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Abstract. We introduce new hybrid algorithms, DBSCAN Solver and Solution
Partinioning Solver, which use quantum annealing for solving Vehicle Routing
Problem (VRP) and its practical variant: Capacitated Vehicle Routing Problem
(CVRP). Both algorithms contain important classical components, but we also
present two other algorithms, Full QUBO Solver and Average Partitioning Solver,
which can be run only on a quantum processing unit (without CPU) and were
prototypes which helped us develop better hybrid approaches. In order to validate
our methods, we run comprehensive tests using D-Wave’s Leap framework on
well-established benchmark test cases as well as on our own test scenarios built
based on realistic road networks. We also compared our new quantum and hybrid
methods with classical algorithms - well-known metaheuristics for solving VRP
and CVRP. The experiments indicate that our hybrid methods give promising
results and are able to find solutions of similar or even better quality than the
tested classical algorithms.
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1 Introduction

Vehicle Routing Problem (VRP) is an important combinatorial optimization problem in
which the goal is to find the optimal setting of routes for a fleet of vehicles which should
deliver some goods from a given origin (depot) to a given set of destinations (customers)
[1]. It is a generalization of the Travelling Salesman Problem (TSP) (introduced first
as the Truck Dispatching Problem [1]) in which one vehicle has to visit some number
of destinations in the optimal way [2]. Both problems are proven to be NP-hard [3].
There exist the exact algorithms able to find optimal solutions in a reasonable time for
relatively small instances, but generally, those problems are computationally difficult and
the state-of-the-art approaches applied in practice are based on heuristics (constructive,
improvement and composite) and metaheuristics [4, 5].

Recently, we can observe a noticeable progress in the development of quantum
computing algorithms and it turned out that they may be particularly successful in solving
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combinatorial optimization problems, such as TSP and VRP [6]. The first quantum
algorithms for TSP and VRP already exist and in the scientific literature we can find
algorithms which can be run on gate-based quantum computers [7–17] as well as quantum
annealing algorithms which can be run on adiabatic quantum computers [18–24].

In this paper, we present new methods for solving VRP and its more practical variant,
CVRP (Capacitated Vehicle Routing Problem), in which all vehicles have a limited
capacity. The algorithms introduced in this paper are based on quantum annealing,
because due to the number of available qubits, those algorithms have currently a greater
chance to give any practical improvement over classical algorithms.

We developed and present four algorithms: Full QUBO Solver (FQS), Average Par-
tition Solver (AVS), DBSCAN Solver (DBSS) and Solution Partitioning Solver (SPS).
The first and second one are designed only for solving VRP, DBSCAN solver can also
solve CVRP if capacities of all vehicles are equal, SPS is able to solve CVRP with arbi-
trary capacities. It is also important to add that the last two methods are hybrid algorithms
and they contain important components which should be run on classical processors.

In order to evaluate different algorithms for solving VRP using quantum annealing,
we carried out series of experiments using D-Wave’s Leap framework [25] which con-
tains implementations of built-in solvers and allows to implement new solvers. We used
QBSolv [26] run on quantum processing unit (QPU) and simulating quantum annealing
on classical processors (CPU), as well as hybrid solver [27] run on both, QPU and CPU.

Beside quantum algorithms, we also wanted to test and compare several well-known
classical algorithms which gave good results in previous studies. Based on a compre-
hensive literature review [5] and further analysis, we selected 4 metaheuristics: based on
simulated annealing [28], bee algorithm [29], evolutionary annealing [30] and recursive
DBSCAN with simulated annealing [31], respectively.

In order to reliably compare different algorithms, we conducted experiments on
well-established benchmark datasets [32], [33], as well as on datasets created by us,
with realistic road networks (taken from the OpenStreetMap service) and artificially
generated orders.

The rest of the paper is organized as follows: in Section 2, we describe in details
all the quantum annealing solvers which we used in our experiments. Sections 3 and
4 present the design and results of our experiments, respectively. Section 5 outlines
possible future research directions and concludes the paper.

2 CVRP solvers based on quantum annealing

In this section, we describe QUBO formulations and solvers which we developed for
different variants of VRP: general VRP, CVRP with equal capacities and CVRP with
arbitrary capacities. Before that, we introduce our notation and assumptions.

2.1 Notation and assumptions

We assume that in each instance of VRP (or CVRP) we have a road network represented
as a directed connected graph with vertices and edges. We also assume that the depots and
destinations to which the orders of customers should be delivered are always located in
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vertices of the road network (in the case of benchmark instances and artificial networks,
it may be even assumed that the road network is defined by locations of orders, while in
the case of realistic road networks, real locations of orders are usually close enough to
vertices determining the road network graph).

Let M be the number of available vehicles and N the number of orders. Let’s denote
the vehicles as V = {v1, v2, . . . , vM} and the orders as O = {o1, o2, . . . , oN}. We
assume that there is always a depot located in one of the vertices (we also assume
that destinations of orders are not located in the depot - such orders can be just served
immediately so are not interesting) and all vehicles are initially located in the depot and
should finish all routes back in the depot. Therefore, we have in total N + 1 significant
vertices and without any loss of generality, we can assume that our graph has exactly
N + 1 vertices and N ∗ (N + 1) directed edges (we can just consider edges built based
on the shortest paths between every pair of vertices in the original graph), destination of
the order oi is located in the vertex i and the depot is located in the vertex N +1. We can
also denote the cost of the direct travel from the vertex i (destination of the order oi) to
the vertex j (destination of the order oj) as Ci,j . We can also define CN+1,i and Ci,N+1

for i ∈ {1, 2, . . . , N} as the costs of direct travels from the depot to the destinations of
orders and from the destinations of orders to the depot, respectively.

Let’s assume that xi,j,k = 1 if in a given setting the vehicle number i visits the
vertex number j as k-th location on its route (for j ∈ {1, 2, . . . , N + 1} and k ∈
{0, 1, 2, . . . , N+1}), otherwise xi,j,k = 0. We always have xi,N+1,0 = 1 and xi,j,0 = 0
for j < N + 1 (the depot is always the first location), and if xi,N+1,K = 1 for some K
then for k > K xi,j,k = 1 (each vehicle stays in the depot after reaching it).

2.2 Full QUBO Solver

First, we defined a basic QUBO formulation used for solving VRP instances. The for-
mulation is based on a similar formulation for TSP in [20].

Let’s define the binary function

A(y1, y2, ..., yn) =

n∑
i=1

n∑
j=i+1

2yiyj −
n∑

i=1

yi,

where yi ∈ {0, 1} for i ∈ {1, . . . , n}. It is easy to prove that the minimum value of
A(y1, y2, ..., yn) is equal to −1 and this value can be achieved only if exactly one of
y1, y2, ..., yn is equal to 1.

By definition of VRP, the problem of minimizing the total cost can be defined as
minimizing the function:

C =

M∑
m=1

N∑
n=1

xm,n,1CN+1,n +

M∑
m=1

N∑
n=1

xm,n,NCn,N+1+ (1)

+

M∑
m=1

N−1∑
n=1

N+1∑
i=1

N+1∑
j=1

xm,i,nxm,j,n+1Ci,j (2)
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The first component of the sum C is a sum of all costs of travels from the depot -
the first section of each cars’ route. The second is a cost of the last section of a route (to
depot) in a special case when a single car serves all N orders (only in such a case the
component can be greater than 0). The last part is the cost all of other sections of routes.

To assure that each delivery is served by exactly one vehicle and exactly once, and
that each vehicle is in exactly one place at a given time, the following term (in which all
A components are equal to −1 only for such desired cases) should be included in our
QUBO formulation:

Q =

N∑
k=1

A(x1,k,1, x2,k,1, . . . , x1,k,2, . . . , xM,k,N )+ (3)

+

M∑
m=1

N∑
n=1

A(xm,1,n, xm,2,n, . . . , xm,N+1,n) (4)

By definition of VRP, QUBO representation of this optimization problem is

QUBOV RP = A1 · C +A2 ·Q, (5)

for some constants A1 and A2, which should be set to ensure that the solution found by
quantum annealer minimizes Q (which should be −N − NM ) to ensure satisfiability
of the aforementioned constraints (after running initial tests we set A1 = 1, A2 = 107).

2.3 Average Partition Solver (APS)

APS is a variation of Full QUBO Solver for which we decrease the number of variables
for each vehicle by assuming that every vehicle serves approximately the same number
of orders. This means, every vehicle can serve up toA+L deliveries, whereA is the total
number of orders divided by the number of vehicles and L is a parameter (called “limit
radius”), which controls the number of orders. The QUBO formulation is the same as in
case of Full QUBO Solver but the number of variables xi,j,k is lower (M(A + L)N ),
which simplifies computations.

2.4 DBSCAN Solver (DBSS)

DBSS allows us to use quantum approach combined with a classical algorithm. This
particular algorithm is inspired by recursive DBSCAN [31]. DBSS uses recursive DB-
SCAN as a clustering algorithm with limited size of clusters. Then, TSP is solved for
each cluster separately by FQS (just by assuming in the QUBO formulation that the num-
ber of vehicles equals 1). If the number of clusters is equal to the number of vehicles,
the answer is known immediately. Otherwise, the solver runs recursively considering
clusters as deliveries, so that each cluster contains orders which in the final result are
served one after another without leaving the cluster. What is more, we concluded that by
limit the total sum of weights of deliveries in clusters, this algorithm can solve CVRP if
all capacities of vehicles are equal.
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2.5 Solution Partitioning Solver (SPS)

While adding capacity constraints is not simple, we were looking for the solution that can
use results generated by DBSS. Therefore, we developed SPS. It is a simple algorithm
which divides TSP solution found by another algorithm (e.g., DBSS) into consecutive
intervals, which are the solution for CVRP. The idea is as follows:

Let d1, d2, ..., dN be the TSP solution for N orders, let Pv be a capacity of the
vehicle v, let wi,j be the sum of weights of orders di, di+1, di+2, . . . , dj (in the order
corresponding to TSP solution) and let costi,j be the total cost of serving only orders
di, di+1, . . . , dj . Also, let dpi,S be the cost of the best solution for orders d1, d2, d3, ..., di
and for the set of vehicles S. Now, the dynamic programming formula for solving CVRP
is given by:

dpi,S = min
v∈S,0≤j≤i,wj+1,i≤Pv

{dpj,S\{v} + costj+1,i}, (6)

where costi,j = 0 and wi,j = 0 for i > j. Formula (6) returns a plenty of possible
routes, but it also finds the optimal solution. We can speed it up by noticing that if two
vehicles have the same capacity, it doesn’t matter which one of them we choose, but
pessimistically, capacities can be pairwise distinct. We propose the following heuristic
to optimize this solution:

1. Instead of set S of vehicles, consider a sequence v1, v2, . . . , vM of vehicles and
assume that we attach them to deliveries in such an order.

2. Now, our dynamic programming formula is given by:

dpi,vk = min
0≤j≤i,wj+1,i≤Pvk

{dpj,{v1,...,vk−1} + costj+1,i} (7)

3. To count this dynamic effectively, we can observe that:

∀i<jcosti,j = CN+1,i + Cj,N+1 +

j−1∑
k=i

Ck,k+1 (8)

∀i<jcosti,j = costi,j−1 + Cj−1,j + Cj,N+1 − Cj−1,N+1 (9)

∀i<jcosti,j − costi,j−1 = Cj−1,j + Cj,N+1 − Cj−1,N+1 (10)

∀i<j,1≤k≤M (dpi−1,vk+costi,j)−(dpi−1,vk+costi,j−1) = Cj−1,j+Cj,N+1−Cj−1,N+1

(11)
So if we have counted dp for fixed k, then for counting dp for k+1 we can store all
dp values for k and increase them, one by one (starting from j = i+ 1), by a right
side of equation 10. Using monotonic queue, we can get minimum in O(1) time.

We can now select some random permutations of vehicles and perform dynamic pro-
gramming for each of them. The number of permutations can be regulated by additional
parameter. With optimization of dynamic programming, the complexity of this algorithm
is O(NMR), where R is the number of permutations.

The greatest limitation of SPS is that it considers only one TSP solution. Nonetheless,
we observed that DBSS for more than one vehicle works in a similar way.
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3 Design of experiments

The goal of our experiments was to test and compare different formulations of QUBO
(solving different variants of VRP) on different datasets and with different solvers and
settings (number of qubits and quota of time on quantum processor). We ran them using
D-Wave’s Leap platform [25] and its 2 solvers: qbsolv [26] and hybrid solver [27]. To
run comprehensive and comparable experiments, we prepared several datasets:

– Christofides1979 - a standard benchmark dataset for CVRP, well-known and fre-
quently investigated by the scientific community [32, 33],

– A dataset built by us based on a realistic road network of Belgium, acquired from
the OpenStreetMap service.

Christofides1979 consists of 14 tests, where each test instance is described by three
files. The first one provides the number of vehicles and their capacity (the same for all
vehicles). The second file describes the orders, i.e. their coordinates in 2−dimensional
plane and the demand. The last file reports the time matrix (times of travel between
various vertices in a graph). For a purpose of running our experiments and compare the
results, we selected only 9 out of 14 tests because in case of other tests some hybrid
or classical algorithms were not able to find any good solutions. All the important
parameters describing Christofides1979 instances are given in Table 1.

Test name Nr of vehicles Capacity Nr of orders
CMT11 7 200 120
CMT12 10 200 100
CMT13 11 200 120
CMT14 11 200 100
CMT3 8 200 100
CMT6 6 160 50
CMT7 11 140 75
CMT8 9 200 100
CMT9 14 200 150

Table 1. Parameters of instances of Christofides1979 used in our experiments.

In the case of the second dataset, we generated in total 51 tests. Each test was
characterized by the number of orders. Table 2 presents a description of this dataset.
Basically, it consists of 4 groups of test cases: small test (small number of orders),
medium tests (medium number of orders), big tests (large number of order), mixed tests
(various number of orders with some additional conditions).

In every experiment, our programs computed the minimal cost of serving all orders.
D-Wave’s quantum annealing machine is naturally nondeterministic, so are the returned
results, so for every algorithm and on every test case we ran 5 experiments. The code of
programs used in our experiments is publicly available at [34].
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4 Results of experiments

In this section, we present results of experiments conducted using QBSolv and hybrid
solver built-in D-Wave’s Leap framework and using algorithms described in Section 3.

4.1 Full QUBO Solver (FQS)

First, we investigated Full QUBO Solver (FQS) on test cases small-0 - small-9. On every
test except small-0, we ran experiments for 3 different numbers of vehicles (1, 2, 3) on
quantum processor (FQS QPU [26]), its classical simulator (FQS CPU) and using a
hybrid solver (FQS Hybrid [27]). On small-0 there were only 2 orders so we tested only
1, 2 vehicles.

As we can see in Table 3, QBSolv (FQS CPU and FQS QPU) exacerbates final
results in test cases with more vehicles. For more vehicles, it can potentially generate the
same solution as for less vehicles, because some vehicles can be just ignored. Solutions
generated with hybrid solver (FQS Hybrid) confirm that. However, the size of QUBO
makes the solutions with more vehicles unavailable for QBSolv. In hybrid solver, we
have such a problem in only one case (small-9). However, in only 1 test case (small-3)
QBSolv was able to improve the solution returned for smaller number of vehicles. In
addition, in most cases QBSolv was not able to find a solution on QPU, the size of the
instance and the number of the required variables and qubits was just too large. Also
the required time of computations on QPU was worse than in case of CPU or hybrid
approach. Therefore, we concluded that it doesn’t make sense to run more experiments
on QPU for larger test cases (with more cars and more orders) and we conducted next
tests only using QBSolv on CPU and using a hybrid solver.

For larger VRP instances (medium-0 - medium-9), we observed that the transition
from one vehicle to two vehicles is difficult. QBSolv usually returns much worse results
(there is only 1 exception, test case medium-8). For the hybrid solver, in only one case
the result for two vehicles is better (medium-6) but the results are usually still better
than in case of QBSolv. We also noticed that the order of deliveries in tests with one
vehicle was not optimal for majority of test cases. Only the least instances - with up to
15 orders - seem to be solved optimally. An interesting thing is that differences between
results for two vehicles and one vehicle are very discrepant and it is not caused by the
number of orders. By analyzing full results, we concluded that for 2 vehicles the solvers
divided deliveries evenhandedly and for some tests it is a good way to build the optimal
solution. We came up with an idea that since solvers found only these solutions, we can
ask them to optimize only that kind of solutions, so we implemented Average Partition
Solver, which demands less qubits.

4.2 Average Partition Solver (APS)

We extended Full QUBO Solver with an option of changing the maximum difference
between the number of deliveries attached to the vehicles, i.e., a deflection from the
average number of deliveries per one vehicle. We found out experimentally that it should
be 1

10 of the number of deliveries, which gives maximum difference in our test cases
equal to 5. Having 1 vehicle, APS works exactly the same as Full QUBO Solver, so we
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ran experiments only for more vehicles (but we also included the results for 1 vehicle in
Table 3, just for comparison).

In most test cases, the results found using APS were better than results found by
FQS. We can also notice that differences between results for 3 vehicles and results for 2
vehicles generated by APS are lower than the differences between results for 2 vehicles
and 1 vehicle generated by FQS. However, in case of 3 vehicles, QBSolv on CPU still
can’t find better solutions with only 2 vehicles. The hybrid solver can find better solutions
in cases with 3 vehicles than in cases with only 2 vehicles in 4 (out of 10) test cases.

4.3 DBSCAN Solver (DBSS)

We can see in Table 3 that DBSS usually gives worse results than the APS, but we
expected that it may change in case of tests with more orders thanks to utilizing the
power of recursive DBSCAN.

Indeed, on big test cases with a larger number of orders, DBSS gives much better
results than APS (Table 4). Additionally, DBSS can be run on larger instances and don’t
need assumption that every vehicle serves approximately the same number of deliveries
(as it is in case of APS).

4.4 Solution Partitioning Solver (SPS)

At the beginning, we tested SPS on test cases where all capacities are equal, in order to
compare results with DBSS which can solve this problem. The results are presented in
Table 5. In some cases, our solvers were not able to find the proper solutions (we mark
such cases as "Not valid") but in general, SPS outperformed DBSS.

Based on those experiments, we decided to test further only SPS and compare it with
4 classical algorithms - simulated annealing (SA), bee algorithm (BEE), evolutionary
annealing (EA) and recursive DBSCAN with simulated annealing (DBSA). We ran next
experiments with even more orders on mixed test cases generated by us (Table 2) and
on benchmark datasets Christofides1979 (Table 1). The results are presented in Table 6
and Table 7.

5 Conclusion and future research directions

We introduced new hybrid algorithms for solving VRP and CVRP and ran tests using
D-Wave’s Leap framework on well-established benchmark test cases and on our own
test scenarios built based on realistic road networks. We also compared our new quantum
and hybrid methods with classical algorithms - well-known metaheuristics for solving
VRP and CVRP. The results indicate that our hybrid methods give promising results and
are able to find solutions of a similar quality to the tested classical algorithms.

Our primary future research direction is extending QUBO formulations to solve
even more realistic variant of VRP - the Vehicle Routing Problem with Time Windows
(VRPTW). Also, we are planning to compare our hybrid algorithms with even more
classical algorithms for solving VRP and its variants.
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Test Number of orders Description
small-0 2

No further conditions.

small-1 2
small-2 2
small-3 1
small-4 2
small-5 5
small-6 6
small-7 5
small-8 4
small-9 6

medium-0 20

No further conditions.

medium-1 26
medium-2 27
medium-3 24
medium-4 25
medium-5 25
medium-6 20
medium-7 14
medium-8 17
medium-9 15

big-0 52

No further conditions.
big-1 42
big-2 48
big-3 48
big-4 50

group1-1 42
No further conditions.

group1-2 54
range-6-1 47

Magazines are at most 6 km from city center.
range-6-2 50

range-8-12-1 50
Magazines are at least 8km and at most 12 km from
city center.

range-8-12-2 50
range-8-12-3 46
range-8-12-4 51
range-8-12-5 50
range-8-12-6 50

range-5-1 50
Orders are at most 5 km from city center. Vehicles have
capacity greater than total demand.

range-5-1 50

range-3-1 37
Orders are within 3 km from city center.

range-3-2 29
range-4-1 9

Orders are within 4 km from city center.
range-4-2 7

range-4-75-1 75 Orders are within 4 km from city center. We have 75
orders.range-4-75-2 75

range-4-100-1 100 Orders are within 4 km from city center. We have 100
orders.range-4-100-2 100

range-4-150-1 150 Orders are within 4 km from city center. We have 150
orders.range-4-150-2 150

range-4-200-1 200 Magazines and orders are within 4 km from city center.
We have 200 orders.range-4-200-2 200

clustered1-1 57
In each one of four 1-kilometer circles spread across
the map, there is between 6 and 20 orders.

clustered1-2 55

Table 2. Parameters and descriptions of tests
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Table 3. Results on small and medium datasets

Test vehicles FQS CPU FQS QPU FQS Hybrid APS CPU APS Hybrid DBSS CPU
small-0 1,2 11286 11286 11286 11286 11286 -
small-1 1 10643 10643 10643 10643 10643 -

2 10643 10643 10643 12379 12379 -
3 10643 - 10643 - - -

small-2 1 21311 21311 21311 21311 21311 -
2 21311 - 21311 24508 24508 -
3 22192 - 21311 - - -

small-3 1 18044 18044 18044 18044 18044 -
2 20819 - 18033 22193 22193 -
3 22843 - 18033 - - -

small-4 1 15424 15424 15424 15424 15424 -
2 17364 - 15424 19472 19472 -
3 17364 - 15424 - - -

small-5 1 10906 10906 10906 10906 10906 -
2 11676 - 10906 13480 13480 -
3 11754 - 10906 - - -

small-6 1 20859 20859 20859 20859 20859 -
2 26735 - 20859 26735 26735 -
3 27110 - 20859 - - -

small-7 1 18117 18117 18117 18117 18117 -
2 18710 - 18117 23114 23114 -
3 21666 - 18117 - - -

small-8 1 12198 12198 12198 12198 12198 -
2 12494 - 12198 13282 13282 -
3 13282 - 12198 - - -

small-9 1 19184 19184 19184 19184 19184 -
2 19848 - 19184 21438 21438 -
3 21438 - 19848 - - -

medium-0 1 20774 - 21775 20774 21775 24583
2 36966 - 29879 25737 25217 27994
3 28226 27237 34185

medium-1 1 29868 - 29423 29868 29423 27606
2 50639 - 39485 30820 31129 31346
3 - - - 33376 32018 32588

medium-2 1 37045 - 35208 37045 35208 29442
2 55579 - 36511 33235 33163 32947
3 - - - 36600 32569 34480

medium-3 1 30206 - 29422 30206 29422 31092
2 51787 - 35774 31428 30273 33790
3 - - - 35994 33627 33712

medium-4 1 21257 - 20762 21257 20762 21435
2 34379 - 25470 22410 22722 22885
3 - - - 23599 22176 25446

medium-5 1 23013 - 21642 23013 21462 21737
2 36149 - 22041 22775 23076 23403
3 - - - 24899 22386 24336

medium-6 1 23804 - 24664 23804 23804 23926
2 35826 - 24490 24265 25178 25510
3 - - - 27032 23364 25122

medium-7 1 22847 - 22847 22847 22847 28308
2 33441 - 26550 24331 24460 30482
3 - - - 27156 27156 34064

medium-8 1 23843 - 14566 23843 14566 15575
2 20804 - 15931 14256 14808 15829
3 - - - 15815 15466 16930

medium-9 1 12228 - 12395 12228 12395 12842
2 16606 - 13950 12321 12830 14926
3 - - - 13221 13178 14619
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vehicles APS CPU DBSS CPU
big-0 1 80084 71594

2 97286 71051
big-1 1 157660 146828

2 206782 149200
big-2 1 168646 154105
big-3 1 85873 62236
big-4 1 156411 129279

Table 4. Comparison of results for Average Partition Solver and DBSCAN Solver on big test cases.

vehicles capacity SPS (CPU) DBSS (CPU)
big-0 2 100 70928 73508

2 85 72295 73189
2 80 75150 Not valid
3 100 71320 76717
3 70 71251 78012
3 55 Not valid 76807
5 100 71740 Not valid
5 50 78726 91066
5 40 85976 Not valid

big-1 2 100 150608 158631
2 80 150608 152946
2 65 150804 156188
3 100 151525 153673
3 60 153190 152854
3 45 164055 Not valid
5 100 151930 168789
5 40 156242 165271
5 30 174519 176935

Table 5. Comparsion of DBSCAN Solver and Solution Partitioning Solver (SPS) run on CPU on
big test cases with various capacities.

Test name SPS SA BEE EA DBSA
CMT11 25.54 23.62 36.18 16.52 19.94
CMT12 26.84 53.06 20.24 20.68 21.37
CMT13 25.97 86.72 34.66 35.05 19.44
CMT14 26.83 52.52 20.23 20.23 22.8
CMT3 25.13 48.3 28.38 28.82 -
CMT6 17.58 48.3 15.42 28.82 15.82
CMT7 29.42 41.4 27.89 31.68 23.18
CMT8 26.5 51.16 26.67 28.09 19.4
CMT9 34.14 76.34 44.25 42.81 -

Table 6. Comparison of results achieved by Solution Partitioning Solver (SPS) and classical
algorithms (SA - simulate annealing, BEE- Bee algorithm, EA - evolutionary annealing, DBSA -
DBSCAN with simulate annealing) on a benchmark dataset Christofides79.
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type deliveries SPS Simul. Ann. Bee Evolution
clustered1-1 average 57 69850 66379 60876 48923

best 57 69080 52119 56358 48152
clustered1-2 average 55 77173 74341 81438 54719

best 55 75530 59947 68772 53490
group1-1 average 42 158919 156217 153495 137989

best 42 155388 146526 142774 135593
group1-2 average 54 171732 145380 145325 137626

best 54 165043 141065 140947 136307
range-6-1 average 47 71670 68003 67234 59937

best 47 68459 62312 64404 59827
range-6-2 average 50 80490 84380 83915 73651

best 50 79640 79574 85917 73051
range-8-12-1 average 50 142008 146553 142835 129069

best 50 140170 136369 127372 126555
range-8-12-2 average 50 146798 137628 145332 129048

best 50 143598 135493 136776 128803
range-8-12-3 average 46 105544 105051 98366 92792

best 46 101577 99004 94423 91921
range-8-12-4 average 51 147993 143309 148900 128316

best 51 145559 140088 128575 124405
range-8-12-5 average 50 146719 143516 145685 134162

best 50 143993 139784 139796 133245
range-8-12-6 average 50 146984 148194 150121 136326

best 50 141467 138781 139400 134692
range-5-1 average 50 81728 68900 69052 67896

best 50 72527 67984 68022 67691
range-5-2 average 50 81759 69342 68564 67981

best 50 76868 67958 67780 67716
range-3-1 average 37 39790 37268 36260 29326

best 50 36851 32877 35650 29180
range-3-2 average 29 34361 39336 34068 30497

best 50 33548 35340 32908 30466
range-4-1 average 50 21559 21604 21604 21604

best 50 21317 21604 21604 21604
range-4-2 average 50 18044 18498 18640 18498

best 50 18044 18498 18497 18498
range-4-100-1 average 100 84916 106625 118550 85346

best 50 81303 98522 112389 84514
range-4-100-2 average 100 91527 105538 127744 86538

best 50 88566 97312 111513 84750
range-4-150-1 average 150 90394 98711 119547 101126

best 50 88040 91972 108442 100195
range-4-150-2 average 150 112539 118351 171620 125444

best 50 110104 110401 170164 121462
range-4-200-1 average 200 112618 124269 179239 139991

best 50 111259 120510 171530 137684
range-4-200-2 average 200 135243 158634 223262 202373

best 50 131349 135931 203352 194707
range-4-75-1 average 75 62439 60423 65381 52701

best 50 60283 56337 62051 51846
range-4-75-2 average 75 72077 76964 85849 60753

best 50 70403 71164 84140 60168
Table 7. Results of Solution Partitioning Solver compared with results for classical algorithms run
on artificially generated test cases.
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