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Abstract. At the interface between quantum computing and machine
learning, the field of quantum machine learning aims to improve classical
machine learning algorithms with the help of quantum computers. Exam-
ples are Hopfield neural networks, which can store patterns and thereby
are used as associative memory. However, the storage capacity of such
classical networks is limited. In this work, we present a new approach to
quantum Hopfield neural networks with classical inputs and outputs. The
approach is easily extendable to quantum inputs or outputs. Performance
is evaluated by three measures of error rates, introduced in this paper.
We simulate our approach and find increased storage capacity compared
to classical networks for small systems. We furthermore present classical
results that indicate an increased storage capacity for quantum Hopfield
neural networks in large systems as well.

Keywords: Hopfield neural networks · Gate-based quantum computing
· Storage capacity · Quantum machine learning

1 Introduction

While conventional computers are restricted to classical operations, quantum
computers implement the rules of quantum mechanics to process information [5],
using quantum principles such as superpositions. The basic units to store infor-
mation on quantum computers are two-level quantum bits, or qubits. Due to
superpositions of both levels, qubits allow for a more flexible representation of
information than classical bits. One widely accepted premise is that quantum
computers have computational advantages over classical processing [6], giving
rise to the notion of ‘quantum supremacy’ [13], which only recently has been
claimed for the first time in experiments [1].
A candidate to show a quantum advantage is believed to be quantum machine
learning (QML) [4,12], a field of research at the interface between quantum
information processing and machine learning. Even though machine learning is
an important tool that is widely used to process data and extract information
from it [4], it also faces its limits. The amount of data processed worldwide each
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year is steadily increasing, while the limits of computing power are rapidly ap-
proaching [7]. Therefore, more efficient algorithms, such as found in the quantum
domain, are crucial.
We consider neural networks (NN), a subclass of machine learning algorithms
consisting of nodes that can be connected in various configurations and interact
with each other via weighted edges. As special case, Hopfield neural networks
(HNN) consist of a single layer of nodes, all connected with each other via sym-
metric edges and without self-connections [8]. In an HNN, nodes are updated

using the updating rule xi ← sign
(∑n

j=1Wijxj

)
, where sign (·) refers to the

sign-function, Wij is the weight between node i and j and Wii = 0. A graphical
representation of an HNN is given in Fig. 1, where k an indicator for the number
of updating iterations in the direction of the dashed arrows.
Due to this connectivity, HNNs can be used as associative memories, meaning
that they can store a set of patterns and associate noisy inputs with the closest
stored pattern. Memory patterns can be imprinted onto the network by the use
of training schemes, for instance Hebbian learning [15]. Here, the weights are cal-
culated directly from all memory patterns, and thereby only a low computational
effort is required. It is possible to store an exponential number of stable attractors
in an HNN if the set of attractors is predetermined and fixed [11]. In general,
however, fewer patterns can be stored if they are randomly selected, resulting
in a very limited storage capacity of HNNs. For Hebbian learning n/(4 log n)
patterns can be stored asymptotically in an HNN with n nodes [9].
Translating HNNs to counterparts in the quantum domain is assumed to offer
storage capacities beyond the reach of classical networks [14,18]. For example,
in [18] a quantum HNN is proposed that could offer an exponential capacity
when qutrits are used. When using qubits however, no increased capacity has
been demonstrated yet for quantum HNNs.
In this work, we provide a new approach for hybrid quantum-classical HNNs,
which 1) allows for classical and quantum inputs and outputs; 2) is able to store

Fig. 1: Schematic overview of a fully-connected Hopfield neural network with
5 neurons. First, the neurons are initialized (orange nodes), then the network
evolves in time or number of iterations k according to the weight matrix with
entries Wij (blue plane). The final configuration is read out (green nodes). The
dashed arrows indicate the direction of updating or time.
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classical bit strings as attractors; and 3) fulfills three minimum requirements to
allow an analogy to classical HNNs as posed in Ref. [16]. The first requirement is
that the quantum HNN must comply with quantum theory while respecting the
structure of NNs. The second requirement is that the quantum model should solve
the discrepancy between unitary quantum evolution and dissipative dynamics
of NNs. Thirdly, it should offer the feature of an associative memory, meaning
that inputs are mapped to the closest stable outputs that encode the learned bit
patterns. We furthermore provide numerical evidence that the capacity indeed in-
creases for gate-based quantum HNNs, when storing randomly chosen bit strings.
Previously proposed implementations of HNNs either deal with non-random
memory patterns [3], or do not account for the discrepancy between dissipative
and unitary dynamics, one of the three minimum requirements [14]. We follow
the recent proposal of deep quantum neural networks in Ref. [2] for our HNN-
development. Our model involves a training set, which is generated based on
the chosen memories, and all involved gate operations are optimized using the
training scheme given in Ref. [2]. We test the model’s ability to store randomly
chosen bit strings and thereby estimate its capacity. While limited to small system
sizes due to the model complexity, the results are compared to those of a classical
HNN with Hebbian learning.
The remainder of this work is organized as follows: We present our quantum
model in Sec. 2 and the setup for the simulations in Sec. 3. The results of these
simulations are given in Sec. 4. Finally, we provide a summary of the results in
Sec. 5 and a conclusion in Sec. 6.

2 Quantum Hopfield neural networks

We first present a feed-forward interpretation of quantum HNNs in Sec. 2.1 and
then explain how to train these feed-forward quantum HNNs in Sec. 2.2.

2.1 A feed-forward interpretation of quantum HNNs

HNNs can be implemented as feed-forward NNs by regarding each update step
as a new layer of neurons. In the feed-forward interpretation, the weight matrix
is layer depended and can be written as W (l). Depending on whether the HNN
is updated synchronously or asynchronously, the weights might differ between

layers. In the former case, the weights W
(l)
ij are exactly as Wij of the usual HNN.

Hence, the weights are symmetric in both the subscripts and the layers and the
superscript l can be omitted. Note that HNNs have no self-connections, such
that Wii = 0 for all i. Therefore, the interpretation of an HNN with synchronous
updating as a feed-forward NN is valid. The number of layers l can be seen as a
time parameter. Fig. 2a shows an HNN with three neurons and a feed-forward
interpretation of this network is given in Fig. 2b.
Note that we are not restricted to synchronous updating. In principle any updating
rule may be applied and the weights of the feed-forward interpretation may differ
drastically from the ones of the single-layer scheme in general. The weights do
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(a) A Hopfield
neural network
with three neu-
rons and without
self-connections.

(b) A feed-forward in-
terpretation of Fig. 2a.
A single updating step
l, without connections
between the i-th neu-
ron of adjacent lay-
ers. The colors indicate
three different outputs.

(c) Quantum circuit of the network of
Fig. 2b. Each unitary Ui is associated with
the output neuron of the same color. The
Ui act on a fresh ancilla qubit illustrated in
gold and all input qubits except for the i-th
qubit shown in gray. The overall quantum
operation U is a product of all Ui.

Fig. 2: Two interpretations of the updating process in classical HNNs and the
corresponding quantum model.

not necessarily need to agree with the ones of Hebbian learning. Note that the
fundamental properties of HNNs of storing and retrieving patterns are retained.
One important advantage of the feed-forward interpretation is that we can use
existing proposals to translate classical NNs to a gate-based quantum analog. To
implement quantum analogs of feed-forward NNs, neurons can be implemented
directly as qubits and weights between two neurons as operators [14,17]. We use
another promising approach to feed-forward NNs, where unitary operations U
acting on a quantum register are associated with the classical perceptrons [2]. In
the following, we will only consider a single synchronous update. More updating
steps can be added by repeating the presented approach.
Using the qubit encoding scheme, a classical bit string (x1, . . . , xn) is encoded in
the corresponding computational basis state |x1 . . . xn〉. In HNNs, neurons can
only take the values ±1 and we identify +1↔ |0〉 and −1↔ |1〉. Consequently,
the classical input layer is replaced by state initialization of the quantum input
register. The neurons of each subsequent layer of the classical feed-forward NN
model are replaced by unitaries Ui, which act on the input register and each on
an additional, freshly prepared ancilla qubit. Fig. 2c gives an example of this
quantum analogue for three neurons and a single update. The colors correspond
with those of the classical neurons of the classical network in Fig. 2b and the
golden lines represent the ancilla qubits.
Note that input qubit i is not affected due to the absence of self-connections. The
only output qubit affected by unitary Ui is ancilla qubit i and the output state
corresponds to the output of classical neuron i. To retrieve a classical output from
the quantum system, ancilla qubits are measured at the end of the circuit. Using
a majority vote over multiple measurement rounds, the most likely outcome is
chosen as updated state. The original input qubits are discarded after an update
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round of applying all Ui, meaning the input register is traced out. For a single
update, 2n qubits are needed. For l updates, i.e. for l layers, (l + 1)n qubits are
needed and the output of a layer is used as input for the subsequent one.

2.2 Training a quantum Hopfield neural network

The goal is to train the unitaries, opposed to variational quantum circuits,
where classical gate parameters are trained and the gates themselves remain the
same. Assume we have a training set of N input states

∣∣φink 〉 for training and

their desired output states |φoutk 〉, for k = 1, . . . , N . Let ρink =
∣∣φink 〉〈φink ∣∣ and let

ρoutk = U
∣∣φink 〉〈φink ∣∣U† be the actual output of the quantum circuit U with input∣∣φink 〉. Furthermore, let the fidelity of the circuit be given by

F
(
U
∣∣φink 〉〈φink ∣∣U†,

∣∣φoutk

〉〈
φoutk

∣∣) =
〈
φoutk

∣∣U ∣∣φink 〉〈φink ∣∣U† ∣∣φoutk

〉
. (1)

This fidelity corresponds with how well the output state after applying the unitary
gates matches the desired output state. The cost function C is defined as

C =
1

N

N∑
k=1

〈
φoutk

∣∣ ρoutk

∣∣φoutk

〉
. (2)

To optimize C, we train the unitary operations Uj(s), which are parametrized by
s as a measure of the training iterations or the training duration. After a time
step ε, the unitaries are then updated according to

Uj(s+ ε) = eiεKj(s)Uj(s), (3)

where the Kj(s) are Hermitian matrices given by

Kj(s) =
i2n+1

2Nλ

∑
k

Tr rest[M
k
j (s)]. (4)

Here 1/λ is a learning rate. These Kj(s) can be estimated by taking a partial trace
of matrices Mk

j that act on the whole space H22n of all input and output qubits.
This partial trace Tr rest traces out all qubits not related to the unitary Uj . These
qubits are all other ancilla qubits and the j-th input qubit if self-connections are
removed. The Mk

j can be calculated from all unitaries, input and output training
states as

Mk
j (s) =

[
Uj(s) · · ·U1(s)ρink ⊗ |0...0〉〈0...0|U

†
1 (s) · · ·U†

j (s),

U†
j+1(s) . . . U†

n(s)1⊗
∣∣φoutk

〉〈
φoutk

∣∣Un(s) · · ·Uj+1(s)
]
,

(5)

where [A,B] = AB −BA is the commutator of two operators A and B.
This updating scheme can be applied and implemented directly. In each iteration,
all Mk

j are estimated and Kj is obtained by tracing out all unrelated qubits.
Using Eq. (3), the unitaries are consequently updated in small time steps ε. The
derivation of Eq. (4) and (5) involves Tayloring the exponential in Eq. (3) around
ε = 0 to the first order and is provided in [2].
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3 Simulating HNNs

In this section, we present the setup of our simulations of the HNNs. First we
introduce the training set in Sec. 3.1, then we discuss the scaling of the simulations
in Sec. 3.2 and afterwards we explain how to evaluate the performance of the
HNNs in Sec. 3.3. Finally, Sec. 3.4 explains how we implemented the simulations
and how we ran them.

3.1 Creating a training set

Let S be a set of m classical memory patterns S = {x(p)}p. We generate a
training set T of input and output states from S using the qubit encoding.
First, we add all memory patterns x(p) as both input and output patterns to
T . Additionally, we add noisy memory patterns to the training set to prevent
the unitaries from simply swapping input and output registers, without actually
acting as an associative memory. All bit strings at a Hamming distance smaller
or equal to d around each memory pattern in S are used as input states and
are denoted by

∣∣xin
pk

〉
. These

∣∣xin
pk

〉
states are noisy versions of the memory state

x(p). Hence, for each memory state x(p), the respective
∣∣xin
pk

〉
are associated with∣∣xout

p

〉
as output states.

The number of training samples depends on the number of patterns at distance
at most d to a given pattern. For m memories, the total number of generated
training samples N train depends on the binomial coefficients

(
n
d

)
and is given by

N train(m, d) = m

d∑
c=0

(
n

c

)
. (6)

Note that the order of training samples does not influence the results, as Kj

is estimated as a sum over all training samples in Eq. (4). Also note that for
large enough d, one noisy input pattern may be associated with different output
states. For example, for n = 3, m = 2 and d = 1, the string (1, 0, 1) is at distance
one from both (1, 0, 0) and (0, 0, 1), yielding two contradicting training pairs.
Consequently, the cost function in Eq. (2) cannot be exactly one, but takes smaller
values. Clearly, the larger m and d are with respect to n, the more contradicting
training pairs there are and the smaller the maximum of the cost function is.

3.2 Model complexity

Let us consider the complexity of our model. To estimate Kj using Eq. (4), in
each iteration, Tr rest[M

k
j ] must be estimated for each training pair k. Hence, the

duration of training is linear in the number of training samples N train(m, d) and
the time required to estimate Tr rest[M

k
j ], denoted by tMk

j
. The time to update

Uj according to Eq. (3) is denoted as tupd. This is repeated for all n unitaries
and N iter iteration steps. The total training duration is thus given by

ttot = N itern
(
tupd +N train(m, d)tMk

j

)
. (7)
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To estimate both terms in Eq. (5), we need 2(n+ 1) multiplications of 22n × 22n-
matrices. As most matrices in Eq. (5) do not depend on k, the result of the
multiplication can be reused. Therefore, the second term in Eq. (7) can be
rewritten as N train(m, d)tMk

j
= O

(
(2n− 4)23(2n) + 4N train23(2n)

)
, where we

used that multiplying two complex a× a matrices requires O(a3) multiplications
of complex numbers in general. Neglecting the computational costs for the
partial trace and matrix exponential and assuming a constant time for each
multiplication, the total time complexity can be summarized as

ttot = O
(
N itermn

226n
)
, (8)

where only the samples at distance d = 1 are included in the training set. This
complexity is independent of whether or not self-connections are removed. It does
however restrict us to classical simulations of small systems with n ≤ 5 only.

3.3 Evaluating the performance

Different HNNs with different training and updating schemes can be compared by
the capacity of the HNN, an important measure to estimate the performance as
an associative memory. The capacity relates to the maximum number of storable
patterns, which requires some measure of the number of retrieval errors. We give
three types of errors, each decreasingly strict in assigning errors. The proposed
error rates are the strict, message and bit error rates and are given by:

SERn,m := 1− 1
[
∀p ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n} : x

(p)
j = f(x(p))j

]
, (9)

MERn,m,η :=
1

mNvic

m∑
p=1

Nvic∑
pk=1

(
1− 1[∀j ∈ {1, . . . , n} : x

(p)
j = f(x(pk)

η )j ]
)
, (10)

BERn,m,η :=
1

mNvic

m∑
p=1

Nvic∑
pk=1

1

n
H
(
x(p), f(x(pk)

η )
)
. (11)

Here, n is the input size and m the number of distinct stored patterns, with
m ≤ 2n. The memory patterns are chosen randomly. Furthermore, 1[·] is the
indicator function, which is one if its argument is true, and zero otherwise.
The SER (Eq. (9)) only considers the patterns the HNN should memorize and
equals one if at least one bit of any memory pattern cannot be retrieved. This
definition corresponds to the one given in [9]. The MER (Eq. (10)) is less strict and

uses Nvic noisy probe vectors x
(pk)
η for each memory x(p). These probe vectors are

random noisy versions of the memory patterns, generated with noise parameter
η. The MER equals the fraction of the probe vectors from which x(p) cannot be

recovered exactly. Finally, the BER (Eq. (11)) also uses the probe vectors x
(pk)
η .

The BER considers all bits separately that cannot be retrieved correctly. For
η = 0, these three error rates are decreasingly strict: SER ≥ MER ≥ BER.
For error rates ER ∈ {SER,MER,BER} and threshold t, we estimate the number
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of storable patterns in an HNN using

mt
max(n,ER) := max {m ∈ {1, . . . , 2n} | ER(n,m) ≤ t} . (12)

The capacity Ct of an HNN is now given by normalizing mt
max by n. For large

system sizes, mt
max(n,SER) is independent of t. For classical HNNs with Hebbian

learning the capacity is given by n/(4 log n).
The capacity of an HNN cannot be determined accurately with only a single set
of random memory patterns. Therefore, the error rate for r different random sets
of memory patterns are averaged to better approximate the error rates. Note
that we require the learned patterns to be stable states of the network and that
other states in the vicinity should be attracted. Furthermore, SER is not an
appropriate measure for the attractiveness of memory patterns. This follows as
the noisy probe samples are randomly generated and might therefore not be part
of the memories basin of attraction.
Memories may contain some patterns multiple times, for instance due to small
system sizes. For such memories, effectively fewer patterns are stored. Therefore,
we generate memories at random, but require them to be distinct.

3.4 Simulation methods

We simulate both the classical and the quantum HNN using matrix multipli-
cations. The classical simulation is implemented straightforwardly by applying
the updating rule for neurons and the Hebbian learning scheme to estimate the
weights. For the quantum HNN, the unitaries Uj are initialized uniformly at
random and updated according to Eq. (3), where the matrices Kj are estimated
from Eq. (4) and (5). Quantum measurements are implemented by choosing the
most likely outcome based on the probabilities calculated from the output states,
in case of several equally likely outcomes an error is assigned in general. The
code used for our simulations is available at [10].
The learning rate 1/λ introduced in Eq. (4) can be chosen freely and controls
the step width of updates. We chose λ = 1 based on an estimation of the MER
with varying λ ∈ [0.01, 50] for system size n = 4, N train = 50 training iterations
and r = 100 repetitions.
We train the unitaries in 50 training iterations on r randomly generated sets of
memory patterns. For each set, we estimate the three error rates of retrieval when
presenting the memories as input to the trained quantum model. The training sets
include all samples at a distance d ≤ 1 around the respective memory patterns.
We repeat this estimation with systems of size n ≤ 5 and m ≤ 2n memories for
all r runs. We sample the error rates r = 500 times for n ∈ {3, 4}, and up to
1200 times for n = 5, to reduce the confidence intervals to a reasonable level.

4 Results

We present the results for the error rates for noisy input retrieval and the capacity
of both the quantum HNN (Sec. 4.1 and Sec. 4.2) and the classical HNN (Sec. 4.3
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Fig. 3: Estimated SER, MER and BER versus the number of stored patterns m
for different system sizes n = 3, 4, 5 for a quantum HNN.
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MER, η = 0.2

MER, η = 0.3

BER, η = 0

BER, η = 0.1

BER, η = 0.2

BER, η = 0.3

Fig. 4: Estimated MER and BER of retrieving the correct memory patterns from
noisy inputs versus the number of stored patterns m. The considered system
sizes are (a) n = 3, (b) n = 4 and (c) n = 5.

and Sec. 4.4). We end by comparing the results for both in Sec. 4.5. All results
are presented with 99 % confidence intervals (CI).

4.1 Error rates of retrieving memory patterns

The error rates when presenting stored memories as input states are displayed
in Fig. 3 for system sizes n ∈ {3, 4, 5}. The error rates rates are averaged over
the corresponding r rounds. In all simulations, the error rates are zero for m = 1
and increase monotonically with m. The SER increases quickly for small m and
reaches one at m = 5 (n = 3), m = 7 (n = 4) and m = 9 (n = 5). The MER
increases moderately and does not reach one, but settles at around 0.7 for n = 3
and n = 4. The BER increases the least of all rates and remains below 0.2 for all
considered systems.
The noisy input samples are generated with noise rates η ∈ {0.1, 0.2, 0.3} and
performance is evaluated for BER and MER. The results are shown in Fig. 4,
together with the noiseless results for η = 0. We find that both the MER and
BER monotonically increase with m. Even for m = 2n and noise rate η = 0.3,
the BER remains below 0.3 and the MER below 0.85 in all considered cases.
For all m, the differences between the error rates for different noise rates remain
approximately constant. We notice that the MER for η = 0 and η = 0.1 are
within the range of each other’s confidence intervals for almost all m. For n = 5,
the CIs are increasingly large due to the varying number of repetitions.
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Table 1: Maximum number of storable patternsmt
max(·) when presenting memories

as inputs, for SER and MER and thresholds t ∈ {0, 0.1}. To obtain all mt
max,

the 99 % confidence intervals around error rates are considered.

n m0
max(SER) m0.1

max(SER) m0
max(MER) m0.1

max(MER)

3 1 1 1 1
4 1 1 1 1
5 1 {1,2} 1 {1,2}

1 2 3 4 5 6 7 8
m

0.0

0.5

1.0

er
ro

r
ra

te

n = 3

1 4 7 10 13 16
m

n = 4

0 5 10 15 20 25 30
m

n = 5
SER

MER

BER

Fig. 5: Estimated SER, MER and BER when presenting the stored patterns to
the classical HNN versus their number m for different system sizes n. The stored
patterns are required to be distinct.

4.2 Capacity of the quantum model

Based on the error rate estimations, we estimate the ability of our quantum model
to store and retrieve patterns. The estimated maximum numbers of storable
patterns mt

max are given in Tab. 1 for error rates SER and MER and thresholds
t = 0 and t = 0.1. For this, the point estimates of both error rates and their CIs
are compared to the thresholds. Only for n = 5, there are several m-values with
confidence intervals that contain error rates below the threshold values. Hence,
not all mt

max can be estimated with certainty, and therefore all possible values
are indicated by curly brackets.

4.3 Error rates of retrieving memory patterns classically

We estimate the error rates for retrieving memory patterns with classical HNNs.
For each fixed n and 1 ≤ m ≤ 2n, we generate r = 104 sets of memories at
random. Each of the three error rates are estimated for n ∈ {3, 4, 5} and the
memory patterns as inputs, the results are shown in Fig. 5. We find that with
increasing number of patterns m, the error rates increase as well. All error rates
are exactly zero for m = 1 and one for m = 2n. For even n, both the MER and
SER fluctuate for different m and are higher if m is even. In contrast, for odd n
we see a smooth evolution. The SER increases to 1 rapidly for all n. The results
for MER are similar to those for the SER. The BER stays well below the other
error rates and increases only moderately, before reaching unity for m = 2n.
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Fig. 6: Estimated MER and BER versus the number of stored patterns m for
system sizes n ∈ {3, 4, 5} when presenting noisy test samples as inputs to the
classical HNN. The test samples are generated with noise rates η ∈ {0.1, 0.2, 0.3}.
Additionally, the error rates for presenting the noiseless memories are shown.

(a) Threshold t = 0 (b) Threshold t = 0.1

Fig. 7: Estimated mt
max(n, SER) for thresholds (a) t = 0 and (b) t = 0.1. The

obtained values are based on r = 104 runs with random sets of memories to
estimate the SER for a classical HNN with Hebbian learning. The asymptotic
limit of retrievable patterns is displayed by the orange curve n/(4 log n).

When presenting noisy input states to the HNN, we see different behavior. As
in the quantum case, only the MER and BER are estimated. For each memory
pattern, we generate Nvic = 100 noisy samples with the same noise rates η as
before. The results for different system sizes n are shown in Fig. 6. The different
noise rates are indicated by different colors. Again we see less fluctuations for
increasing n. Errors increase earlier in the noisy case than in the noiseless case,
as expected.

4.4 Capacity of classical HNNs with Hebbian learning

We evaluate mt
max for 100 iterations and in each iteration we estimate the error

rates using r = 104 randomly chosen sets of distinct memories for different m
and n. We consider the strict error rates in this analysis. In Fig. 7a and 7b the
results are shown for thresholds t = 0 and t = 0.1. The results for the MER are
similar to those of the SER. The theoretical capacity n/(4 log n) is shown as an
orange line. We see a step-wise behavior for all shown results and we see that
the results for t = 0 correspond relatively well with the theoretical limit.
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Fig. 8: Comparison of estimated error rates versus the number of stored patterns
m for different system sizes n ∈ {3, 4, 5}. The blue (red) data are achieved using
our trained quantum model (classical HNN with Hebbian learning).

4.5 Comparison of classical and trained quantum HNN

We compare the error rates, which are estimated when presenting the memory
patterns to the respective model, for the classical HNN with Hebbian learning
and our trained quantum model in Fig. 8. The considered system sizes are
n ∈ {3, 4, 5}. For n = 5, we have only few data for the quantum model due to
the computational cost, such that a comparison can be only made for m ≤ 11.
For all n, the MER and BER of the quantum model are smaller than for the
classical HNN. The only exception is for n = 4 and m = 15, where the MER of
the classical model is smaller. We also find that the SER of the quantum model
is smaller than the classical SER for small m and reaches one only for higher
values of m. While the MER and BER fluctuate like a saw-tooth for even n for
the classical HNN, we do not find this behavior for the quantum model.
In Tab. 1 the maximum number of stored patterns without errors is given for the
trained quantum model. Based on the results in Fig. 8, we see that the classical
HNN with Hebbian learning can only store one pattern reliably.

5 Discussion

In contrast to the case of classical HNNs with Hebbian learning, both MER and
BER remain well below one even for m = 2n for our quantum model. This is
reasonable, as it is possible that there are invariant sub-spaces of quantum states,
that are not affected by the trained quantum channel. Even if all possible input
states are considered as memories, a small number of them can remain invariant
under the channel action and thus yield a retrieval error rate less than one.
The estimated error rates for noisy inputs for a quantum HNN stay well below
the results for the classical HNN with Hebbian learning and they increase slower.
However, when comparing the relative increase in error rate for noiseless and
noisy patterns, the classical and the quantum HNN score roughly the same.
Within the level of confidence obtained with the results, we can conclude that our
quantum model can store more memories than the classical HNN using Hebbian
learning. Already for n > 4 it is likely that the quantum model can store more
than one memory given that SER or MER are below t = 0.1, whereas the classical

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_44

https://dx.doi.org/10.1007/978-3-030-50433-5_44


Quantum Hopfield neural networks: A new approach and its storage capacity 13

model can only store a single memory reliably.
The capacity estimates for the classical HNN with Hebbian learning follow the
theoretical optimal curve. Due to the high computational costs of the simulations,
these results are unavailable for the quantum HNN. Based on the shown results,
we do expect capacity improvements for the quantum model over the classical
theoretical optimum.
The high computational costs of the simulations of the quantum model originate
from the exponential complexity given in Sec. 3.2. This in turn results in very
limited system sizes we can simulate. Nonetheless, simulating larger systems in
sufficiently many repetitions is valuable, because it allows us to compare the
number of stored patterns to other implementations of HNNs.
The presented model can be implemented on general quantum devices and an
implementation would require 3n+ 1 qubits and n4n multi-qubit gates.

6 Conclusion and outlook

In this work we consider classical HNNs with Hebbian learning and quantum
HNNs, where the unitaries are explicitly trained. Based on the presented results,
we conclude that the quantum HNN can indeed be used to store classical bit
strings as stable attractors with a higher capacity than classical HNNs.
Using a numerical analysis, we consider the number of randomly chosen bit
strings that can be stored by an associative model. For n = 5 we found that the
number of storable patterns is one or two, given an error rate threshold of 0.1,
whereas only a single pattern can be stored using a classical HNN with Hebbian
learning. For threshold zero, the storage capacity for small system sizes is equal
for both classical and quantum HNNs.
It is possible to implement the trained quantum model on actual quantum devices,
requiring 3n+1 qubits. This might even allow for faster evaluation of the training
scheme due to fast execution times on quantum devices. This would allow testing
of the trained quantum model on larger systems than in our simulations. However,
the number of required gate parameters of the algorithm has a similar scaling as
the time complexity when implemented straightforwardly. Therefore, we expect
that the scaling prevents experimental realizations of much larger systems.
We conclude that the trained quantum model of our work should be understood
as a toy example on the path towards a quantum algorithm for associative
memories with possibly larger capacity. The achievement of a quantum advantage
by increasing the storage capacity of quantum neural networks beyond classical
limits is far from obvious, and more research is required.
Although only classical inputs have been considered, the presented quantum
models can also be used for quantum data as inputs and outputs. The ability
of our model to store and retrieve quantum states should be studied in future
research. We suggest comparing our trained quantum model to classical algorithms
that involve non-static training schemes for HNNs, i.e., where the weights are
optimized on a training set with respect to a cost-function. In this way, it can be
clarified experimentally, whether the better performance of the quantum model
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originates purely from the fact that it is trained, or from an actual quantum
advantage over classical schemes. Moreover, we propose to analyze the storage
capacity of our model theoretically, both for quantum and classical memory
states. In this way, we hope to find an answer to the ultimate question of whether
a quantum advantage can be achieved in the storage capacity of neural networks.
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