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Abstract. In the near-term, the number of qubits in quantum computers will be
limited to a few hundreds. Therefore, problems are often too large and complex
to be run on quantum devices. By distributing quantum algorithms over differ-
ent devices, larger problem instances can be run. This distributing however, of-
ten requires operations between two qubits of different devices. Using shared
entangled states and classical communication, these operations between differ-
ent devices can still be performed. In the ideal case of perfect fidelity, distributed
quantum computing is a solution to achieving scalable quantum computers with
a larger number of qubits. In this work we consider the effects on the output fi-
delity of a quantum algorithm when using noisy shared entangled states. We
consider the quantum phase estimation algorithm and present two distribution
schemes for the algorithm. We give the resource requirements for both and show
that using less noisy shared entangled states results in a higher overall fidelity.

Keywords: Noisy quantum computing · Phase estimation · Distributed quan-
tum computing · Entanglement fidelity · Quantum Fourier transform

1 Introduction

The field of quantum computation already contains an extensive amount of theoreti-
cal knowledge and has found more applications in the last decades [10]. The combina-
tion of quantum computing and quantum networks opens a whole new world of in-
formation and communication technology as new applications emerge. Applications
of quantum computing and quantum networks are being developed that are not fea-
sible using classical computers and classical communication, such as applications for
security [1,13], telescopy [5] and clock-synchronization [8].

Current quantum computers are far from solving large practical problems and im-
plementing such quantum computers still comes with many challenges [11]. One of
the hurdles of such a universal quantum computer is the number of qubits. The re-
quired number of qubits depends on both the application and implementation of the
corresponding algorithm. This means that a single quantum computer with only a few
qubits will in general not be able to solve larger problems. However, using a quantum
network to link together multiple quantum computers, each with a handful of qubits,
larger problem instances can be solved. This concept is called distributed quantum com-
puting (DQC) [3,14].

Using a network of computers to solve large problems is not unique to quantum
computers and quantum algorithms. In general, distributed (quantum) computing
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combines different (quantum) computers, where each machine performs part of the
computation. This gives either a speed-up (parallelism) or allows to solve large prob-
lem instances (larger computers). These (quantum) computers may be physically sep-
arated. In this work, we focus on quantum computers and we consider the effects on
the output quality, when distributing a quantum algorithm over multiple devices. The
total number of usable qubits depends on the sum of the qubits of each quantum com-
puter separately. Additionally, each device has a communication qubit, used for the
shared entanglement with other quantum computers.

Different quantum computers can be linked by shared entangled qubit pairs. This
entanglement allows for physically separated machines. Operations involving qubits
from a single quantum computer are called local, whereas operations using qubits from
different devices are called non-local. Non-local operations require shared entangled
qubit pairs and ideally these pairs are in one of the Bell states [15], often referred to
as EPR-pairs. These are used, together with classical communication bits, to perform
non-local operations.

Due to noise in the quantum gates and qubit decoherence, the output of a quan-
tum algorithm might differ from the theoretical output. A measure on how well the
output quantum state matches with the theoretically expected output, is the fidelity
and is given in Eq. (3.2). The lower the fidelity, the more the two states differ. When
distributing a quantum algorithm, imperfections in the shared EPR-pair form another
potential source of uncertainty. These imperfections can for instance occur due to an
imperfect generation process or imperfections in the used quantum channels.

Non-local gates were first described by Eisert et al. [3] in 2000. Later, Yimsiriwat-
tana and Lomonaco showed a modular approach to distributed quantum computing
and suggest the use of quantum teleportation to decrease the number of EPR-pairs
required [15]. In 2004 they extended their approach to a distributed version of Shor’s
algorithm [14]. A distributed version of Grover’s algorithm was presented by Exman
and Levy in 2012 [4]. Only recently, in 2018, Moghadam et al. designed an algorithm to
optimize the teleportation cost of distributed quantum circuits [16].

In each of these works, however, only the perfect setting is considered with no
gate- and qubit errors. We relax this assumption by allowing imperfect EPR-pairs. Lo-
cal quantum operations are still assumed to be noiseless and qubits are assumed to
not decohere. Hence, errors can only be introduced by the imperfect shared entangle-
ment used for non-local operations. We present two different distribution schemes,
one standard implementation and one implementation where operations are com-
bined, thereby requiring less imperfect EPR-pairs.

In Sec. 2, we will explain the quantum phase estimation algorithm (Sec. 2.1), non-
local controlled operations (Sec. 2.2) and the distributed quantum Fourier transform
(Sec. 2.3). Afterwards we introduce the setup of our simulations in Sec. 3.1 and we
present the corresponding results in Sec. 3.2. Conclusions are given in Sec. 4.

2 Distributed Quantum Computing and Phase Estimation

We will first briefly explain the quantum phase estimation algorithm in Sec. 2.1. Then
we explain how to perform non-local controlledU -gates in Sec. 2.2. We end this section
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by giving two implementation schemes for the distributed quantum Fourier transform
in Sec. 2.3.

2.1 Quantum phase estimation

The phase estimation algorithm, first presented by Kitaev [9], returns an approxima-
tion of an eigenvalue of a given unitary U and a corresponding eigenvector. It has a
wide range of applications, the most famous of which is Shor’s algorithm [12].

More formally, if U is a unitary operation onm qubits, and |ψ〉 is an eigenstate of
U , thenU |ψ〉 = exp(2πiϕ) |ψ〉 for some phase ϕ ∈ [0, 1). Let

ϕ =

∞∑
i=1

ϕi2
−i = 0.ϕ1ϕ2 . . . (2.1)

be the binary representation ofϕ. If we truncate the sum of Eq. (2.1) ton, we have ann-
bit approximation ofϕ given by 0.ϕ1ϕ2 . . . ϕn. Thisn-bit approximation ofϕ is found
using the quantum phase estimation algorithm.

A quantum circuit implementation of the quantum phase estimation is given in
Fig. 1, with two registers ofn andmqubits, respectively. Ifϕ can be represented exactly
in at mostn-bits, this will be the output of the algorithm with certainty. Otherwise, the
approximation will round the phase and the correct result is given with probability at
least 4/π2 [2].

|0〉 H . . . •

QFT−1
n

M ϕ1 ∈ {0, 1}
...

...
|0〉 H • . . . M ϕn−1 ∈ {0, 1}

|0〉 H • . . . M ϕn ∈ {0, 1}

|ψ〉 /m U20 U21 . . . U2n−1 |ψ〉

Fig. 1: The quantum phase estimation circuit for a unitaryU acting onm
qubits. The result is ann-bit approximation of the eigenvalueϕ of eigen-
vector |ψ〉. The block QFT−1n is the inverse quantum Fourier transform
on n qubits.

First a Hadamard gate is applied on the firstnqubits. Afterwards, controlled-U2n−i

gates are applied, with control qubit i in the first register and the qubits in the second
register as target. Then an inverse quantum Fourier transform on the first register is
applied and the qubits are measured. This gives the n-bit phase approximation of ϕ.

2.2 Distributed controlled U -gate

A universal gate-set for local operations is given by a CNOT-gate and single qubit rota-
tions [9]. A universal gate-set for non-local operations is thus obtained by a combina-
tion of the local universal gate set and non-local CNOT gates. By combining non-local
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CNOT-gates and local operations, arbitrary non-local operations are constructed. This
is similar to how one would construct arbitrary local operations.

Suppose we want to apply a controlled U -gate between two qubits |ψ〉 and |φ〉 on
two different devices. Furthermore, let there be two extra qubits, one on each device,
that share an entangled state in the Bell state 1√

2
(|00〉+ |11〉) and assume the two de-

vices can communicate classically. The quantum circuit given in Fig. 2 performs this
non-local controlledU -gate. Here, the two dotted boxes indicate the two quantum de-
vices. The operationE2 entangles |0〉1 and |0〉2 in a Bell-state andM indicates a mea-
surement of the corresponding qubit. The double lines indicate classical control by the
measured value. This quantum circuit is treated in more detail in [3,15].

|ψ〉 U

|0〉1

E2

X • H M X |0〉1

|0〉2 M X |0〉2

|φ〉 • Z

Fig. 2: A quantum circuit implementation of a non-local controlled U -
gate between |φ〉 and |ψ〉. The block E2 creates an entangled qubit pair
in state (|00〉+ |11〉)/

√
2.

There are other ways of applying a non-localU operation. We can first teleport |ψ〉
to the other device, do all operations locally, and then teleport the resulting state back.
This, however, requires one extra qubit per device, more operations and two shared
EPR-pairs instead of one.

2.3 Distributed quantum Fourier transform

The quantum Fourier transform maps an n-qubit state |k〉 to
∑2n−1
j=0 e2πijk/2

n |j〉,
with i the complex unit. A recursive implementation of the quantum Fourier transform
is given in Fig. 3. We see that the implementation can be decomposed in Hadamard
gates and controlledRk-gates. These rotation gatesRk are given by

Rk =

(
1 0

0 e2πi/2
k

)
. (2.2)

Note that the last operations in Fig. 3 can be omitted, as they only swap the order
of the qubits. Performing non-local SWAP-gates gives a high computational overhead,
whereas reversing the order of the measurement results is easily accounted for classi-
cally. Even if the output of the quantum Fourier transform is used as input for further
computations, these operations can be accounted for without using SWAP gates.
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|j1〉

QFTn−1

Rn · · · ×

|j2〉 Rn−1 · · · ×
...

...
|jn−2〉 · · · R3 ×

|jn−1〉 · · · R2 ×

|jn〉 • • · · · • • H ×

Fig. 3: A recursive quantum circuit for an n-qubit quantum Fourier
transform. The dotted rectangle represents the QFTn. By definition
QFT1 = H .

Table 1: The resources requirements for the local quantum Fourier trans-
form on 2n qubits and the non-local quantum Fourier transform dis-
tributed over two devices of n qubits each.

Method Number of qubits Gates Communication
(EPR-pairs)

Communication
(classical bits)

Local gates 2n 2n2 + n 0 0

Standard implementation 2n+ 2 10n2 + n n2 2n2

Combined implementation 2n+ 2 2n2 + 9n n 2n

A non-local implementation of the quantum Fourier transform is obtained by com-
bining the quantum circuits shown in Fig. 2 and Fig. 3, with U = Rk. We refer to the
approach of simply replacing each controlled gate by a non-local one if necessary, as the
standard approach. Instead of replacing each controlled operation by a non-local one,
we can also use a single shared entangled state to perform multiple non-local gates, by
grouping all operations on one computer that are controlled by a single qubit from an-
other quantum computer. This quantum circuit is given in Fig. 4, where only a single
qubit of the second device is shown. This combined approach uses less shared entangled
states and has less communication overhead.

In Table 1 we show the resource requirements to run a quantum Fourier transform
on 2n qubits for both the local implementation and the two presented non-local imple-
mentations. In the non-local situation, two additional qubits are used for the shared
entanglement, as well as additional classical communication bits.
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|j1〉 Rk+n · · ·
...

...
...

|jn−1〉 · · · Rk+2

|jn〉 · · · Rk+1

|0〉

E2

X • · · · • • H M X |0〉

|0〉 M X · · · |0〉

|jn+k〉 • · · · Z

Fig. 4: Part of a distributed quantum Fourier transform, where n non-
local operations, on n qubits are performed using a single shared en-
tangled state. The control is |jn+k〉, the targets are |j1〉 , . . . , |jn〉. Only a
single qubit of the second quantum computer is shown, others are omit-
ted. The dashed boxes indicate the quantum computers and the double
lines indicate classical communication.

3 Non-local quantum circuits with imperfect entanglement

In this section we will first explain the setup of our simulations (Sec. 3.1) and then
present the results of these simulations (Sec. 3.2).

3.1 The simulation setup

We implemented the two distributed quantum circuits presented in the previous sec-
tion, as well as an implementation of a local circuit. For these implementations we
used Python 3.6 and the QuTiP Python package [6,7]. Simulations are run in the den-
sity state formalism. Depolarizing noise is applied to the shared entangled states using
noise parameter α. The density representation of the noisy EPR-pair is given by

η(α) =
(1− α)

2
(|00〉+ |11〉)(〈00|+ 〈11|) + α

4
I2 ⊗ I2. (3.1)

If α = 0, the state corresponds to one of the Bell-states, whereas for increasing α, the
state becomes more ideally mixed. In our simulations we consider k quantum com-
puters, each with ni qubits. Each device has one additional qubit used for the shared
entanglement.

For different topologies we compare the output of the quantum circuit ηout(α)
with the output in a noiseless situation ηout(0). The quality is expressed in terms of
the fidelity between a pair of density matrices ρ and σ and is given by

F (ρ, σ) =
[
Tr
√
ρ1/2σρ1/2

]2
. (3.2)
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3.2 Results

We run our simulations for the unitary operation

Rϕ =

(
1 0
0 exp(2πiϕ)

)
with eigenvector |ψ〉 = |1〉. The corresponding eigenvalue is exp(2πiϕ) which has
phase ϕ. We consider different noise rates α ∈ [0, 1].

First, we consider a random fixed angleϕ = 72/128, and two quantum computers
of 4 qubits each, 7 qubits of which we use for the approximation. We run the simula-
tions for different noise rates and the results for α = 0.1 and 0.5 are shown in Fig. 5.
Note that ϕ translates to a fraction of 2π and hence to an angle of ϕ ∗ 2π = 202.5◦ in
these plots. Results are presented using log-radar plots for both the standard and the
combined implementation. The shown results are the log-values of the output proba-
bilities. The results for α = 0 and α = 1 are not shown. For α = 0, no errors occur
and ϕ is retrieved with certainty. For α = 1, the result is uniform for all states.

The results for both implementations are similar and show a repetitive pattern,
with spikes every 45◦. The largest spike is found at 202.5◦, corresponding to the phase
ϕ to be found. These effects were also found for quantum computers of different sizes
and when distributing over more than two devices.

For the 7-bit approximation, 128 different measurement outcomes are possible.
For both the standard and the combined implementation, we found that the results
are independent from the initial angle up to rotations with steps of 1/128. Therefore,
the probability distribution of ϕ = 72/128, is the rotated probability distribution of
ϕ = 0. More generally, we also found that the probability distributions for m-bit ap-
proximations are equivalent up to rotation for m > n. For example, the 9-bit phases
ϕ = 1/512 and ϕ = 3/512, give the same probability distribution in a 7-bit approxi-
mation.

Even though the probability distributions for the standard and combined approach
seem similar, they are not the same. We found that the probability of correct retrieval
of angle ϕwas highest for the combined implementation.

In Fig. 6 we show the fidelity for both implementations for varyingα-values for the
same network as before: two quantum computers with 4 qubits each. As expected, the
results are the same for α = 0. For α = 1, the probability distributions are uniform
and hence equal for both the standard and the combined implementation. Note that
with increasing noise rate, the fidelity drops off quickly. However, also note that the
fidelity will not become zero, due to the uniform distribution obtained for α = 1.

Finally, we consider the effects of distributing the algorithm over more devices. We
consider 8 qubits in total and distributed the quantum phase estimation algorithm
over k quantum computers for k ∈ {1, 2, 4, 8}. The results are shown in Fig. 7 for
varying noise rates α ∈ [0, 1]. Naturally, the fidelity is 1 when doing all computations
locally (k = 1), independent of the noise rateα. When distributing the algorithm (k >
1), the fidelity becomes smaller quickly even for small error rates. For noise ratesα = 1,
we see that distributing the algorithm over two or more devices, results in a uniform
distribution.
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10 8 6 4 2 0

Standard phase estimation
= 72/128 and = 0.1

(a) Standard implementation with noise pa-
rameter α = 0.1.
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Standard phase estimation
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(b) Standard implementation with noise pa-
rameter α = 0.5.
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Combined phase estimation
= 72/128 and = 0.1

(c) Combined implementation with noise pa-
rameter α = 0.1.
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90°

135°

180°

225°

270°

315°

10 8 6 4 2 0

Combined phase estimation
= 72/128 and = 0.5

(d) Combined implementation with noise pa-
rameter α = 0.5.

Fig. 5: The probability distributions for the standard and combined dis-
tributed phase estimation circuit for α = 0.1 and α = 0.5
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Fig. 6: Comparison between the fidelity for the standard and combined
approach for varying noise rates α for two quantum computers of 4
qubits each.
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Fig. 7: The fidelity for a varying number of devices the phase estimation
algorithm is distributed over. Different noise rates α are shown.
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4 Conclusions

In this work, we considered the effect of imperfect shared entanglement on the output
fidelity of distributed quantum algorithms. We used the phase estimation algorithm
and proposed two distribution schemes for the corresponding quantum Fourier trans-
form. One is a standard approach, where every non-local operation uses a shared en-
tangled pair; the other is a combined approach, where different non-local operations
are grouped to use only a single shared entangled pair.

The output probability distributions for both schemes are very similar and inde-
pendent of the input angle, up to rotations. However, the combined approach gives
the highest probability of correct retrieval of the phase ϕ. Also in terms of fidelity, the
differences are more prominent, especially for smaller α-values. Again the combined
approach shows the highest fidelity. For high noise rates, the fidelity of both is very
similar and near uniform.

We thus found that using less shared entangled states is beneficial for the output
in terms of fidelity. Note however, that the results presented in this paper are based
on simulations and hence a formal proof of the result is still needed. Furthermore, we
assumed perfect local operations and not qubit decoherence. In practice, both will play
a role.

The fidelity of the shared entangled pair is related to the noise rate α, with α = 0
resulting in a fidelity of 1. As the fidelity of the output drops quickly with increased
noise rates α, the fidelity of this shared entangled pair must be close to 1. Different
techniques can be used to obtain a higher fidelity, such as entanglement purification.
This allows for higher fidelity, but also introduces overhead. In our case of no gate er-
rors and no qubit decoherence, this overhead will have no effect. In practical cases, we
may however not neglect these two effects and there is a trade-off between the output
fidelity of the algorithm and the fidelity of the shared entangled qubit pair.
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