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Abstract. The Multi-Service Location Set Covering Problem is an ex-
tension of the well-known Set Covering Problem. It arises in practical
applications where a set of physical locations need to be equipped with
services to satisfy demand within a certain area, while minimizing costs.
In this paper we formulate the problem as a Quadratic Unconstrained
Binary Optimization (QUBO) problem, apply the hybrid framework of
the D-Wave quantum annealer to solve it, and investigate the feasibil-
ity of this approach. To improve the often suboptimal initial solutions
found on the D-Wave system, we develop a hybrid quantum/classical
optimization algorithm that starts from the seed solution and iteratively
creates small subproblems that are more efficiently solved on the D-Wave
but often still converge to feasible and improved solutions of the orig-
inal problem. Finally we suggest some opportunities for increasing the
accuracy and performance of our algorithm.
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1 Introduction

The past decade has seen the rapid development of the two paradigms of quan-
tum computing, quantum annealing and gate-based quantum computing. In 2011
D-wave Systems announced the release of the world’s first commercial quantum
annealer3 operating on a 128-qubit architecture, which has since been continually
extended up to the 2048-qubit version, available from 20174. These technological
advances have led to a renewed interest in finding classical intractable problems
suited for quantum computing.
D-Wave’s quantum processor is specifically designed to solve quadratic uncon-
strained binary optimization (QUBO) problems, and is therefore particularly
suited for addressing NP-hard combinatorial optimization problems. Well-known
examples that have been implemented on one of D-Wave’s quantum processors

3 https://www.dwavesys.com/news/d-wave-systems-sells-its-first-quantum-
computing-system-lockheed-martin-corporation

4 https://www.dwavesys.com/press-releases/d-wave%C2%A0announces%C2%A0d-
wave-2000q-quantum-computer-and-first-system-order
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include maximum clique [4], capacitated vehicle routing [6], minimum vertex
cover [10], set cover with pairs [3], traffic flow optimization [9] and integer fac-
torization [8]. These studies have shown that although the current generation of
D-Wave annealers may not yet have sufficient scale, precision and connectivity to
allow faster or higher quality solutions, they have the suitable infrastructure for
modelling real-world instances of these problems, effectively decomposing these
into smaller sub-problems and solving these on a real Quantum Processing Unit
(QPU).

The paper at hand addresses another NP-hard combinatorial problem, the
Multi-Service Location Set Covering Problem (MSLSCP) [11], arising in smart
city planning. In smart cities, different services such as Wi-Fi, alarm and air
quality or pollution sensors are integrated into street furniture like lamp posts
and bus shelters, to create a dense network that can potentially achieve higher
transmission rates and thus improve the quality of life. There are costs associ-
ated with both enabling a location to be equipped with services, and the actual
equipping itself. The goal is then to distribute the services across the existing
location in such a way that the demand for each service is satisfied at minimum
total cost. As an extension of the Set Covering Problem, which is NP-hard [7],
the MSLSCP is also NP-hard. Since for large instances this problem is computa-
tionally intractable, several heuristic solution methods have been proposed [11].
The best method found is based on distributing the services one-by-one over the
available locations, and is therefore highly dependent on the order in which these
services are considered. Given that large instances cannot be optimally solved
classically, it is worthwhile to investigate how quantum annealing may be able
to provide a better alternative to the current methods.

We present a novel algorithm to solve the MSLSCP, based on a two-phase
hybrid approach. In the first phase, an initial solution is obtained from com-
bining classical search heuristics and quantum annealing, whilst in the second
phase, an improvement step is applied to reduce the size of the problem. This
process is executed iteratively until the user-specified stopping criteria are met.
As far as the authors know, this is the first time that the MSLSCP is modeled
as a QUBO and solved by an algorithm employing quantum annealing.

The structure of this paper is as follows: Section 2 includes the mathematical
integer linear programming and QUBO formulations of the problem. The hybrid
functionality of the D-Wave system and the newly proposed approach are pre-
sented in Section 3. Section 4 explains how we generated the test problems to
which we applied our method. The results obtained are discussed in Section 5.
Finally, Section 6 provides some conclusions and ideas for further research.
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2 Problem Formulation

In mathematical terms, the MSLSCP concerns the distribution of services F =
{1, . . . , F} over a set of locations L = {1, . . . , L} such that the demand points Gu
for each service u ∈ F are covered at minimal cost. Enabling a location j ∈ L,
incurs cost fj > 0, whilst equipping a location j ∈ L with service u ∈ F incurs
cost cuj > 0. An additional parameter auij is introduced to mark when a demand
point falls within the range of a particular service placed at a particular location:

auij =

{
1 if demand point i ∈ Gu is in range of location j ∈ L for service u ∈ F ,
0 otherwise.

(1)

The following binary decision variables are defined:

yj =

{
1 if location j ∈ L is open,

0 otherwise.
(2)

xuj =

{
1 if location j ∈ L is equipped with service u ∈ F ,
0 otherwise.

(3)

The complete integer linear programming formulation of the MSLSCP is then
given by:

min
∑
j∈L

fjyj +
∑
j∈L

∑
u∈F

cuj x
u
j , (4)

s.t.
∑
j∈L

auijx
u
j ≥ 1 ∀i ∈ Gu,∀u ∈ F , (5)

xuj ≤ yj ∀j ∈ L,∀u ∈ F , (6)

xuj ∈ {0, 1} ∀j ∈ L,∀u ∈ F , (7)

yj ∈ {0, 1} ∀j ∈ L. (8)

The objective given by Eq. (4) represents the total sum of costs associated with
enabling locations and equipping them with services. Eq. (5) is a constraint en-
forcing all demand points to be satisfied. Constraint Eq. (6) expresses that a
location must be enabled if it is equipped with any services. Finally, Eq. (7) and
Eq. (8) specify that the opening and equipping variables should (of course) be
binary.

To solve this problem on the D-Wave, we need to express the constraints (formu-
lated above as inequalities) as equalities. Based on the formulation in Eq. (4)-(8)
the MSLSCP can also be re-written as the following QUBO:

min A ·HA +B ·HB + C ·HC , (9)
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where

HA =
∑
j∈L

fjyj +
∑
j∈L

∑
u∈F

cuj x
u
j , (10)

HB =
∑
u∈F

∑
i∈Gu

∑
j∈L

auijx
u
j −

kmax
i,u∑
k=0

2kξui,k − 1

2

, (11)

HC =
∑
j∈L

∑
u∈F

(xuj − xuj yj). (12)

HA is the cost we aim to minimize described by Eq. (4).
HB corresponds to the inequality constraint Eq. (5). Following the method

described in [1], it uses slack variables ξui,k, effectively adding equations to capture
each possible way of satisfying the inequality. The simplest way in which Eq. (5)
can be satisfied is by having only one non-zero auijx

u
j combination, in which case

the sum with the ξui,k’s should be zero and the entire Eq. (5) is minimized to
zero. If there are more non-zero auijx

u
j combinations (i.e. the demand point is

serviced multiple times), we can change the appropriate ξui,k’s to again minimize
the total to zero. The number of additional variables introduced, for each of the∑

u∈F |Gu| constraints of type HB , is given by:

kmax
i,u = blog2 (

∑
j∈L

auij − 1)c. (13)

The reason we only need logarithmically many slack variables is that they act as
bits in the binary representation of the number of ways in which we can satisfy
the inequality Eq. (5).

HC corresponds to constraint Eq. (6). This term is minimized if services are
placed only at open locations.

The penalty coefficients A,B,C should be set such that the minimum of
the objective in (9) satisfies the constraints (i.e., we cannot achieve a lower
minimum by breaking constraints in favor of lowering the cost in Eq. (10)).
In practice there is a delicate trade-off here. Setting lower B and C causes
constraints to be violated for many sub-optimal solutions found, while setting
higher B and C ensures that the constraints are satisfied but leads to lower
accuracy in optimizing the actual cost of Eq. (10). Through some experimental
tests we concluded that a suitable parameter setting is:

A = 1, (14)

B = 2 · (max{fj : j ∈ F}+ max{cuj j ∈ L, u ∈ F}), (15)

C = 2 · (max{cuj : j ∈ L, u ∈ F}). (16)

3 Solution approach

To solve the MSLSCP we propose a hybrid iterative approach, which combines a
method to reduce the size of the problem together with D-Wave’s built-in hybrid
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framework. First, the process of quantum annealing and D-Wave’s hybrid capa-
bilities are presented. Then, a detailed overview of the newly proposed algorithm
is given.

3.1 Quantum annealing on D-Wave

The devices produced by D-Wave Systems are practical implementations of quan-
tum computation by adiabatic evolution [5]. The evolution of a quantum state on
D-Wave’s QPU is described by a time-dependent Hamiltonian, composed of ini-
tial Hamiltonian H0, whose ground state is easy to create, and final Hamiltonian
H1, whose ground state encodes the solution of the problem at hand:

H(t) =
(

1− t

T

)
H0 +

t

T
H1. (17)

The system in Eq. (17) is initialized in the ground state of the initial Hamilto-
nian, i.e. H(0) = H0. The adiabatic theorem states that if the system evolves
according to the Schrödinger equation, and the minimum spectral gap of H(t)
is not zero, then for time T large enough, H(T ) will converge to the ground
state of H1, which encodes the solution of the problem. This process is known
as quantum annealing. Although here we are not concerned with the technical
details, it is worthwhile to mention that it is not possible to estimate an anneal-
ing time T to ensure that the system always evolves to the desired state. Since
there is no estimation of the annealing time, there is also no optimality guarantee.

The D-Wave quantum annealer can accept a problem formulated as an Ising
Hamiltonian, corresponding to the term H1 in Eq. (17), or rewritten as its binary
equivalent, in QUBO formulation. Next, this formulation needs to be embedded
on the hardware. In the most developed D-Wave 2000Q version of the system,
the 2048 qubits are placed in a Chimera architecture: a 16 × 16 matrix of unit
cells consisting of 8 qubits. This allows every qubit to be connected to at most
5 or 6 other qubits. With this limited hardware structure and connectivity, fully
embedding a problem on the QPU can sometimes be difficult or simply not pos-
sible. In such cases, the D-Wave system employs built-in routines to decompose
the problem into smaller sub-problems that are sent to the QPU, and in the end
reconstructs the complete solution vector from all sub-sample solutions. The
first decomposition algorithm introduced by D-Wave was qbsolv [2], which gave
a first possibility to solve larger scale problems on the QPU. Although qbsolv
is the main decomposition approach on the D-Wave system, it does not enable
customizations, and therefore is not particularly suited for all kinds of problems.

To alleviate the short-comings of qbsolv, D-Wave introduced a hybrid frame-
work which enables users to quickly design and test workflows that iterate over
sets of samples through different samplers to solve arbitrarily-sized QUBOs.
Large problems can be decomposed in different ways and two or more solution
techniques can run in parallel5. The schematic representation is shown in Fig. 1.

5 https://readthedocs.com/projects/d-wave-systems-dwave-hybrid/
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There are four branches shown in this example, more precisely a classical In-
terruptable Tabu search and three decomposition-based methods. A workflow
branch has the following structure: decomposer - sampler - composer. We briefly
explain the purpose of each these building blocks.

A decomposer is a component that splits up the original problem into sub-
problems by selecting only a part of the variables. Classical decomposition ap-
proaches are: select first n variables that have the highest impact on your objec-
tive (energy-based selection) or select variables that show up in the same set of
constraints together (constraint-based selection). Here, qbsolv is an example of
an energy-based selection algorithm. The sampler is the chosen method to sam-
ple (solve) the subproblems coming from the decomposer. This can be simulated
annealing or any other QPU-based sampler. Lastly, a composer makes a selec-
tion from current samples and updates the complete, final solution according to
user-defined criteria.

This workflow allows custom design of the different building blocks and makes
it possible to combine these into different methods that can be run in parallel as
can be seen in Fig. 1. In our numerical experiments, we use Kerberos, the refer-
ence hybrid built-in sampler, which combines Tabu search, simulated annealing,
and D-Wave sub-problem sampling on problem variables that have high-energy
impact.

Fig. 1: Schematic representation of D-wave Hybrid workflow5.

3.2 Two-stage hybrid algorithm

Using the Kerberos sampler from the D-wave hybrid framework, we often cannot
find even a feasible - let alone optimal - solution to our problem within a reason-
able time. To counter this limitation we propose an hybrid approach in which
we make use of the initially found solutions (which may be infeasible) to restrict
the solution space and then re-solve the problem. This approach is described in
Algorithm 1.

The idea of the algorithm is to construct a first solution by overlapping
different samples obtained from Kerberos. In this way we increase the probability
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1 Kmax = number of runs
2 Nmax = number of improvement iterations
3 instance = L,F ,Gu ∀u ∈ F
4 solutions = {}
5 for k = 1, . . ., Kmax do
6 solutionk ← KerberosSampler(instance);
7 solutions ← solutions ∪ solutionk

8 end
9 solution ← Overlap(solutions)

10 for N = 1, . . . , Nmax do
11 if solution is feasible then
12 L ← {j : yj = 1}
13 instance ← L,F ,Gu ∀u ∈ F
14 solution ← KerberosSampler(instance);

15 else
16 for u ∈ F do

17 G̃u = {i ∈ Gu :
∑

j∈L au
ijx

u
j = 0}

18 end

19 end

20 L ← {j : yj = 1 or au
ij = 1 ∀u ∈ F , ∀i ∈ G̃u}

21 instance ← L,F ,Gu ∀u ∈ F
22 solution ← KerberosSampler(instance)

23 end
24 return solution

Algorithm 1: Hybrid algorithm pseudocode.

of creating a feasible solution. The desired number of solutions to be overlapped
is given as input (step 1). The problem instance to be solved is specified by the
sets of locations, services and demand points (step 3). Once the seed solution
is created by combining the Kerberos-solutions (steps 5-9), the algorithm moves
to the iterated improvement stage. In each iteration, there are two possibilities:

1. If the last solution found was feasible, the problem space is restricted by
removing the set of unopened locations from the original input (steps 11-
15). This step is motivated by the fact that in a feasible solution, some
locations may be opened unnecessarily and the services may be equipped
more efficiently on the opened locations.

2. If the last solution found was infeasible, the location set is again reduced
(steps 16-18). The infeasible solutions observed were all caused by the vio-
lation of demand point coverage constraints. As such, the locations which
remain unused in the solution and which cannot cover any of the unsatisfied
demand points, can be removed from the location set (step 19).

The newly produced instance can then be solved with Kerberos again and the
improvement step process can be repeated (steps 20-21). While these simple
strategies of reducing the search space may not always result in optimal solutions,
they provide a means to find a reasonably good feasible solution.
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4 Problem Generation

To apply our algorithm on a test set, we generate problem instances with the
numbers of services, locations and demand points as input parameters. The
generation is done in two steps as explained below. For more details on some of
the steps, see the code on Github6.

First we generate the set of coordinates in the unit square at which demand
points and locations are situated. This is done in such a way that they are not too
close to each other, each demand point is reachable from at least one location,
and each location can service at least one demand point.

We then assign each demand point a single requested service, in such a way
that each service is requested at least once (see Algorithm 2).

1 F = the set of F services
2 PL = Location points
3 PU = Demand points
4 triplets T = {}
5 f = random service in F
6 for u ∈ PU do
7 LU = {l ∈ PL : distance(u, l) ≤ dmax}
8 for l ∈ LU do
9 T ← T ∪ (f, l, u)

10 if ∃(f, l, u) ∈ T , l ∈ PL, u ∈ PU∀f ∈ F then
11 f ← random service in F
12 else
13 f ← some service in F : (f, l, u) 6∈ T ∀l ∈ PL, ∀u ∈ PU

14 end

15 end

16 end
Algorithm 2: Pseudocode to assign service requirements to demand points
by generating triplets (f, l, u) ∈ F × PL × PU .

In this way we generate a set of problems of various sizes denoted FLU ,
where F is the number of services, L is the number of locations and U is the
number of demand points. The generated problem and the size of their QUBO
formulation, given by the amount of binary variables in the solution vector, is
shown in Table 1. Given that on the current 2048 qubit architecture one can
embed a fully-connected graph of about 60 nodes, it is clear that most of the
problems listed in Table 1 cannot be directly mapped to the QPU and will have
to be decomposed.

6 https://github.com/jcnauta/DWave-MSLSCP
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Table 1: Overview of generated problems.

Problem parameters QUBO size Problem parameters QUBO size

F2L50U50 321 F4L50U200 942
F4L50U50 416 F2L100U200 1092
F2L50U100 483 F4L100U200 1274
F2L100U50 498 F2L200U200 1462
F4L50U100 585 F2L50U400 1554
F4L100U50 685 F4L50U400 1626
F2L100U100 691 F2L100U400 1874
F2L50U200 825 F4L100U400 2044
F4L100U100 888 F2L200U400 2340

5 Results

In this section we present the results of our hybrid method described by Algo-
rithm 1. We look first at the quality of the solution obtained in the first sampling
phase, and then assess the performance of the iterative improvement step in the
second phase.

5.1 First phase results

Table 2 shows the results obtained in the first phase of Algorithm 1, in which all
problem instances are sampled using the D-Wave’s built-in hybrid framework.
The Kerberos sampler was run 50 times for each problem, with time out = 60s
and max iter = 10 as stopping criteria. The rest of the parameters were set to
the default values. We assessed the quality of solutions in terms of the deviation
from the optimum solution, which was classically obtained from each problem
using the CPLEX commercial solver, version 12.8. A striking observation to
emerge from these results is that with the exception of the smallest problem,
F2L50U50, the average deviation of the 50 runs from optimum is quite large
ranging from 20% to over 200%. Moreover, for most problems, the amount of
feasible solutions out of the 50 runs was quite small, whilst in a few cases no
feasible solution could be found at all. Interestingly, these correspond to problems
in which the number of demand points greatly exceeds the number of locations
to be equipped with services. A possible explanation is that there are relatively
fewer ways to feasibly allocate the services when the number of locations is lower.
Fig. 2 depicts the deviation from the optimal solution of each problem. We see
that as the problem size increases, the variance of the results also increases.
Once again, there seem to be higher fluctuations in the solutions of problems
with fewer locations than demand points. The results obtained so far indicate
that the quality of the solutions obtained with Kerberos is rather low. This
might be improved by modifying the utilized stopping criteria, but our iterated
improvement method (phase 2) addresses this problem automatically and quite
reliably.
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Table 2: Phase 1 results for each of the test instances. The entries marked with
“-” in the second column indicate that no feasible solution was found for that
particular problem.

Problem
Deviation (%) of best feasible

solution found of 50 runs
Avg. deviation (%) of 50 runs

from optimum
Number of feasible

solutions found of 50 runs

F2L50U50 1.87 16.3 41
F4L50U50 54.36 73.8 48
F2L50U100 20.23 30.01 3
F2L100U50 33.36 46.28 50
F4L50U100 123.94 83.98 1
F4L100U50 67.67 97.02 43
F2L100U100 41.13 53.34 8
F2L50U200 - 51.1 0
F4L100U100 87.66 99.84 17
F4L50U200 - 116.21 0
F2L200U100 106.55 66.34 1
F2L100U200 - 30.15 0
F4L200U50 111.61 97.78 1
F4L100U200 - 77.31 0
F4L50U400 - 116.67 0
F2L100U400 - 107.48 0
F4L100U400 - 209.45 0
F2L200U400 256.59 228.83 1

Fig. 2: Deviation of the results from the optimal solution for each problem. Each
box corresponds to the area in which the middle 50% of the data reside in with
the continuous line being the median. The whiskers are extended to the minimum
and maximum values of the data. The red dot marks the best feasible solution
found for the respective problem.
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5.2 Improvement phase results

In the second phase of Algorithm 1, starting at step 9, the 50 solutions obtained
in the first phase were overlapped, resulting in an initial solution to be used as
input for the iterated improvement. This second component of the algorithm
was run for 10 iteration using both Kerberos and Simulated Annealing (SA)
with the same parameter setting for sampling (in step 14 of the algorithm) to
ensure a fair comparison between the two. The results of the second phase are
summarized in Table 3. The second and third columns of this table show the
minimum deviation from the optimum over all iterations resulting in a feasible
solution. The results clearly show that with the exception of problem F2L50U50,
the improvement step is effective, resulting in either better solutions or finding
feasible solutions where Phase 1 did not. Another interesting observation is that
Kerberos outperforms SA in Phase 2, almost always achieving solutions with
a smaller optimality gap. This is expected, since Kerberos benefits from the
additional sampling on the quantum annealer. Exceptional cases are problems
F4L50U400, F2L100U400 and F4L100U100 to which Kerberos, unlike SA, fails
to find a feasible solution within 10 iterations.

Table 3: Phase 2 results for each of the test instances. The entries marked with
“-” in the second column indicate that no feasible solution was found for that
particular problem.

Problem
Deviation (%) of best feasible

solution found in Phase 1

Deviation (%) of best feasible
solution found in Phase 2

(Kerberos)

Deviation (%) of best feasible
solution found in Phase 2

(SA)

F2L50U50 1.87 2.45 18.99
F4L50U50 54.36 40.47 43.24
F2L50U100 20.23 16.07 17.04
F2L100U50 33.36 23.01 23.01
F4L50U100 123.94 21.43 57.60
F4L100U50 67.67 28.80 31.56
F2L100U100 41.13 24.96 26.58
F2L50U200 - 13.95 25.37
F4L100U100 87.66 15.50 42.43
F4L50U200 - 196.34 207.05
F2L200U100 106.55 19.06 36.34
F2L100U200 - 62.04 86.33
F4L200U50 111.61 63.25 57.73
F4L100U200 - 29.33 97.52
F4L50U400 - - 242.80
F2L100U400 - - 117.79
F4L100U400 - - 252.97
F2L200U400 256.60 102.96 156.08

If we now turn to the performance of the second phase in terms of solu-
tion improvement, shown in Fig. 3, we observe large variations across different
problems. For small-sized problems (Fig. 3a), the initial solution of the second
phase is most often feasible, and the optimality gap reduces significantly in the
first four or five iterations when using Kerberos. However, it occurs that if the
deviation from the optimum becomes small, than the corresponding assignment
of services to locations is less flexible, leading to no further improvement in the
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(a) Kerberos (b) SA

(c) Kerberos (d) SA

Fig. 3: Phase 2 results per iteration for different problems resulting in feasible
solutions (a and b) and infeasible solutions (c and d). The sub-figure captions
indicate the sampler used. The triangle markers indicate infeasible solutions.

Fig. 4: Wall-clock time taken by Algorithm 1 as a function of the problems’ qubo
size.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_41

https://dx.doi.org/10.1007/978-3-030-50433-5_41


A Hybrid Solution Method for the MSLSCP 13

latter iterations. This behaviour is also observed for some problems when em-
ploying SA (Fig. 3b), although in this case, the solution at each iteration may
drastically vary, and occasionally become infeasible. For the largest problems,
none of the two samplers seem to be very effective since most iterations result in
infeasible solutions (Fig. 3c and Fig. 3d). This may be due to the fact that the
overlap solution obtained from the 50 solutions in the first phase is infeasible,
and does not incorporate enough open locations to allow for an improved search
throughout the iterations. To this end, a better initial solution could be obtained
in the first phase if we would allow for more than 50 runs.

The results obtained so far suggest that small problems can be solved rel-
atively well with our hybrid approach, when using Kerberos in both phases.
The solutions for the larger problems, for which the number of demand points
greatly exceeds the number of available locations, are of lower quality. These
problems could benefit in particular by a different approach to determine the
starting solution. Instead of overlapping all solutions from the first phase, one
could look into combining solutions which are sufficiently “different”, i.e., which
have ideally dissimilar sets of open locations. Furthermore, all problems could
benefit from further parameter tuning in the Kerberos sampler and increasing
the number of iterations in the improvement step. The current stopping criteria
for Kerberos and limited number of limitations were chosen so as to provide a
first proof of concept of our hybrid approach. Even in the current setting, the
wall-clock time recorded for each problem was in the range of 2-5 hours with
some of the larger problems far exceeding this interval, as shown in Table 4.
However, the QPU time needed for each of the decomposed subproblems ranged
in the interval 10-300 ms, whilst the cumulated recorded QPU time for all ex-
periments was less than 5 min. This is still underperforming in comparison to
the classical solver, CPLEX, for which the average proble run time was 0.16s.
Since our experiments were run using a cloud service, it is likely that the high
computational times shown in Table 4 are due to the latency between submit-
ting problems to the QPU and receiving the solution. In the current D-Wave
environment it is difficult to collect timing information for individual problems
and therefore, we cannot estimate the queuing or read-out time.

6 Conclusion

This paper introduced a very first attempt to design a hybrid approach to solve
the MSLSCP, by modelling the problem as a qubo and employing D-Wave’s hy-
brid framework in combination with a classical improvement step. To the best
of our knowledge, this work is the first to address this problem by combining
classical means and quantum annealing. It was shown that the two-phase hybrid
algorithm leads to improved feasible solutions compared to Kerberos sampling
for almost all problems. Although the proposed approach does not yield a di-
rect improvement in terms of solutions quality or running time with respect to
classical solvers, it provides a way to model the problem in a suitable way and
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to reduce the size of the search space iteratively, in the attempt to overcome the
physical limitations of the current quantum annealers. As some of the problem
instances tackled in this paper far exceeded the size of the available QPU, we
would expect that with the development and extension of the current hardware
architecture, the performance of the hybrid tools will increase.
The findings of this study suggest several courses of action for improving the
performance and results of Algorithm 1. A first intuitive step is to repeat the
experiment shown in this paper with adjusted parameters for Kerberos. It is
likely that modifying the internal Kerberos loop parameters or simply adjusting
the stopping criteria will result in better solutions. Moreover, a reasonable ap-
proach to tackle the infeasibility of large problems is to propose a different way
to generate a starting solution for the improvement step of the algorithm, which
needs to be sufficiently diverse. This could be achieved by implementing more
Kerberos runs in the first phase or applying some classical greedy heuristics.
Finally, we expect that intrinsic problem structure given by the spatial distri-
bution of demand points heavily influences the performance of the algorithm.
Therefore, it is worthwhile to investigate ways in which the decomposition of the
problem on the QPU could be customized to incorporate this aspect.
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