇐= ” Now consider that e ∈ int(C∗) is an order unit. It easy to see that Be
is a convex set. First we prove that 〈e | z〉 6= 0. Let z ∈ C \{0} and e ∈ int(C∗). If
e ∈ C∗, then 〈e | z〉 ≥ 0. It suffices to show that 〈e | z〉 6= 0. We will show this fact
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by contradiction. Assume that 〈e | z〉 = 0 and let ε > 0. By the Hahn–Banach
theorem [11], there exists z∗ ∈ X ∗ such that 〈z∗ | z〉 = ||z||. Then,

〈e− εz∗ | z〉 = −ε||z|| < 0 (31)

It implies that K(e, ε) 6∈ C∗, which is contradiction with the assumption e ∈
int(C∗). Therefore, 〈e | z〉 > 0.

Let us see that if b := z
〈e | z〉 and t := 〈e | z〉, then each element z ∈ C \ {0}

can be written as z = tb. To prove that Be is compact we note that X is a
finite-dimensional space. Then the set Be is compact if and only if Be is closed
and bounded. To prove that Be is closed, we take any sequence (zn)n∈N ∈ Be
such that zn

n→∞−−−−→ z. By the inner product continuity, we get

1 = lim
n→∞

〈e | zn〉 =
〈
e
∣∣∣ lim
n→∞

zn

〉
= 〈e | z〉 . (32)

It implies that z ∈ Be. Therefore Be is closed. To prove that Be is bounded we
show there exists M ∈ [0,∞) such that ||z|| ≤M for every z ∈ Be. Let us take a
compact sphere S(0, 1) and closed cone C. Then S = S(0, 1)∩ C is also compact.
Notice the function f : S → R+ given by f(x) = 〈e | x〉, where e is an order
unit. By the Weierstrass theorem, a function f attains infimum and supremum.
Therefore there exists x0 ∈ S such that 0 ≤ f(x0) = infx∈S f(x). Consider by
contradiction that f(x0) = 〈e | x0〉 = 0. We have 0 = 〈e | x0〉 = 〈e | tb0〉 = t,
where b0 ∈ Be, which is a contradiction with the assumption t > 0. Thus there
exists λ := 〈e | x0〉 > 0 such that 〈e | z〉 ≥ λ||z|| for every z ∈ Be, hence ||z|| ≤ 1

λ .
Taking M := 1

λ , we get thesis.

B Proof of Fact 2

Proof. It is clear that dim(V) = (dim(X ) dim(Y))2. Consider a linear space
V ⊕R which is (dim(X ) dim(Y))2 +1 dimensional. Let J(Φ) ∈ S. The condition
TrY J(Φ) = c1lX , c ∈ R in the space V ⊕ R is equivalent to

dim(Y)∑
k=1

<
(
J(Φ)j+(k−1) dim(X ),i+(k−1) dim(X )

)
= 0 i > j,

dim(Y)∑
k=1

=
(
J(Φ)j+(k−1) dim(X ),i+(k−1) dim(X )

)
= 0 i < j,

dim(Y)∑
k=1

J(Φ)j+(k−1) dim(X ),i+(k−1) dim(X ) − c = 0 i = j,

(33)

for all i, j ∈ {1, . . . ,dim(X )}. This homogeneous system of dim(X )2 linear equa-
tions is linearly independent. By rank–nullity theorem [12], we have

dim(S) = (dim(X ) dim(Y))2 + 1− dim(X )2. (34)

Therefore, dim(S⊥) = dim(X )2 − 1. To complete the proof, note that

dim ({1lY ⊗H : H ∈ Herm(X ),Tr(H) = 0}) = dim(X )2 − 1. (35)
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C Proof of Theorem 2

Proof. According to Fact 3 the set C(X ,Y) is the base of a proper cone CS . That
means

span ({J(Φ) ∈ V : J(Φ) ≥ 0,TrY J(Φ) = 1lX }) = S. (36)

Now we fix an orthonormal basis of the space V. Let it be given as the collection

B(V) = {G⊗H : G ∈ B(Y), H ∈ B(X )}. (37)

By using Fact 2, if we take X ∈ S⊥, than there exists H ∈ Herm(X ), Tr(H) = 0
such that X = 1lY ⊗H. Let us set up the basis of S⊥

B(S⊥) =

{
1lY√

dim(Y)
⊗H : H ∈ B(X )\

{
1lX√

dim(X )

}}
. (38)

Bearing in mind the relation V = S ⊕ S⊥, we conclude that basis of S can be
chosen as B(S) = B(V)\B(S⊥), namely{

1lY ⊗ 1lX√
dim(X ) dim(Y)

}
∪

{
G⊗H : G ∈ B(Y)\

{
1lY√

dim(Y)

}
, H ∈ B(X )

}
,

(39)
which completes the proof.

D Julia implementation

Here, we present the code structure for the basis representation of Choi matrix
of a qubit unitary channel Φ given by Eq. (22).

julia> using QuantumInformation

julia> H=hadamard(2)
2×2 Array{Float64,2}:
0.707107 0.707107
0.707107 -0.707107

julia> # defining Choi Matrix
J_Φ=res(H)*res(H)'
4×4 Array{Float64,2}:
0.5 0.5 0.5 -0.5
0.5 0.5 0.5 -0.5
0.5 0.5 0.5 -0.5
-0.5 -0.5 -0.5 0.5

julia> # representing Choi matrix in the basis of the subspace S
v_J_Φ=represent(channelbasis(Matrix{ComplexF64}, 2, 2),J_Φ)
13-element Array{Float64,1}:
0.0
0.9999999999999996
0.0
0.0
0.0
0.0
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0.0
0.0
0.7071067811865474
0.7071067811865474
-0.7071067811865474
-0.7071067811865474
0.9999999999999998

julia> # recovering the original Choi matrix from its basis representation
J_Φ_recovered=combine(channelbasis(Matrix{ComplexF64}, 2,2),v_J_Φ).matrix
4×4 Array{Complex{Float64},2}:
0.5+0.0im 0.5+0.0im 0.5+0.0im -0.5+0.0im
0.5+0.0im 0.5+0.0im 0.5+0.0im -0.5+0.0im
0.5+0.0im 0.5+0.0im 0.5+0.0im -0.5+0.0im
-0.5+0.0im -0.5+0.0im -0.5+0.0im 0.5+0.0im

julia> # checking accuracy of recovery process using trace norm
print(norm_trace(J_Φ-J_Φ_recovered))
8.881784197001252e-16
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