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Abstract. Many scientific processes and applications can be represented
in the standardized form of workflows. One of the key challenges related
to managing and executing workflows is scheduling. As an NP-hard prob-
lem with exponential complexity it imposes limitations on the size of
practically solvable problems. In this paper, we present a solution to the
challenge of scheduling workflow applications with the help of the D-
Wave quantum annealer. To the best of our knowledge, there is no other
work directly addressing workflow scheduling using quantum computing.
Our solution includes transformation into a Quadratic Unconstrained
Binary Optimization (QUBO) problem and discussion of experimental
results, as well as possible applications of the solution. For our exper-
iments we choose four problem instances small enough to fit into the
annealer’s architecture. For two of our instances the quantum annealer
finds the global optimum for scheduling. We thus show that it is possible
to solve such problems with the help of the D-Wave machine and discuss
the limitations of this approach.
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1 Introduction

The paradigm of workflows is commonly used for describing and preserving com-
plex scientific processes and applications [13]. Workflows are usually represented
as Directed Acyclic Graphs (DAG) [23]. Each vertex represents a task, while
edges designate dependencies or data transfers between tasks. By using such
a general representation it is possible to improve application portability and
reusability. The abstract graph representation enables decoupling the applica-
tion from a specific infrastructure and easily extract parts of the process with
clear understanding of what the extracted part does and what its dependencies
and outputs are. Some examples of scientific applications implemented as work-
flows include: Montage [4] – image mosaic software used to construct human-
perceptible images of sky features from multiple images captured by telescopes;
software used by the LIGO collaboration, designed to process data related to
detecting gravitational waves [1]; software designed to predict the occurrence
and effects of earthquakes based on geological data [23].
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One of the key challenges related to managing and executing scientific work-
flows is scheduling. The general goal of scheduling is to create a plan of execu-
tion with respect to given parameters such as deadline, budget and computing
resources. For the scope of this paper we assumed a simple form of workflow
scheduling, where we operate on the serverless infrastructure discussed in [3]. In
this case the serverless infrastructure is implemented as a set of cloud functions,
provided by major cloud service providers, such as Google, Amazon, Azure and
IBM. Cloud functions have the potential to be used for compute-intensive tasks,
as proposed in [27], with particular emphasis on challenges which require high
levels of infrastructure elasticity. Scheduling workflows for serverless infrastruc-
tures can be summarized as defining the runtime parameters of a function based
on user-supplied deadline and budget. In this paper we assume that the server-
less infrastructure consists of an infinite number of machine instances, while
the number of machine types is finite, with each machine type associated with
specific cost and performance.

In recent years, quantum computing has become popular due to its potential
ability to solve problems that are beyond the capabilities of classical computing
infrastructures. The research is still in its early stage, however there are many
theoretical quantum algorithms already available, such as famous polynomial
time Shor factorization [26] or O(

√
N) complexity Grover search in unsorted

databases [16]. A good overview of the current status of theoretical quantum
algorithms can be found in [18]. There are also various attempts to implement
algorithms on the available quantum hardware: IBM-Q1, Rigetti computing2 or
D-Wave3. Scheduling problems are assumed to be one of the challenges which
might be efficiently solved by this new approach.

In this paper, we present a solution for the workflow scheduling problem with
the use of the D-Wave quantum annealer. In particular, we propose a method
of reformulating the problem as Quadratic Unconstrained Binary Optimization
(QUBO) [21] required by D-Wave. To achieve this, we developed a Binary Inte-
ger Linear Programming (BILP) [19] formulation of the problem, which is then
translated to QUBO in a similar way as shown in [14]. Finally, we discuss results
obtained on the annealer. We attempt to find the optimal solution for selected
instances of workflow scheduling problems, which are constrained by the deadline
and have the lowest cost possible.

This paper is organized as follows. In Section 3 we provide the overview of
quantum computation with the use of the quantum annealer. In Section 4 we
present the precise formulation of the problem. In Section 5 we provide a com-
plete description of transforming the workflow scheduling problem into a QUBO
problem. First, the transformation to BILP is presented, which includes all the
constraints necessary to be translated. Next comes BILP to QUBO problem
translation, using methods from [14]. Finally, Sections 6 and 7 present full re-

1 https://quantum-computing.ibm.com/
2 https://www.rigetti.com/
3 https://www.dwavesys.com/
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sults with a detailed commentary, as well as discussion and suggestions for future
work in this matter.

2 Related work

There is a significant body of knowledge available concerning the topic of schedul-
ing workflows on cloud infrastructures. Due to its widespread adoption, most
scheduling solutions operate on Infrastructure as a Service (IaaS) services. To
the best of our knowledge, there is no other work directly addressing the prob-
lem of workflow scheduling on serverless infrastructures with help of quantum
computing. In the presented case, the serverless infrastructure is represented by
a Function as a Service (FaaS) type of service. For example, in [2] Arabnejad
et al. propose a heuristic list scheduling algorithm with low computational com-
plexity, designed for running workflows on IaaS. Work presented in this paper
aims to provide similar features, albeit for FaaS and with help from quantum
computing. In particular, we propose a method to create the final execution plan
upfront in a short time and at low cost. One of the factors included in the pre-
sented algorithm is the sole cost of executing workflow tasks in the cloud. This
problem was discussed in more detail in [30]. Zhou et al. addressed the prob-
lem of performance offered by cloud services with specific focus on the use case
of running workflow applications. The matter of performance offered by server-
less infrastructures was studied in [24], with focus on potential parallelism and
application of FaaS as an infrastructure for large-scale scientific workflows. The
specific topic of scheduling workflows on serverless infrastructures was addressed
by Kijak et al. in [20], where they proposed a heuristic algorithm for scheduling
workflows on cloud functions.

Although solving scheduling problems with quantum computers is a novelty,
some examples of such work are available. In particular, a promising approach is
to use the D-Wave quantum annealer based on a chimera graph [5]. A possible
method of solving a shop job scheduling problem (JSP) [15] using D-Wave is
shown in [29], however the proposed three-dimensional structure of the problem
description is a strong limitation for scalability. In general, many NP-hard prob-
lems can be formulated as Ising problems [22] which can then be solved using a
quantum annealer. For example [8] discusses the problem of finding maximum
cliques in a graph. An important factor for solving problems with the use of
quantum annealers is small machine size. In [25] the authors discuss heuristics
for solving large-scale problems described in [8].

3 D-Wave computing overview

D-Wave 2000Q [5] is an adiabatic quantum computer that, unlike its universal
counterparts (e.g. IBM-Q or Rigetti), cannot run algorithms implemented with
the use of general quantum circuits. Therefore, in spite of its architecture offering
a relatively large number of qubits, its usage is limited to certain types of optimi-
sation problems. It is a fully analog machine, the result of which depends on the
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value of the magnetic field applied to each qubit and the value of the connection
between qubits (coupler). Programming the D-Wave 2000Q computer involves
determining values of fields and associations. The aim of quantum annealing is
to find the minimal energy state for the problem defined by a programmer. An-
nealing begins with an initial well-known quantum system for which the minimal
energy state is known. Then it slowly switches to the quantum system related to
the search problem. Ideally, during the whole process of switching, the system
remains in its minimal energy state, so it should end up in the minimal energy
state of the intended problem.

From a programmer’s perspective, the problems to be solved must be for-
mulated as an objective function using the Ising model [22] or, alternatively, a
QUBO problem description [21]. Both approaches are isomorphic and can be
transformed into each other in polynomial time. In this study, we choose to use
QUBO formulation of the problem. In general, a QUBO problem consists of a
matrix Q of size NxN , where N is the number of used binary variables and the
size of the vector of binary variables that constitute the searched state. It can be
converted without loss of generality to the upper triangular matrix as described
in [14]. The actual problem solved by D-Wave is to find the final state of n binary
variables X = (x1, x2...xn) that minimizes the objective function defined as

f(x) =
∑
i

Qi,ixi +
∑
i,j,i<j

Qi,jxixj . (1)

Elements with the same indexes (Qi,i) are responsible for "bias", i.e. the
initial value of the magnetic field applied to the qubit, and elements with unequal
indexes are responsible for the links between qubits (couplers). Minimizing such
function is an NP-hard problem which makes it well suited for solving with help
from the D-Wave 2000Q quantum computer.

The problem description does not limit the number of connections between
qubits. However, the actual hardware is, in fact, a chimera graph (16x16 board
of K(4, 4) graphs, degree 6); thus, the problem graph must be mapped onto that
architecture, which is achieved by minor-embedding. It is a process of mapping
each logical binary variable present in a problem description to a group (called
a chain) of physical qubits on the actual machine so all required connections
are realized. For dense matrices there is probably no better method than minor-
embedding based on complete graph embedding described in [11]. For sparse
matrices it is reasonable to attempt heuristics to lower the qubit chain length
(e.g. as described in [6]).

4 Workflow problem formulation

In its general form, the workflow application can be represented as a Directed
Acyclic Graph, where each task is represented by a vertex. An example graph
is depicted in Fig. 1. We assume that the serverless infrastructure consists of a
finite number of machine types, albeit with an infinite number of instances for
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each type. Each machine type has an associated cost. Each task has an associated
running time for each machine type. Our model can be applied to any DAG.

The goal is to assign a machine type to each task with minimal total cost,
while respecting the deadline. For simplicity, we will use the term machine in-
stead of machine type from now on.
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Fig. 1: Example workflow problem as a graph with task count t=8. We search
for an assignment of each task to one of the machine types. For example, with
machine count m=3 vector K = [k0, k1, k2] describes the cost of time unit exe-
cution on each machine while matrix T = [τi,j ]8×3 describes the execution time
of task i running on machine j

The formal definition of the problem addressed in this paper consists of:

• a time matrix T = [τi,j ]t×m where t is the number of tasks, m is the number
of machines and τi,j expresses the execution time of task with number i on
the machine with number j;

• a machine cost per time unit vector K = [ki]m measured in currency units
per time unit. This matrix can be used to calculate the cost of running the
workflow;

• a deadline d (an integer, limiting this value is crucial for the size of the
resulting QUBO problem);

• a list Θ of paths from the vertex representing the first task to the vertex rep-
resenting the final task (both inclusive) in a DAG representing the problem.

For the purpose of describing results, we apply the following terminology:
a correct result meets all the constraints, the (global) optimum is a correct
result which has the lowest cost possible for the problem instance, while a wrong
result fails to meet at least one constraint.

5 Transformation to QUBO problem

The problem addressed in this paper is NP-hard [9]. We provide its translation to
a QUBO problem which consists of two steps. First, we propose a transformation

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_40

https://dx.doi.org/10.1007/978-3-030-50433-5_40


6 D. Tomasiewicz et al.

of the problem to BILP, which is described in this section. The second step shows
how to translate BILP to a QUBO problem using [14].

The general goal of solving a BILP problem (also called "0-1 Integer Pro-
gramming" [19]) is to find, for a given vector C = [ci]n, n binary numbers
X = [x1, ..., xn], for which the function

f(x1, ..., xn) = CTX =

n∑
j=1

cjxj (2)

is minimal, subject to constraints indicated by the following linear equation:

Ax = b, (3)

where A = [ai,j ]n×w stores w constraints for n binary numbers.

Translation from initial formulation to BILP
In our problem, the BILP binary variables are defined as x = [xi]n where n = t·m
(see Section 4). Variable xi is set to 1 if the task with number (imod t) runs on
a machine with number (i div t) where div is an integer division. Tab. 1 contains
an example mapping of xi parameters to task and machine combinations.

Table 1: The binary variables X = [x0, x1, x2...x31] for BILP formulation of
the sample workflow problem. Task count is t = 8 and machine count is m = 4.
Binary variable xi is set to 1 when task with number (imod t) runs on a machine
with number (i div t) and to 0 otherwise.

Task
1 2 3 4 5 6 7 8

Machine 0 x0 x1 x2 x3 x4 x5 x6 x7

1 x8 x9 x10 x11 x12 x13 x14 x15

2 x16 x17 x18 x19 x20 x21 x22 x23

3 x24 x25 x26 x27 x28 x29 x30 x31

The BILP minimization function can subsequently be defined as the total
cost of running tasks on selected machines

f(X) =

n∑
i=1

cixi , (4)

where C = [ci]n is the cost vector and ci indicates the cost of running task with
number (imod t) on the machine with number (i div t).

The cost vector needed for BILP formulation of the problem is obtained from
the problem definition (Section 4) as follows: first, the cost matrix [γi,j ]t×m is
created by multiplying γi,j = τi,j ·kj . Next, the cost vector C is obtained by row-
by-row vectorization [τi,j ] using ci+t·j = τi,j . Finally, the time vector T = [ti]n
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is obtained in an analogous manner by calculating ti+t·j = γi,j .

In addition to the minimization function, there are also two types of con-
straints, the deadline and machine usage, where it is necessary to ensure that
only a single machine will be selected for a given task.

Deadline constraints. We define a matrix R = [ri,j ]n×r, where r is the number
of all possible paths in the workflow DAG. R stores the time for each machine-
based task assignment i ∈ [0..n − 1], but only if the task belongs to the path
θ ∈ [0, r − 1] as follows:

ri,θ =

{
ti if path θ contains task number imod t
0 otherwise.

(5)

Next, we formulate a set of constraints corresponding to each path θ

n−1∑
i=0

ri,θxi ≤ d , (6)

which we can rewrite as (for D = [d]n)

Rx ≤ D. (7)

To describe constraints as part of BILP according to (3) we need to transform
an inequality (7) into an equality. To achieve this, we rely on the fact that there
always exists a slack variable s such that for natural numbers

a ∈ N, Z ∈ N, a ≤ Z =⇒ ∃s ∈ N : a+ s = Z.

Therefore it is necessary to extend R with additional columns that represent
all necessary slack variables [14]. Generally a slack value s is a natural number,
so we represent it using standard binary expansion. If we indicate∑

i;task(i)∈θ

min
j
τi,j (8)

as the minimum time of running tasks in path θ, then the number of binary
variables b for storing slack variables for each path θ equals:

b(p) = log2(|d−
∑

i;task(i)∈θ

min
j
τi,j |). (9)

Machine usage constraints. The next category of constraints comprises “one
machine per task only” constraints. We define U = [ui,j ]n×t such that for each
task s ∈ [0, t− 1] and its machine-based position i ∈ [0, n− 1]

ui,s =

{
1 if imodn = s

0 otherwise.
(10)
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Therefore, each row of U indicates all machine-based positions of a task corre-
sponding to that row. Then, to assure that only one machine is assigned to each
task, the following constraint must be fulfilled:

n−1∑
i=0

ui,txi = 1. (11)

If we indicate s as the total number of slack variables, the final BILP constraints
matrix (3) is defined as A = [ai,j ](n+s)×(r+t) and combines all constraints to-
gether as follows:

ai,j =

{
ri,j 0 ≤ j < r

ui,j−r r ≤ j < r + t.
(12)

To perform this operation, we need matrices of compatible sizes. Therefore, the
matrix U must also be extended with slack variables, which are set to 0.

Vector b from (3) is defined in a similar manner:

bi =

{
d 0 ≤ j < r

1 r ≤ j < r + t.
(13)

Translation from BILP to QUBO problem.
Given matrices A,C and vector b a QUBO matrix can be calculated using the
following formula (from [14]):

y = xTCx+ P · (Ax− b)T (Ax− b) = xTCx+ xTDx+ c = xTQx+ c. (14)

By dropping the additive constant c, the exact QUBO problem form, which is
minimizing xTQx, can be formulated. However it is necessary to introduce two
additional scalar parameters:

• P - relative strength of all constraints in relation to the objective function,
see (14)

• S - weight required for balancing R and U values so that the constraints they
represent are efficiently included in the QUBO problem. Namely, it replaces
constraints defined by (11) with

n−1∑
i=0

Sui,txi = S. (15)

Both mentioned parameters, along with the minor embedding chain strength,
need to be balanced, to make sure that (1) the solution meets constraints and
(2) the objective function is minimized. Finding proper values for these param-
eters is not a trivial task. It is important to mention that the resulting QUBO
problem might have high resolution, which can result in errors due to the limited
resolution of the annealer’s Digital to Analog Converter (DAC), so the hardware
conversion from QUBO to analog values may not be accurate enough.
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6 Results

In this section we describe the experimental results obtained using D-Wave
2000Q, compared with selected classical reference methods. In order to match
the limitations of the existing quantum annealer, we considered four sample
instances of the problem. Their DAG representation is shown in Fig. 2 and pa-
rameters in Tab. 2.

Table 2: The tested instances of the workflow problem (for definitions of param-
eters, see Section 4)
No. Binary variable count T K paths

1 8
[
6 3 12 9
2 1 4 3

]
[1,4] [[0,1,3],[0,2,3]]

2 10
[
6 3 12 9 6
2 1 4 3 2

]
[1,4] [[0,1,4],[0,2,4],[0,3,4]]

3 15

6 3 12 9 6
2 1 4 3 2
4 2 8 6 4

 [1,5,2] [[0,1,4],[0,2,4],[0,3,4]]

4 18

12 6 42 18 30 24
4 2 14 6 10 8
8 4 28 12 20 16

 K=[8,18,6] [[0,1,3,5],[0,1,4,5],[0,2,4,5]]
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Problem no 4
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Fig. 2: Graph representations of the tested workflow problems.

Finding parameters: P , S and chain strength. Parameters needed for
QUBO problem formulation are dependent on the specific problem instance.
For the purpose of this research, parameters were obtained using a metaheuris-
tic. First, (1), we find an initial value of P basing on [14]. The potential initial
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value of parameter S should be similar to values in vector T in order to achieve
proper balance between constraints. Then, (2), we search the discrete space of
possible pairs (P, S) for values relatively close to the initial values, using a clas-
sical solver – Gurobi4. Next, (3), we set the chain strength between physical
qubits for the minor-embedded problem basing on the D-Wave guidebook’s [11]
suggestion that it should be large enough to keep chains and small enough not
to cover the actual problem. We have found that it should approximate the
largest values of the Q matrix. Finally, (4), the selected chain strength is used
as an input for the dwave.embedding library, which performs actual minor em-
bedding. The final parameter values are presented in Tab. 3. Deadline values for
all four problems were selected in such a way that they yield similar percentages
of correct solutions.

Table 3: Values of parameters P , S and chain strength found for each size of the
workflow problem for the given deadline (which is predefined, but has an impact
on the parameters’ values). The rightmost column represents the percentage of
correct solutions in relation to all possible solutions.
No. Binary variable number Deadline P S Chain strength Percentage of correct

solutions
1 8 19 8 10 1200 62,5%
2 10 19 14 25 6650 56,25%
3 15 17 11 10 2800 54,3%
4 18 70 6 40 18000 46,91%

Reference methods. The problems discussed in this paper are small enough
to be solved using classical methods. The following four classical methods have
been used to verify D-Wave machine results:

• A brute-force method using initial problem formulation. It was used to cal-
culate exact results, along with minimal energy, through direct use of the
objective function. (1),

• GNU Linear Programming Kit5 library for solving BILP problem prior to
its translation to QUBO. This method always finds the global optima.

• Gurobi sampler for the QUBO problem without minor-embedding. This
method always finds the global optima, provided that parameters P and
S are set up properly.

• Gurobi sampler for QUBO problem with minor-embedding, requiring three
parameters (P , S, chain strength). The summary of the results is presented
in Tab. 4.

Experiments with D-Wave. We perform experiments using the D-Wave 2000Q
5.0 machine sampled 2000 times with annealing time set to 8µs. Fig. 3 shows
4 http://www.gurobi.com
5 https://www.gnu.org/software/glpk/
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Table 4: Gurobi solutions table. The rightmost column shows whether the global
optimum was found, with the absolute energy error between the lowest Gurobi
solution and the brute force global optimum.

No. Binary variables
number

Global optimum found

1 8 YES
2 10 YES
3 15 YES
4 18 NO, wrong (22831)

the energy distribution of the actual results. For Problem 1 and Problem 2, the
minimal energy corresponds to the global optimum, while for Problem 3 it indi-
cates a correct solution, but not the best possible one. All energies found for the
most complex Problem 4 correspond to wrong solutions. It can be noticed that
the count of wrong solutions grows along with the size of the solution space. In
general, the obtained characteristics of energies remain similar to [17].

Details of the results are described in Tab. 5, where the number of correct
solutions found by D-Wave and their relation to the total number of correct
solutions is presented. The results are compared to the global optima obtained
by the brute force method. It can be noted that D-Wave results are comparable
to Gurobi results. In the first two problems, workflow optimization was solved
exactly and the global optimum was found. In problem 3, the Gurobi solution
was still optimal, while the D-Wave solution was correct, but not the best (1̃2%
worse in terms of cost; 33th out of 132 correct solutions). For problem 4 neither
sampler found the global optimum.

Table 5: Summary of D-Wave 2000Q results. The fourth column presents the
number of D-Wave unique correct solutions in relation to the total number of
brute force correct solutions. The fifth column indicates whether the global op-
timum was found, listing the absolute energy error between the lowest D-Wave
solution and the brute-force global optimum. The two rightmost columns refer
to the execution time and cost of the lowest D-Wave solution respectively (min
means global optimum cost).
No. Binary

variables
number

Correct solutions
samples (from
2000 samples)

Unique
correct
solutions

Global opti-
mum found

Time Cost

1 8 98 10 (100%) YES 19(d=19) 34(min=34)
2 10 27 14 (77.8%) YES 16(d=19) 40(min=40)
3 15 4 4 (3.03%) NO (6) 16(d=17) 45(min=40)
4 18 0 0 (0%) NO (65862) N/A N/A
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Fig. 3: Histograms of results for the four types of workflow problems tested. The
x axis represent values of energies equal to the value of minimized objective
function (1). The y axis represents the probability density. For Problems 1-3 the
correct solutions found are shown on the left-hand side of the spectrum.

7 Conclusions and future work

In this paper we showed that it is possible to translate the workflow scheduling
problem into a QUBO problem, execute it on a quantum annealer and achieve
not only correct, but also globally optimal results for some of the analyzed
problem instances. However, the presented method of adapting the scheduling
challenge for D-Wave significantly increases the size of the problem. For example,
the 18-binary variable problem required each of 39 QUBO problem variables to
be represented by 11 physical qubits; thus the initial problem with a solution
space size of = 36 = 729 (mt,m = 3, t = 6, see Section 4) was converted into
a problem with size 2429 ∼ 10143 (QUBO problem with 39 variables, 11 qubits
each, 39 · 11 = 429). For such a large QUBO it is difficult for the quantum
annealer to find the lowest energy solution. Therefore, in the future we will
focus on solutions such as domain wall encoding [7] to reduce the number of
binary variables.

However, it is worth noting that for larger problems the brute force method
would no longer be usable because of its exponential complexity. This leaves a
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space for experimenting with a quantum annealer for larger instances, as the
annealing process is very fast.

To sum up, this work proved that it is possible to solve workflow schedul-
ing problems with the use of currently existing quantum annealers. Future work
might involve finding a better translation of the problem to a QUBO problem,
making the Q matrix more sparse and using minor-embedding heuristics. Addi-
tionally, the problem solution could be tested on the Pegasus machine [12] upon
its release. It may also be possible to divide the problem into smaller pieces –
this means dividing the original problem or dividing the QUBO problem (or
even using both methods in parallel) with tools such as D-Wave QBSolv [10].
Another interesting direction of research would be to compare the performance
of the presented problem on the D-Wave 2000Q machine with a non-quantum
Fujitsu digital annealer [28] as both machines are designed to solve problems
with a similar approach but different hardware.
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