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Abstract. Scheduling problems have attracted the attention of researchers
and practitioners for several decades. The quality of different methods
developed to solve these problems on classical computers have been
collected and compared in various benchmark repositories. Recently,
quantum annealing has appeared as promising approach to solve some
scheduling problems. The goal of this paper is to check experimentally
if and how this approach can be applied for solving a well-known bench-
mark of the classical Job Shop Scheduling Problem. We present the exist-
ing capabilities provided by the D-Wave 2000Q quantum annealing sys-
tem in the light of this benchmark. We have tested the quantum anneal-
ing system features experimentally, and proposed a new heuristic method
as a proof-of-concept. In our approach we decompose the considered
scheduling problem into a set of smaller optimization problems which
fit better into a limited quantum hardware capacity. We have tuned
experimentally various parameters of limited fully-connected graphs of
qubits available in the quantum annealing system for the heuristic. We
also indicate how new improvements in the upcoming D-Wave quantum
processor might potentially impact the performance of our approach.

Keywords: Quantum annealing · Job Shop Scheduling Problem · Heuris-
tic.

1 Introduction

Quantum computing has attracted the attention of many researchers and pro-
vides a new challenge for solving certain classes of combinatorial problems more
efficiently than on classical computers. Moreover, quantum computers are start-
ing to approach the limit of classical simulation, and consequently entering an era
of unprecedented ways to explore quantum algorithms [1]. There are many ongo-
ing efforts to run new experiments and benchmarks with quantum computing to
discover new applications and solve real-world problems. Many researchers have
been trying to find efficient ways of approaching NP-hard scheduling problems
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over the last decades. A comprehensive study to the theory and applications of
scheduling in advanced planning and computer systems as well as various prac-
tical industrial, real-time engineering, management science, business adminis-
tration and information systems use cases were presented in [3]. Recently, there
has been much interest in the possibility of using quantum annealing, which is a
derivative of adiabatic quantum optimization, e.g. in [4], [5], [7], [9]. In general,
the main assumption in adiabatic quantum optimization is that there is a quan-
tum Hamiltonian HP whose ground state encodes the solution to a considered
problem, and another Hamiltonian H0, whose ground state is easy-to-implement.
We first prepare a quantum system to be in the ground state of a known H0,
and then adiabatically change the Hamiltonian for a time T by the following
formula:

H(t) = (1− t

T
)H0 +

t

T
HP (1)

Next, if T is large enough, and H0 and HP do not interchange, the quantum
system will remain in the ground state for all times by the adiabatic theorem
of quantum mechanics. At time T , measuring the quantum state will return a
solution of a considered problem.

The emerging quantum technologies support mostly 2-local interactions, thus
the problem Hamiltonian HP , containing only 2-local terms between the qubits,
can be expressed by the formula:

H(σ) =

N−1∑
i=0

hiσi +

N−2∑
i=0

N−1∑
j=i+1

Jijσiσj (2)

The aim is to minimize the energy of a 2-local Ising Hamiltonian function,
where hi ∈ R, Jij ∈ R and σi ∈ {−1,+1}. This physics formula version is of-
ten called in short Ising. Various strategies together with useful techniques for
mapping a wide variety of NP-hard problems to Ising formulations to benefit
from adiabatic quantum optimization have already been demonstrated, e.g., in
[8]. In fact, an alternative problem formulation when translated to an objective
function, the 2-local condition on the problem Hamiltonian means that the ob-
jective function can also be expressed in the form used in Operations Research
community:

Obj(x) =

N−1∑
i=0

aixi +

N−2∑
i=0

N−1∑
j=i+1

bijxixj (3)

Thus, the problem is to minimize quadratic pseudo-Boolean objective func-
tion which is known as the Quadratic Unconstrained Binary Optimisation (QUBO),
where ai ∈ R, bij ∈ R, and xi ∈ {1, 0}. In a nutshell, to program a quantum an-
nealer we have to provide an appropriate list of ai and bij values. One should
also note that the conversion between these two formula versions requires only

a linear transformation, as xi = (σi+1)
2 .
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Several questions are still open in the field of quantum computing in practice.
Technical challenges include the preparation of a quantum physical system and
its operation at temperatures close to absolute zero isolated from the surrounding
environment in order to behave quantum mechanically. There are also various
limits on the quantum system controllability, noise and imperfections. However,
in the context of this paper, we address the question what scheduling problems
can be solved today using the existing quantum hardware.

We believe that one of the most important applications of quantum anneal-
ing is in the category of scheduling. In this paper, however, we have limited our
experiments to solve only a certain class of scheduling problems. We wanted to
validate experimentally a new quantum annealing heuristic applied for solving
a well-known benchmark of the classical Job Shop Scheduling Problem (JSSP).
In terms of computational complexity, the JSSP is NP-hard in the strong sense
[3]. Consequently, in practice optimal solutions can not be found within a rea-
sonable time. Thus, several polynomial-time heuristics have been developed for
finding suboptimal solutions and tested experimentally. Various heuristics have
been proposed based on traditional models of computing to find the best-known
solutions for JSSP benchmark instances. According to the recent comprehen-
sive literature study in [10], half of them have been based on tabu search al-
gorithms, followed by local search, shifting bottleneck, and branch and bound,
and also simulated annealing techniques. The simulated annealing metaheuristic
is a probabilistic technique for approximating the global optimum of a given
function, successfully applied for solving various scheduling problems, includ-
ing the JSSP [12] and the MRCPSP (Multi-mode Resource-Constrained Project
Scheduling Problem) [13]. In principle, the classical simulated annealing meta-
heuristic has much in common with a physical process of heating a material and
then slowly lowering the temperature to decrease defects, thus minimizing the
system energy. There is also a mathematical analogy to the adiabatic theorem
of quantum mechanics adopted in quantum annealing processes implemented in
the existing quantum hardware.

The rest of this paper is organized as follows. In Section 2 we formulate
the considered scheduling problem. The procedure of mapping the JSSP to the
QUBO formula together with variable pruning techniques are presented in Sec-
tion 3. Our heuristic approach is briefly explained in Section 4. The obtained
results are presented in Section 5. We conclude our paper and present future
work in Section 6.

2 Problem formulation

The JSSP can be described by a set of jobs J = {j1, . . . , jN} that must be
scheduled on a set of machines M = {m1, . . . ,mR}. Each job jn consists of a
sequence of Ln operations that have to be performed in a predefined order:

jn = {On1 → On2 → · · · → OnLn} (4)
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To simplify the notation, we enumerate the operations of all jobs in a lexico-
graphical order, in such a way that:

j1 = {O1 → O2 → · · · → Ok1}
j2 = {Ok1+1 → O2 → · · · → Ok2}

. . .

jN = {OkN−1+1 → O2 → · · · → OkN } (5)

The processing time of an operation Oi, i = 1, 2, . . . , kN , is pi which is a
positive integer. Moreover, each operation requires for its processing a particular
machine. Let qi be the index of the machine mqi on which operation Oi is to be
executed. By Im we will denote the set of indices of all of the operations that are
to be executed on machine mm, i.e., Im = {i : qi = m}. There can only be one
operation running on any given machine at any given point in time, and each
operation of a job needs to be completed before the following one can start. The
objective is to schedule all operations in a valid sequence in order to minimize
the schedule length (or the makespan), which is the completion time of the last
running job.

The JSSP is usually formulated as an optimization problem. However, it can
be easily transformed into a decision problem, which is limited to decide whether
there exists a feasible solution (schedule) with a makespan smaller than or equal
to a given time. The JSSP can be easily mapped to a constraint satisfaction
problem (CSP), and the existence of a solution to a CSP can be viewed as a
decision problem. The decision version of the JSSP, together with its formula-
tion suitable for a quantum annealing solver was presented in detail in [14]. The
obtained results have encouraged us to perform further empirical investigations.
We have followed the proposed time-indexed decision version of the JSSP to im-
plement basic steps in our quantum annealing heuristic. However, we have added
new conditions and extensions to be able to potentially apply it for practical use.
Among many existing JSSP test instances we have decided to focus on the first
benchmark set proposed in [15] to analyse various capabilities and properties
supported by the D-Wave 2000Q quantum chip. In our preliminary studies, as
a proof-of-concept, we have selected a small JSSP test instance denoted as ft06
(6 jobs and 6 machines), but large enough to investigate several schedule vari-
ables and properties relevant in a quantum annealing process aiming at the next
generation of D-Wave QPU.

Any JSSP instance can be represented as the disjunctive graph G = (V,C ∪
D), where V is the set of nodes, representing the operations of the jobs. Each
node i has a weight which is equal to the processing time pi of the corresponding
operation Oi, and there are two special nodes, a source 0 and a sink ∗, whereby
p0 and p∗ are equal to 0. C is the set of conjunctive arcs which reflect the
job-order of all the operations, and the set off these arcs is denoted by D, see
Fig. 1 for the selected ft06 JSSP test instance where bidirectional connections
representing operations executed on the same machine are depicted as nodes with
the same colour for better reading. The scheduling decision is to define ordering
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among all those operations which have to be processed on the same machine.
In the disjunctive graph representation it is done by turning undirected arcs
into directed ones. A selection S defines a feasible schedule if and only if every
undirected arc has been fixed, and the resulting graph G(S) = (V,C ∪ S) is
acyclic, where S is called a complete selection. For a complete selection S the
makespan is equal to the length of the longest weighted path (i.e., critical path)
from the source 0 to the sink ∗ in the acyclic graph G(S) = (V,C ∪ S).

Fig. 1. The example ft06 (6 jobs, and 6 machines) JSSP test instance represented as
the disjunctive graph.

3 JSSP mapping to QUBO

In this section we present how the considered JSSP can be mapped to QUBO,
and then how all the QUBO variables are embedded into a specific quantum
hardware, in our case - the D-Wave 2000Q quantum processing unit (QPU).
From the QUBO problem formulation perspective, it is essential to note that
the QPU is a hardware implementation of an undirected graph with qubits as
vertices and couplers as edges among them. For instance, in the D-Wave 2000Q
QPU there are 2048 qubits logically mapped into a 16x16 matrix of unit cells
of eight qubits. Each qubit is connected to at most six other qubits. The D-
Wave 2000Q has been designed to solve QUBO problems, where each qubit
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represents a variable, and couplers between qubits represent the cost associated
with qubit pairs. The limited qubits connectivity in the D-Wave 2000Q QPU is a
fundamental quantum hardware property which affected the quality of obtained
results and in various experiments reduced scheduling problem instances solved
by quantum annealing based heuristic methods. However, according to recent
publicly available technical specifications, the limited qubits connectivity will
be significantly improved in the upcoming D-Wave Pegasus QPU. Therefore,
while designing our new heuristic quantum annealing heuristic we have taken
this upcoming feature into account.

Following the example JSSP time-indexed QUBO formulation, we define nO∗
T binary variables for the JSSP, where nO is a total number of operations and T
is the upper bound for a given JSSP instance. During the initial QUBO mapping
phase, we have to assign a set of binary variables for each operation and its
various possible discrete starting times:

xit =

{
1 : operation Oi starts at time t

0 : otherwise
(6)

The upper bound T for the JSSP can be simply calculated as the sum of the
execution times of all operations, where t is smaller than or equal to T .

3.1 Quadratic constraints and the objective function

Let us introduce a set of penalty functions and corresponding constraints ex-
pressed as quadratic constraints, as proposed in [14]. To force the order of oper-
ations within a job, the following formula was proposed to count the number of
precedence violations among consecutive operations:

h1(x) =
∑
n

(
∑

kn−1<i<kn

t+pi>t′

xitxi+1,t′) (7)

Then, there can be only one job running on each machine at any time:

h2(x) =
∑
m

(
∑

(i,t,k,t′)∈Rm

xitxkt′) (8)

where Rm = Am ∪ Bm, and Am = {(i, t, k, t′) : (i, k) ∈ Im × Im, i 6= k, 0 ≤
t, t′ ≤ T, 0 < t′ − t < pi}, Bm = {(i, t, k, t′) : (i, k) ∈ Im × Im, i < k, t′ =
t, pi > 0, pj > 0}. To prevent operation Oj from starting at t′ if there is another
operation Oi started at time t and t′ − t < pi, the set Am was defined. Then,
the set Bm was defined so that two jobs can not start at the same time unless
at least one of their execution time is zero.

The last penalty function expressed as the quadratic constraint was defined
to force that an operation must start once and only once:

h3(x) =
∑
i

(
∑
t

xit − 1)2 (9)
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The considered JSSP Hamiltonian as the objective function can be expressed
simply as the sum of the quadratic constraints defined above:

HT (x) = ηh1(x) + αh2(x) + βh3(x) (10)

The penalty constants η, α, and β must be larger than 0 and in practice
setup experimentally to ensure that unfeasible solutions do not have a lower
energy than ground states. One should also note that the index of HT indicates
the strong dependence of the Hamiltonian on the timespan T , which affects
the number of variables, and is one of the critical challenges for running JSSP
time-indexed QUBO formulations for reference JSSP benchmark instances on
the D-Wave 2000Q QPU.

3.2 Variable pruning

One of the challenging tasks in our experimental studies was to eliminate as
many as possible variables called the variable pruning process. We disabled all
of the variables 0 ≤ xij < S, where S is the sum of execution times of all the
operations prior to the considered one in the same job. Then, we also disable all
of the variables T − S ≤ xij < T , where S is the sum of execution times of all
the operations after the considered one in the same job. Finally, in our public
available source code, we introduced a set of parameters for selecting any point
in schedule time and corresponding variable or removing a certain time-frame in
a schedule.

4 Heuristic

In order to eliminate variables in the JSSP time-indexed QUBO formulation,
and consequently be able to run bigger problem instances on the limited number
of qubits available, we proposed a new hybrid heuristic method which extends
the basic variable pruning techniques. The main idea behind the heuristic is to
define a processing window and move it in time till the end of a schedule, so
only a limited number of operations is considered. In other words, we iterate the
processing window in time, and check all the operations if they fit into one of
three categories, where:

– si is the start time of operation i;
– wbegin is the start time of the processing window;
– wend is the end time of the processing window;
– pi is the execution time of operation i.

A schematic view of the processing window used in our heuristic is presented
in Fig. 2. The example operations filled with the red color are reaching out
of the processing window, and therefore they are treated differently. Given that
operations A and B belong to the same job, the operation A will not be scheduled
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when operation B occurs, even though operation B will be removed from the
schedule.

A: Inside the processing window{
si ≥ wbegin
si + pi < wend

(11)

We include those operations in a new dictionary of jobs, creating a smaller
instance.

B: Reaching out of the processing window from the left side{
si < wbegin

si + pi < wend
(12)

Thanks to our modular heuristic implementation we were able to prune addi-
tionally variables corresponding to the machines when those operations occupied
them and prevent the next operation in the same job from starting before the
one ends.

C: Reaching out of the processing window from the right side

si + pi ≥ wend (13)

Respectively to B, we were able to disable a machine when those operations
take place and prevent the previous operation in the same job from interfering
with this one.

Fig. 2. Dividing a schedule into a set of processing windows for many machines and
job operations.
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5 Results

5.1 Jobs vs. operations

First, we wanted to check which parameters are especially crucial for the quality
of generated solutions. In order to ensure that no other parameters interfered
with the obtained results, we designed the second simple experiment. During
the experiment, we compared schedules of one job consisting of many operations
with many jobs consisting of only one operation. Each operation execution time
was equal to 1, and it was performed on the same machine, see Fig. 3.

Fig. 3. The quality of solutions for a different number of jobs and operations.

Based on the performed parameters tuning experiments, we discovered that
the maximum processing window was around 14 time-units to be able to run
the JSSP ft06 instance on the D-Wave 2000Q QPU. Additionally, during the
pre-processing step we defined three classes of job operation length, namely
short,medium, long, to reduce a number of time-indexed variables and the pro-
cessing window size down to 5 time-units. The example initial step in our heuris-
tic improving the scheduling solution by turning undirected arcs into directed
ones within the given processing window are presented in Fig. 4.

5.2 Embedding and qubits chain strength

In Section 3 we represented the JSSP in the QUBO form as a theoretical graph
of qubits and corresponding variables. However, the next challenge in our ex-
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Fig. 4. The initial disjunctive graph representation of the feasible scheduling solution
within a processing window with the undirected arcs O11, O31 and O21, O61 turned by
the heuristic into directed arcs during the optimization process.

perimental studies was the embedding procedure of QUBO structures onto the
quantum hardware with limited fully-connected graphs of qubits. The graph
configuration implemented in the existing D-Wave hardware is called a Chimera
structure. In fact, the tested D-Wave 2000Q QPU is a lattice of interconnected
qubits. While some qubits connect to others via couplers, the D-Wave QPU is
not fully connected, and qubits are arranged in sparsely connected groups of
at most six other qubits. Currently, D-Wave provides a set of automated pro-
gramming tools and APIs to find and perform an embedding automatically.
Nevertheless, many quits must be chained together, so the chain is used as a
single qubit. The chain strength value c must be set up carefully, as there is
no methodology for choosing an optimal value [18]. To evaluate the embedding
procedure we designed the following experiment: we randomly generated a set
of schedules consisting of 4 jobs, each job consisted of 4 operations, and we as-
signed relatively short execution times to all operations, so the makespan was
T ≤ 7, and we solved the JSSP problem 100 times. Note that long schedules
impose a large number of variables for the JSSP time-indexed QUBO formula-
tion, and then the embedding procedure. Thus, we used different values of the
chain strength c to discover what is optimal for our problem, see Fig. 5. Based
on the obtained results, we were able to assign the strength value c = 3, but
we observed a significant impact of its different values on the number of error
solutions generated by the D-Wave quantum annealer. To quantify the quality
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of a generated solution, we simply counted the number of feasible schedules after
the quantum optimization procedure.

Additionally, we have performed various experiments with our heuristic to
make sure that all the relevant controlling parameters and configurations were
used efficiently. In particular, we have selected theminimum classical gap = 2.0
value experimentally to provide enough energy to differentiate the ground state
from other states in the QPU. Naturally, we can reduce this value and try to
squeeze more problem information onto the QPU, but consequently it will also
reduce the accuracy of the considered problem. In our case, the biggest con-
straint is a number of possible variables within a processing window. Therefore,
by decreasing the minimum classical gap = 1.0 we had an opportunity to in-
crease the processing window to 6 time-units, and further decreasing of the
minimum classical gap = 0.5 value increased the processing window to 7 time-
units. However, minimum classical gap values below 2.0 gave more and more
unacceptable solutions and had a negative impact onto the overall quality of
obtained solutions.

The existing Chimera D-Wave QPU architecture and available APIs give de-
velopers a lot of flexibility to implement and improve strategies by increasing the
gap between ground and excited states during the quantum annealing process. A
set of interesting error suppression techniques using quantum annealing correc-
tion with auxiliary qubits and the energy gap were discussed for instance in [11].
Technically speaking, the D-Wave QPU minimizes the energy of an Ising spin
configuration whose pairwise interactions lie on the edges of the Chimera graph.
To automatically minor-embeds our problem into a structured sampler we used
the EmbeddingComposite method. However, there are other dimod composites
with various parameters during pre- and post-processing phases worth to con-
sider in our future work. One should note, that the range of coupling strengths
available in the D-Wave QPU is finite, so chaining is typically accomplished by
setting the coupling strength to the largest allowed negative value and scaling
down the input couplings relative to that. Thus, we have also checked vari-
ous values of the another controlling extended j range parameter to increase
the strength of minor embedding coupling. Typically, using the available larger
negative values of J increases the dynamic J range. According to technical spec-
ifications of the existing D-Wave 2000Q QPU, strong negative couplings can
bias a chain and therefore flux-bias offsets must be applied to recalibrate it to
compensate for this effect. However, we have not noticed a significant impact on
the quality of obtained solutions by changing the extended j range parameter.
Nevertheless, we believe that additional tests and techniques will be required,
in particular the spin-reversal transform can improve results by reducing the
impact of possible analog and systematic errors. We are planning to compare all
the above mentioned controlling parameters on the new Pegasus QPU architec-
ture and explore more precisely the JSSP problem structure and solution space.
We will apply new techniques for encoding discrete variables into Ising model
qubits, e.g. [6], and try to take advantage of new and more connected Pegasus
QPU graph for more efficient embedding of the considered problem.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_39

https://dx.doi.org/10.1007/978-3-030-50433-5_39


12 K. Kurowski et al.

Fig. 5. The chain strength c bars based on the standard deviation and their impact on
the JSSP solutions quality.

Finally, our hybrid heuristic method improved the quality of solutions by
reducing the makespan of randomly generated schedules down to 60, see Fig. 6.
Nevertheless, it is clear that even simple classical heuristics proposed for the
JSSP outperform our quantum annealing-based approach reaching a set of many
schedules with optimal makespan 55. We expect to use a much bigger process-
ing windows in our heuristic tailored for the upcoming D-Wave Pegasus QPU
architecture. The Pegasus graph will allow each qubit to couple to 15 other
qubits instead of 6 qubits, so we expect to run the same heuristic successfully
for bigger JSSP instances. Our proof-of-concept implementation, including the
heuristic source code, has been published in the GitHub repository for reusing
and external testing [19].

6 Conclusions

We presented a new quantum annealing heuristic for solving the Job Shop
Scheduling Problem (JSSP) on publicly available D-Wave 2000Q QPU. Due
to a limited number of available qubits and couplers among qubits implemented
in a specific topology, we decomposed the JSSP into a set of smaller optimiza-
tion problems as window processing slices. We estimated the number of feasible
solutions during experimental studies on the well-known scheduling JSSP test
instance ft06. We also tuned experimentally QUBO parameters proposed for the
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Fig. 6. The incremental optimization process of improving schedule quality within the
given processing window generated by the hybrid quantum annealing heuristic for the
selected JSSP ft06 instance.

time-indexed decision version of the JSSP, and compared the obtained results
with optimal solutions generated by classical heuristic methods for the well-
known JSSP benchmark. Our approach can be easily extended, modified and
applied to other scheduling problems by researchers, as we have released the
source code of our heuristic.

In our future work, we intend to consider other scheduling problems, and test
our hybrid heuristic to divide large problem domains into small subproblems.
The existing heuristic has been designed to be modular, open and extensible
source code, so we plan to incorporate additional heuristic techniques, and add
improved variable pruning and selection algorithms. It will also be interesting
to explore the design of such extensions within the existing D-Wave quantum
annealers limits and upcoming Pegasus QPU improvements.
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