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Abstract. With quantum computers still under heavy development, al-
ready numerous quantum machine learning algorithms have been pro-
posed for both gate-based quantum computers and quantum annealers.
Recently, a quantum annealing version of a reinforcement learning algo-
rithm for grid-traversal using one agent was published. We extend this
work based on quantum Boltzmann machines, by allowing for any num-
ber of agents. We show that the use of quantum annealing can improve
the learning compared to classical methods. We do this both by means
of actual quantum hardware and by simulated quantum annealing.
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1 Introduction

Currently, there are two different quantum computing paradigms. The first is
gate-based quantum computing, which is closely related to classical digital com-
puters. Making gate-based quantum computers is difficult, and state-of-the-art
devices therefore typically have only a few qubits. The second paradigm is quan-
tum annealing, based on the work of Kadowaki and Nishimore [17]. Problems
have already been solved using quantum annealing, in some cases much faster
than with classical equivalents [7,23]. Applications of quantum annealing are
diverse and include traffic optimization [23], auto-encoders [18], cyber security
problems [24], chemistry applications [12,28] and machine learning [7,8,21].

Especially the latter is of interest as the amount of data the world processes
yearly is ever increasing [14], while the growth of the classical computing power
is expected to stop at some point [27]. Quantum annealing might provide the
necessary improvements to tackle these upcoming challenges.

One specific type of machine learning is reinforcement learning, where an op-
timal action policy is learnt through trial and error. Reinforcement learning can
be used for a large variety of applications, ranging from autonomous robots [29]
to determining optimal social or economical interactions [3]. Recently, reinforce-
ment learning has seen many improvements, most notably the use of neural
networks to encode the quality of state-action combinations. Since then, it has
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been successfully applied to complex games such as Go [25] and solving a Rubik’s
cube [2].

In this work we consider a specific reinforcement learning architecture called
a Boltzmann machine [1]. Boltzmann machines are stochastic recurrent neural
networks and provide a highly versatile basis to solve optimisation problems.
However, the main reason against widespread use of Boltzmann machines is
that the training times are exponential in the input size. In order to effectively
use Boltzmann machines, efficient solutions for complex (sub)routines must be
found. One of the complex subroutines is finding the optimal parameters of a
Boltzmann machine. This task is especially well suited for simulated annealing,
and hence for quantum annealing.

So far, little research has been done on quantum reinforcement learning.
Early work demonstrated that applying quantum theory to reinforcement learn-
ing problems can improve the algorithms, with potential improvements to be
quadratic in learning efficiency and exponential in performance [10,11]. Only re-
cently, quantum reinforcement learning algorithms are implemented on quantum
hardware, with [8] one of the first to do so. They demonstrated quantum-enabled
reinforcement learning through quantum annealer experiments.

In this article, we consider the work of [8] and implement their proposed
quantum annealing algorithm to find the best action policy in a gridworld en-
vironment. A gridworld environment, shown in figure 2, is a simulation model
where an agent can move from cell to cell, and where potential rewards, penal-
ties and barriers are defined for certain cells. Next, we extend the work to an
arbitrary number of agents, each searching for the optimal path to certain goals.
This work is, to our knowledge, the first simulated quantum annealing-based
approach for multi-agent gridworlds. The algorithm can also be run on quantum
annealing hardware if available.

In the following section, we will give more details on reinforcement learning
and Boltzmann machines. In Sec. 3 we will describe the used method and the
extensions towards a multi-agent environment. Results will be presented and
discussed in Sec. 4, while Sec. 5 gives a conclusion.

2 Background

A reinforcement learning problem is described as a Markov Decision Process
(MDP) [6,15], which is a discrete time stochastic system. At every timestep t
the agent is in a state st and chooses an action at from its available actions in
that state. The system then moves to the next state st+1 and the agent receives
a reward or penalty Rat(st, st+1) for taking that specific action in that state. A
policy π maps states to a probability distribution over actions and, when used
as π(s) it returns the highest-valued action a for state s. The policy will be
optimized over the cumulative rewards attained by the agent for all state-action
combinations. To find the optimal policy π∗, the Q-function Q(s, a) is used which
defines for each state-action pair the Q-value, denoting the expected cumulative
reward, or the quality.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_43

https://dx.doi.org/10.1007/978-3-030-50433-5_43


Multi-agent reinforcement learning using simulated quantum annealing 3

s1
s2
s3
s4

a1
a2

Input
layer

Hidden
layers

Output
layer

(a) A single-agent Boltzmann ma-
chine with four states and two ac-
tions.

s1,1
s2,1
s3,1
s4,1
s1,2
s2,2
s3,2
s4,2

(a1, a1)

(a1, a2)

(a2, a1)

(a2, a2)

Input
layer

Hidden
layers

Output
layer

(b) A multi-agent Boltzmann ma-
chine with two agents and per
agent four states and two actions
.

Fig. 1: Examples of restricted Boltzmann machines for reinforcement learning
environments with one or more agents.

The Q-function is trained by trial and error, by repeatedly taking actions in
the environment and updating the Q-values using the Bellman equation [5]:

Qπ(st, at) = Est+1 [Rat(st, st+1) + γQπ(st+1, π(st+1))] . (1)

Different structures can be used to represent the Q-function, ranging from
a simple but very limited tabular Q-function to a (deep) neural network which
encodes the values with the state vector as input nodes, and all possible actions
as output nodes. In such deep neural networks, the link between nodes i and j
is assigned a weight wij . These weights can then be updated using, for example,
gradient descent, which minimizes a loss function. If a multi-layered neural net-
work is used, it is called deep reinforcement learning (DRL). A special type of
DRL is given by Boltzmann machines and their restricted variants.

A Boltzmann machine is a type of neural network that can be used to encode
the Q-function. In a general Boltzmann machine, all nodes are connected to each
other. In a restricted Boltzmann machine (RBM), nodes are divided into subsets
of visible nodes v and hidden nodes h, where nodes in the same subset have
no connections. The hidden nodes can be further separated in multiple hidden
node subsets, resulting in a multi-layered (deep) RBM, an example of which
can be seen in Fig. 1a with two hidden layers of 5 and 3 nodes respectively.
There are also two visible layers. Connections between distinct nodes i and j are
assigned a weight wij . Additionally, each node i is assigned a bias wii, indicating
a preference to one of the two possible values ±1 for that node. All links are
bidirectional in RBMs, meaning wij = wji. Hence, they differ from feed-forward
neural networks, where the weight of one direction is typically set to 0.

Using vi for visible nodes and hj for hidden ones, we can associate a global
energy configuration to an RBM using

E(v, h) = −
∑
i

wiivi −
∑
j

wjjhj −
∑
i

∑
j

viwijhj . (2)
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The probability for nodes being plus or minus one depends on this global energy
and is given by

pnode i = 1 =
1

1 + exp(−∆Ei

T )
.

Here ∆Ei = Enode i=1 −Enode i=−1 is the difference in global energy if node i is
1 or −1 and T is an internal model parameter, referred to as the temperature.

Simulated annealing can be used to update the weights wij quickly. In this
approach, a subset of visible nodes are fixed (clamped) to their current values
after which the network is sampled. During this process the anneal temperature is
decreased slowly. This anneal parameter affects (decreases) the probability that
the annealing process moves to a worse solution than the current one to avoid
potential local minima. This sampling results in the convergence of the overall
probability distribution of the RBM where the global energy of the network
fluctuates around the global minimum.

3 Method

First, we will explain how the restricted quantum Boltzmann machine can be
used to learn an optimal traversal-policy in a single-agent gridworld setting.
Next, in Sec. 3.2 we will explain how to extend this model to work for a multi-
agent environment.

3.1 Single-agent quantum learning

In [8], an approach to a restricted quantum Boltzmann machine was introduced
for a gridworld problem. In their approach, each state is assigned an input node
and each action an output node. Additional nodes in the hidden layers are used to
be able to learn the best state-action combinations. The topology for the hidden
layers is a hyperparameter that is set before the execution of the algorithm.
The task presented to the restricted Boltzmann machine is to find the optimal
traversal-policy of the grid, given a position and a corresponding action.

Using a Hamiltonian associated to a restricted Boltzmann machine, we can
find its energy. In its most general form, the Hamiltonian Hv is given by

Hv = −
∑
v∈V
h∈H

wvhvσ
z
h −

∑
{v,v′}⊆V

wvv′vv
′ −

∑
{h,h′}⊆H

whh′σ
z
hσ

z
h′ − Γ

∑
h∈H

σxh (3)

with v denoting the prescribed fixed assignments of the visible nodes, i.e. the
input and output nodes. Here V is the set of all visible nodes, while H is the set
of all hidden nodes. Note that setting whh′ = 0 has the same effect as removing
the link between nodes h and h′. Also, Γ is an annealing parameter, while σzi
and σxi are the spin-values of node i in the z- and x-direction, respectively.
Note that in Eq. (3) no σzv variables occur, as the visible nodes are fixed for a
given sample, indicated by the v-terms. Note the correspondence between this
Hamiltonian and the global energy configuration given in Eq. (2). The optimal

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_43

https://dx.doi.org/10.1007/978-3-030-50433-5_43


Multi-agent reinforcement learning using simulated quantum annealing 5

traversal-policy is found by training the restricted Boltzmann machine, which
means that the weights wvv′ , wvh and whh′ are optimized based on presented
training samples.

For each training step i, a random state s1
i is chosen which, together with a

chosen action a1
i , forms the tuple (s1

i , a
1
i ). Based on this state-action combination,

a second state is determined: s2
i ← a1

i (s
1
i ). The corresponding optimal second

action a2
i can be found by minimizing the free energy of the restricted Boltzmann

machine given by the Hamiltonian of Eq. (3). As no closed expression exists for
this free energy, an approximate approach based on sampling Hv is used.

For all possible actions a from state s2
i , the Q-function corresponding to the

RBM is evaluated. The action a that minimizes Q, is taken as a2
i . Ideally, one

would use the Hamiltonian Hv from Eq. (3) for the Q-function. However, Hv

has both σxh and σzh terms that correspond to the spin of variable h in the x-
and z-direction. As these two directions are perpendicular, measuring the state
of one direction destroys the state of the other. Therefore, instead of Hv, we use
an effective Hamiltonian Heffv for the Q-function. In this effective Hamiltonian
all σxh terms are replaced by σz terms by using so-called replica stacking [20],
based on the Suzuki-Trotter expansion of Eq. (3) [13,26].

With replica stacking, the Boltzmann machine is replicated r times in total.
Connections between corresponding nodes in adjacent replicas are added. Thus,
node i in replica k is connected to node i in replica k ± 1 modulo r. Using the
replicas, we obtain a new effective Hamiltonian Heffv=(s,a) with all σx variables

replaced by σz variables. We refer to the spin variables in the z-direction as
σi,k for node i in replica k and we identify σh,0 ≡ σh,r. All σz variables can be
measured simultaneously. Additionally, the weights in the effective Hamiltonian
are scaled by the number of replicas. In its clamped version, i.e. with v = (s, a)

fixed, the effective resulting Hamiltonian Heffv=(s,a) is given by

Heffv=(s,a) =−
∑
h∈H

h−s adjacent

r∑
k=1

wsh
r
σh,k −

∑
h∈H

h−a adjacent

r∑
k=1

wah
r
σh,k

−
∑

{h,h′}⊆H

r∑
k=1

whh′

r
σh,kσh′,k − J+

∑
h∈H

r∑
k=0

σh,kσh,k+1. (4)

Note that J+ is an annealing parameter that can be set and relates to the original
annealing parameter Γ . Throughout this paper, the values selected for Γ and
J+ are identical to those in [8].

For a single evaluation of the Hamiltonian and all corresponding spin vari-
ables, we get a specific spin configuration ĥ. We evaluate the circuit nruns times
for a fixed combination of s and a, which gives a multi-set ĥs,a = {ĥ1, . . . , ĥnruns

}
of evaluations. From ĥs,a, we construct a set of configurations Cĥs,a

of unique spin

combinations by removing duplicate solutions and retaining only one occurrence
of each spin combination. Each spin configuration in Cĥs,a

thus corresponds to

one or more configurations in ĥs,a, and each configuration in ĥs,a corresponds
to precisely one configuration in Cĥs,a

.
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The quality of ĥs,a, and implicitly of the weights of the RBM, is evaluated
using the Q-function

Q(s, a) = −
〈
Heffv=(s,a)

〉
− 1

β

∑
c∈Cĥs,a

P(c|s, a) logP(c|s, a), (5)

where the Hamiltonian is averaged over all spin-configurations in ĥs,a. Further-

more, β is an annealing parameter and the frequency of occurrence of c in ĥs,a
is given by the probability P(c|s, a). The effective Hamiltonian Heffv=(s,a) from

Eq. (4) is used.
Using the Q-function from Eq. (5), the best action a2

i for state s2
i is given by

a2
i = argminaQ(s, a) (6)

= argmina

−〈Heff
v=(s,a)

〉
− 1

β

∑
c∈Cĥs,a

P(c|s, a) logP(c|s, a)

 . (7)

Once the optimal action a2
i for state s2

i is found, the weights of the restricted
Boltzmann machine are updated following

∆whh′ = ε
(
Ra1i

(
s1
i , s

2
i

)
+ γQ

(
s2
i , a

2
i

)
−Q

(
s1
i , a

1
i

))
〈hh′〉, (8)

∆wvh = ε
(
Ra1i

(
s1
i , s

2
i

)
+ γQ

(
s2
i , a

2
i

)
−Q

(
s1
i , a

1
i

))
v〈h〉, (9)

where, v is one of the clamped variables s1
i or a1

i . The averages 〈h〉 and 〈hh′〉 are

obtained by averaging the spin configurations in ĥs,a for each h and all products
hh′ for adjacent h and h′. Based on the gridworld, a reward or penalty is given
using the reward function Ra1i (s1

i , s
2
i ). The learning rate is given by ε, and γ is a

discount factor related to expected future rewards, representing a feature of the
problem.

If the training phase is sufficiently long, the weights are updated such that
the restricted Boltzmann machine gives the optimal policy for all state-action
combinations. The required number of training samples depends on the topology
of the RBM and the specific problem at hand. In the next section we will consider
the extensions on this model to accommodate multi-agent learning.

3.2 Multi-agent quantum learning

In the previous section we considered a model with only a single agent having to
learn an optimal policy in a grid, however, many applications involve multiple
agents having conjoined tasks. For instance, one may think of a search-and-rescue
setting where first an asset must be secured before a safe-point can be reached.

This model can be solved in different ways. First and foremost, different
models can be trained for each task/agent involved. In essence, this is a form
of multiple independent single-agent models. We will however focus on a model
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including all agents and all rewards simultaneously. This can be interpreted as
one party giving orders to all agents on what to do next, given the states.

We consider the situation where the number of target locations is equal to
the number of agents and each agent has to reach a target. The targets are not
preassigned to the agents, however, each target can only be occupied by one
agent simultaneously.

For this multi-agent setting, we extend the restricted Boltzmann machine
as presented before. Firstly, each action of each agent is considered as an input
state. For M agents, each with N actions, this gives MN input states. The
output states are all possible combinations of the different actions of all agents.
This means that if each agent has k possible actions, there are kM different
output states.

When using a one-hot encoding of states to nodes, the number of nodes in
the network increases significantly compared to using a binary qubit encoding
which allows for a more efficient encoding. Training the model using a binary
encoding, however, is more complex than with one-hot encoding since for the
former only a few nodes carry information on which states and actions are of
interest while for binary encoding all nodes are used to encode the information.
Therefore, we chose one-hot encoding similar to [8].

The Boltzmann machine for a multi-agent setting is closely related to that
of a single-agent setting. An example is given in Fig. 1b for two agents. Here,
input si,j represents state i of agent j and output (am, an) means action m for
the first agent and action n for the second.

Apart from a different RBM topology, also the effective Hamiltonian of
Eq. (4) changes to accommodate the extra agents and the increase in possible ac-
tion combinations for all agents. Again, all weights are initialized and state-action
combinations denoted by tuples (si1,1, . . . , siM ,M , (ai1 , . . . , aiM )), are given as in-
put to the Boltzmann machine. Let a = (ai1 , . . . , aiM ) and S = {si1,1, . . . , siM ,M}
and let r be the number of replicas. Nodes corresponding to these states and
actions are clamped to 1, and other visible nodes are clamped to 0. The effective
Hamiltonian is then given by

Heffv (v = (S, a)) = −
∑

s∈S,h∈H
h−s adjacent

r∑
k=1

wsh
r
σh,k −

∑
h∈H

h−a adjacent

r∑
k=1

wah
r
σh,k

−
∑

{h,h′}⊆H

r∑
k=1

whh′

r
σh,kσh′,k − J+

∑
h∈H

r∑
k=0

σh,kσh,k+1. (10)

In each training iteration a random state for each agent is chosen, together
with the corresponding action. For each agent, a new state is determined based
on these actions. The effective Hamiltonian is sampled nruns times and the
next best actions for the agents are found by minimizing the Q-function, with
Eq. (10) used as effective Hamiltonian in Eq. (5). Next, the policy and weights
of the Boltzmann machine are updated.
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To update the weights of connections, Eq. (8) and Eq. (9) are used. Note that
this requires the reward function to be evaluated for the entirety of the choices,
consisting of the new states of all agents and the corresponding next actions.

4 Numerical experiments

In this section the setup and results of our experiments are presented and dis-
cussed. First we explain how the models are sampled in Sec. 4.1, then the
used gridworlds are introduced in Sec. 4.2. The corresponding results for the
single-agent and multi-agent learning are presented and discussed in Sec. 4.3
and Sec. 4.4, respectively.

4.1 Simulated Quantum Annealing

There are various annealing dynamics [4] that can be used to sample spin values
from the Boltzmann distribution resulting from the effective Hamiltonian of
Eq. (3). The case Γ = 0 corresponds to purely classical simulated annealing [19].
Simulated annealing (SA) is also known as thermal annealing and finds its origin
in metallurgy where the cooling of a material is controlled to improve its quality
and correct defects.

For Γ 6= 0, we have quantum annealing (QA) if the annealing process starts
from the ground state of the transverse field and ends with a classical energy
corresponding to the ground state energy of the Hamiltonian. The ground en-
ergy corresponds to the minimum value of the cost function that is optimized.
No replicas are used for QA. The devices made by D-Wave Systems physically
implement this process of quantum annealing.

However, we can also simulate quantum annealing using the effective Hamil-
tonian with replicas (Eq. (4)) instead of the Hamiltonian with the transverse
field (Eq. (3)). This representation of the original Hamiltonian as an effective
one, corresponds to simulated quantum annealing (SQA). Theoretically, SQA
is a method to classically emulate the dynamics of quantum annealing by a
quantum Monte Carlo method whose parameters are changed slowly during the
simulation [22]. In other words, by employing the Suzuki-Trotter formula with
replica stacking, one can simulate the quantum system described by the original
Hamiltonian in Eq. (3).

Although SQA does not reproduce quantum annealing, it provides a way to
understand phenomena such as tunneling in quantum annealers [16]. SQA can
have an advantage over SA thanks to the capability to change the amplitudes of
states in parallel, as proven in [9]. Therefore, we opted for SQA in our numerical
experiments. We implemented the effective Hamiltonian on two different back-
ends. The first using classical sampling given by simulated annealing (SQA SA).
The second by implementing the effective Hamiltonian on the D-Wave 2000Q
(SQA D-Wave 2000Q), a 2048 qubits quantum processor. Furthermore, we im-
plemented a classical DRL algorithm for comparison.
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(a) Gridworld problems considered in single-agent
experiments.

(b) Gridworld problems consid-
ered in multi-agent experiments.

Fig. 2: All grids used to test the performance. On the left the three grids used for
the single-agent scenario. On the right the grids used for multi-agent learning.
The 3× 3-grid is used with and without wall.

4.2 Gridworld environments

We illustrate the free energy-based reinforcement learning algorithm proposed
in Sec. 3.2 by applying it on the environments shown in Fig. 2a and Fig. 2b
for one and two agents, respectively. In each gridworld, agents are allowed to
take the actions up, down, left, right and stand still. We consider only examples
with deterministic rewards. Furthermore, we consider environments both with
and without forbidden states (walls) or penalty states. The goal of the agent
is to reach the reward while avoiding penalty states. In case of multiple agents
and rewards, each of the agents must reach a different reward. The considered
multi-agent gridworlds focus on two agents. These environments are however
easily extendable to an arbitrary number of agents.

The discount factor γ, explained in Sec. 3.1, was set to 0.8, similar to [8]. An
agent reaching a target location is rewarded a value of 200, while ending up in
a penalty state is penalized by −200. An extra penalty of −10 is given for each
step an agent takes. As the rewards propagate through the network, the penalty
assigned to taking steps is overcome. In the multi-agent case, a reward of 100 is
given to each agent if each is at a different reward state simultaneously.

To assess the results of the multi-agent QBM-based reinforcement learning
algorithm, we compare the learned policy for each environment with the optimal
one using a fidelity measure. The optimal policy for this measure was determined
logically thanks to the simple nature of these environments. As fidelity measure
for the single-agent experiments, the formula from [20] is used. The fidelity at
the i-th training sample for the multi-agent case with n agents is defined as

fidelity(i) = (Tr × |S|n)−1
Tr∑
k=1

∑
s∈Sn

1A(s,i,k)∈π∗(s). (11)

Here, Tr denotes the number of independent runs for the method, |S| denotes
the total amount of states in the environment, π∗ denotes the optimal policy and
A(s, i, k) denotes the action assigned at the k-th run and i-th training sample
to the state pair s. Each state pair s is an n-tuple consisting of the state of each
agent. This definition of fidelity for the multi-agent case essentially records the
amount of state pairs in which all agents took the optimal actions over all runs.
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Fig. 3: Fidelity scores corresponding to hyperparameter choices with the highest
average fidelity for the 5× 3 single-agent and 2× 2 multi-agent gridworld. The
hyperparameters considered are the hidden layer size (described as an array of
the number of nodes per layer), the learning rate γ and the number of replicas
r. For the multi-agent grid search we also considered the number of samples per
training step. The legends indicate the used values.

4.3 Single-agent results

Before running the experiment, a grid search is performed to find the best set-
ting for some hyperparameters. The parameters considered are: structure of the
hidden layers, learning rate γ and number of replicas r used. These replicas are
needed for the Suzuki-Trotter expansion of Eq. (3). The SQA SA reinforcement
learning algorithm was run Tr = 20 times on the 5× 3 grid shown in Fig. 2a for
Ts = 500 training samples each run. In total, 18 different hyperparameter com-
binations are considered. For each, an average fidelity over all training steps is
computed. The four best combinations are shown in the left plot of Fig. 3. Based
on these results, the parameters corresponding to the orange curve (i.e. hidden
layer size = [4, 4], γ = 0.01, r = 1) have been used in the experiments. These
settings are used for all single-agent environments. The three different sampling
approaches explained in Sec. 4.1 are used for each of the three environments.
The results are all shown in Fig. 4.

We achieved similar results compared to the original single-agent reinforce-
ment learning work in [8]. Our common means of comparison is the 5× 3 grid-
world problem, which in [8] also exhibits the best performance with SQA. Despite
the fact that we did not make a distinction on the underlying graph of the SQA
method, in our case the algorithm seems to achieve a higher fidelity within the
first few training steps (∼ 0.9 at the 100-th step in comparison to ∼ 0.6 in [8])
and to exhibit less variation in the fidelity later on in training. This may be due
to the different method chosen for sampling the effective Hamiltonian.

Comparing sampling using SQA simulated annealing with SQA D-Wave
2000Q, we see the latter shows more variance in the results. This can be ex-
plained by the stochastic nature of the D-Wave system, the limited availability
of QPU time in this research and the fact that only 100 D-Wave 2000Q sam-
ples are used at every training step. We expect that increasing the number of
D-Wave 2000Q samples per training iteration increases the overall fidelity and
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Fig. 4: The performance of the different RL implementations for the three single-
agent gridworlds. All algorithms have been run Tr = 10 times.

results in a smoother curve. However, it could also stem from the translation of
the problem to the D-Wave 2000Q architecture. A problem that is too large to
be directly embedded on the QPU is decomposed in smaller parts and the result
might be suboptimal. This issue can be resolved by a richer QPU architecture
or a more efficient decomposition.

Furthermore, the results could also be improved by a more environment spe-
cific hyperparameter selection. We now used the hyperparameters optimized for
the 5 × 3 gridworld for each of the other environments. A gridsearch for each
environment separately will probably improve the results. Increasing the number
of training steps and averaging over more training runs will likely give a better
performance and reduce variance for both SQA methods. Finally, adjusting the
annealing schedule by optimizing the annealing parameter Γ could also lead to
significantly better results.

Comparing the DRL to the SQA SA algorithm, we observe that the SQA SA
algorithm achieves a higher fidelity using fewer training samples than the DRL
for all three environments. Even SQA D-Wave 2000Q, with the limitations listed
above, outperforms the classical reinforcement learning approach with exception
of the 4×1 gridworld, the simplest environment. It is important to note that the
DRL algorithm will ultimately reach a fidelity similar to both SQA approaches,
but it does not reach this performance for the 5 × 3 and 7 × 5 gridworlds until
having taken about six to twenty times as many training steps, respectively.
Hence, the simulated quantum annealing approach on the D-Wave system learns
more efficiently in terms of timesteps.

4.4 Multi-agent results

As the multi-agent environments are fundamentally different from the single-
agent ones, different hyperparameters might be needed. Therefore, we again run
a grid search to find the optimal values for the same hyperparameters as in the
single-agent case. Additionally, due to the complexity of the multi-agent envi-
ronments, the number of annealing samples per training step nruns ∈ {100, 500}
is also considered in the grid search.
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Fig. 5: Different RL methods for the three multi-agent gridworlds. All results are
averaged over Tr = 5 runs.

For each combination of hyperparameters, the algorithm was run Tr = 15
times for Ts = 500 training samples each run for the 2 × 2 gridworld problem
shown in Fig. 2b. In total, 36 combinations are considered and the performance
of the best four combinations is given in the right plot in Fig. 3.

Based on the results from this gridsearch, suitable choices for the model pa-
rameters would either be given by the parameter sets corresponding to the green
fidelity curve or the blue one. We opt for the blue fidelity curve, corresponding
to a hidden layer topology of [8, 8], a learning rate γ = 0.01, one replica and
nruns = 500 samples per training step. We expect that this allows for a better
generalization due to the larger hidden network and increased sampling.

The same hyperparameters found in the grid search conducted on the 2× 2
gridworld problem are used for the two other environments. In Fig. 5, the results
for the multi-agent environments are shown. As the available D-Wave 2000Q
QPU time was limited in this research, only the results for the multi-agent SQA
simulated annealing and the multi-agent DRL method are shown. An aspect
that immediately stands out from the performance plots is the fast learning rate
achieved by SQA SA within the first 250 training steps. In the case of classical
DRL, learning progresses slower and the maximum fidelity reached is still lower
than the best values achieved by SQA in the earlier iterations. We also see that
the overall achieved fidelity is rather low for each of the environments compared
to the single agent environments. This indicates that the learned policies are far
from optimal. This can be due to the challenging nature of the small environ-
ments where multiple opposing strategies can be optimal, for instance, agent 1
moving to target 1 and agent 2 to target 2, and vice versa.

We expect the results for SQA D-Wave 2000Q to be better than the classical
results, as SQA D-Wave 2000Q excels at sampling from a Boltzmann distribu-
tion, given sufficiently large hardware and sufficiently long decoherence times.
We see that for two of the three environments, SQA SA learns faster and achieves
at least a similar fidelity as classical methods. This faster learning and higher
achieved fidelity is also expected of SQA D-Wave 2000Q.
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5 Conclusion

In this paper we introduced free energy-based multi-agent reinforcement learning
based on the Suzuki-Trotter decomposition and SQA sampling of the resulting
effective Hamiltonian. The proposed method allows the modelling of arbitrarily-
sized gridworld problems with an arbitrary number of agents. The results show
that this approach outperforms classical deep reinforcement learning, as it finds
policies with higher fidelity within a smaller amount of training steps. Some of
the shown results are obtained using SQA simulated annealing, opposed to SQA
quantum annealing which is expected to perform even better, given sufficient
hardware and sufficiently many runs. Hence, a natural progression of this work
would be to obtain corresponding results for SQA D-Wave 2000Q. The current
architecture of the quantum annealing hardware is rather limited in size and a
larger QPU is needed to allow fast and accurate reinforcement learning algorithm
implementations of large problems.

Furthermore, implementing the original Hamiltonian without replicas on
quantum hardware, thus employing proper quantum annealing, might prove ben-
eficial. This takes away the need for the Suzuki-Trotter expansion and thereby
a potential source of uncertainty. Moreover, from a practical point of view, it is
worthwhile to investigate more complex multi-agent environments, where agents
for instance have to compete or cooperate, or environments with stochasticity.
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