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Abstract. This paper experimentally investigates the behavior of analog
quantum computers such as commercialized by D-Wave when confronted to
instances of the maximum cardinality matching problem specifically designed
to be hard to solve by means of simulated annealing. We benchmark a
D-Wave “Washington” (2X) with 1098 operational qubits on various sizes of
such instances and observe that for all but the most trivially small of these
it fails to obtain an optimal solution. Thus, our results suggest that quantum
annealing, at least as implemented in a D-Wave device, falls in the same
pitfalls as simulated annealing and therefore provides additional evidences
suggesting that there exist polynomial-time problems that such a machine
cannot solve efficiently to optimality.
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1 Introduction

From a practical view, the emergence of quantum computers able to compete with the
performance of the most powerful conventional computers remains highly speculative
in the foreseeable future. Indeed, although quantum computing devices are scaling
up to the point of achieving the so-called milestone of quantum supremacy [22],
these intermediate scale devices, referred to as NISQ [21], will not be able to run
mainstream quantum algorithms such as Grover, Shor and their many variants at
practically significant scales. Yet there are other breeds of machines in the quantum
computing landscape, in particular the so-called analog quantum computers of which
the machines presently sold by the Canadian company D-Wave are the first concrete
realizations. These machines implement a noisy version of the Quantum Adiabatic
Algorithm introduced by Farhi et al. in 2001 [12]. From an abstract point of view,
such a machine may be seen as an oracle specialized in the resolution of an NP-
hard optimization problem1 (of the spin-glass type) with an algorithm functionally
analogous to the well-known simulated annealing but with a quantum speedup.

On top of the formal analogies between simulated and quantum annealing, there
also appears to be an analogy between the latter present state of art and that of

1 Strictly speaking, to the best of the authors’ knowledge, although the general problem
is NP -hard, the complexity status of the more specialized instances constrained by the
qubit interconnection topology of these machines remains open.
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simulated annealing when it was first introduced. So it might be useful to recall a few
facts on SA. Indeed, simulated annealing was introduced in the mid-80’s [18,8] and its
countless practical successes quickly established it as a mainstream method for approx-
imately solving computationally-hard combinatorial optimization problems. Thus, the
theoretical computer science community investigated in great depth its convergence
properties in an attempt to understand the worst-case behavior of the method. With
that respect, these pieces of work, which were performed in the late 80’s and early 90’s,
lead to the following insights. First, when it comes to solving combinatorial optimiza-
tion problems to optimality, it is necessary (and sufficient) to use a logarithmic cooling
schedule [14,20,15] leading to an exponential-time convergence in the worst-case (an
unsurprising fact since it is known that P 6=NP in the oracle setting [3]). Second,
particular instances of combinatorial problems have been designed to specifically
require an exponential number of iterations to reach an optimal solution for example
on the (NP-hard) 3-coloring problem [20] and, more importantly for this paper, on
the (polynomial) maximum cardinality matching problem [25]. Lastly, another line of
works, still active today, investigated the asymptotic behavior of hard combinatorial
problems [7,17,26] showing that the cost ratio between best and worst-cost solutions
to random instances tends (quite quickly) to 1 as the instance size tend to∞. These
latter results provided clues as to why simple heuristics such as simulated annealing
appear to work quite well on large instances as well as to why branch-and-bound
type exact resolution methods tend to suffer from a trailing effect (i.e. find optimal or
near-optimal solutions relatively quickly but fail to prove their optimality in reasonable
time). Despite these results now being quite well established, they can also contribute
to the ongoing effort to better understand and benchmark quantum adiabatic algo-
rithms [12] and especially the machines that now implements it in order to determine
whether or not they provide a quantum advantage over some classes of classical compu-
tations. Still, as it is considered unlikely that any presently known quantum computing
paradigm will lead to efficient algorithms for solving NP -hard problems, determining
whether or not quantum adiabatic computing yields an advantage over classical com-
puting is most likely an ill-posed question given present knowledge. Yet, as a quantum
analogue of simulated annealing, attempting to demonstrate a quantum advantage of
adiabatic algorithms over simulated annealing appears to be a better-posed question.
At the time of writing, this problem is the focus of a lot of works which, despite claims
of exponential speedups in specific cases [11] (which also lead to the development of
the promising Simulated Quantum Annealing classical metaheuristic [9]), hint towards
a logarithmic decay requirement of the temperature-analog of QA but with smaller
constants involved [24] leading to only anO(1) advantage of QA over SA in the general
case. Such an advantage has furthermore recently been experimentally demonstrated
by Albash and Lidar [1]. The present paper contributes to the study of the QA vs SA
issue by experimentally confronting a D-Wave quantum annealer to the pathological
instances of the maximum cardinality matching problem proposed by Sasaki and
Hajek [25] in order to show that simulated annealing was indeed unable to solve
certain polynomial problems in polynomial time. Demonstrating an ability to solve
these instances to optimality on a quantum annealer would certainly hint towards a
worst-case quantum annealing advantage over simulated annealing whereas failure to
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do so would tend to demonstrate that quantum annealing remains subject to the same
pitfalls as simulated annealing and is therefore unable to solve certain polynomial
problems efficiently. As a first step towards this, the present paper experimentally
benchmarks a D-Wave “Washington” (2X) with 1098 operational qubits on various
sizes of such pathologic instances of the maximum cardinality matching problem and
observes that for all but the most trivially small of these it fails to obtain an optimal
solution. This thus provides negative evidences towards the existence of a worst-case
advantage of quantum annealing over classical annealing. As a by-product, our study
also provides feedback on using a D-Wave annealer in particular with respect to the
size of problems that can be mapped on such a device due to the various constraints
of the system. This paper is organized as follows. Sect. 2 provides some background
on quantum annealing, the D-Wave devices and their limitations. Sect. 3 surveys the
maximum cardinality matching problem, introduces the Gn graph family underlying
our pathologic instances and subsequently details how we build the QUBO instances
to be mapped on the D-Wave from those instances. Then, Sect. 4 extensively details
our experimental setup and experimentations and Sect. 5 concludes the paper with
a discussion of the results and a number of perspectives to follow up on this work.

2 Quantum annealing and its D-Wave implementation

2.1 The generalized Ising problem and QUBO

D-Wave systems are based on a quantum annealing process2 which goal is to minimize
the Ising Hamiltonian:

H(h,J,σ)=
∑
i

hiσi+
∑
i<j

Jijσiσj, (1)

where the external field h and spin coupling interactions matrix J are given, and
the vector of spin (or qubit) values σ/∀i,σi∈{−1,1} is the variable for which the
energy of the system is minimized as the process of adiabatic annealing transition the
system from a constant coupling with a superposition of spins3 to the final Hamil-
tonian as given by Eq. 1. Historically speaking, the Ising Hamiltonian corresponds
to the case where only the closest neighbouring spins are allowed to interact (i.e.
Jij 6= 0 ⇐⇒ nodes i and j are conterminous). The generalized Ising problem, for
which any pair of spins in the system are allowed to interact, is easily transformed into
a well known 0-1 optimization problem called QUBO (for Quadratic Unconstrained
Binary Optimization) which objective function is given by:

2 A combinatorial optimization technique functionally similar to conventional (simulated)
annealing but which, instead of applying thermal fluctuations, uses quantum phenomena
to search the solution space more efficiently [13].

3 The initial Hamiltonian is proportional to
∑

i,jσ
x
i σ

x
j , hence based on Eigen-vectors of

operator σ̂x (on the x-axis) whilst the momentum of spin on Eq. 1 is an Eigen-state
of σ̂z (on the z-axis) for which Eigen-states of σ̂x are superposition states. The adiabatic
theorem allows transitioning from the initial ferromagnetic state on axis x to an
eigen-state of the Hamiltonian of Eq. 1 on axis z and hopefully to the lowest energy of it.
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O(Q,x)=
∑
i

Qiixi+
∑
i<j

Qijxixj, (2)

in which the matrix Q is constant and the goal of the optimization is to find
the vector of binary variables ∀i,xi∈{0,1} that either minimizes or maximizes the
objective function O(Q,x) from Eq. 2. For the minimization problem (but only up to
a change of sign for the maximization problem), it is trivial that the generalized Ising
problem and the QUBO problem are equivalent given ∀i,Qii=hi, ∀i,j/i 6=j,Qij=Jij
and ∀i,σi=2xi−1.

Hence, if quantum annealing can reach a configuration of minimum energy, then
the associated state vector solves the equivalent QUBO problem at the same time. As
the behavior of each qubit in a quantum annealer allows them to be in a superposition
state (a combination of the states “−1” and “+1”) until they relax to either one of
these eigen-states, it is thought that quantum mechanical phenomena – e.g., quantum
tunneling – can help reaching the minimum energy configuration, or at least a close
approximation of it, in more cases than with Simulated Annealing (SA). Indeed,
when SA only relies on (simulated) temperatures to pass over barriers of potential,
in Quantum Annealing, quantum phenomena can help because tunneling is more effi-
cient to pass energy barriers even in the case where the temperature is low. Therefore,
this technique is a promising heuristic approach to “quickly” find acceptable solutions
for certain classes of complex NP-Hard problems that are easily mapped to these
machines, such as optimization, machine learning, or operational research problems.

The physics of the low energies of D-Wave computers [16] is given by a Hamiltonian
depending on the time of the form

H(t)=A(t)H0+B(t)HP (3)

The functions A(t) and B(t) must satisfy B(t=0)=0 and A(t=τ)=0 so that, when
the state evolution t= 0 changes to t= τ , the Hamiltonian H(t) is “annealed” in
a purely classical form. Thus, the fundamental state H(0)=H0 evolves to a state
H(τ)=HP , the measurements made at time τ give us low energy states of the Ising
Hamiltonian (Eq. 1). The adiabatic theorem states that if the time evolution is slow
enough (i.e. τ is large enough), then the optimal (global) solution ε(σ) of the system
can be obtained with a high probability. H0=

∑
iσ
x
i gives the quantum effects, and

HP =
∑
ihiσ

z
i +
∑

(ij)Ji,jσ
z
i σ

z
j is given to encode the problem of the Ising instance.

minε(σ)=min

∑
i

hiσi+
∑
i,j

Ji,jσiσj

 (4)

2.2 D-Wave limitations

Nonetheless, it is worth noting, that in the case of the current architectures of
the D-Wave annealing devices, the freedom to choose the Jij coupling constants is
severely restrained by the hardware qubit interconnection topology. In particular, this
so-called Chimera topology is sparse, with a number of inter-spin couplings limited
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to a maximum of 6 per qubit (or spin variable). Fig. 1 illustrates an instance of the
Chimera graph for 128 qubits, T=(NT ,ET ), where nodes NT are qubits and represent
problem variables with programmable weights (hi), and edges ET are associated
to the couplings Jij between qubits (Jij 6=0 =⇒ (i,j)∈ET ). As such, if the graph
induced by the nonzero couplings is not isomorphic to the Chimera graph, which is
the case most usually, then one must resort to several palliatives among which the
duplication of logical qubits onto several physical qubits is the least disruptive one
if the corresponding expanded problem can still fit on the target device.

Fig. 1. Representation of a Chimera graph with 4×4 unit cells, each a small 2×4 bipartite
graph, for 128 physicals qubits. The links represents all the inter-spin coupling Jij that can
be different from 0.

Then, a D-Wave annealer minimizes the energy from the Hamiltonian of Eq. (1)
by associating weights (hi) with qubit spins (σi) and couplings (Jij) with couplers
between the spins of the two connected qubits (σi and σj). As an example, the D-Wave
2X system we used has 1098 operational qubits and 3049 operational couplers. As
said previously, a number of constraints have an impact on the practical efficiency of
this type of machines. In [5], the authors highlight four factors: the precision/control
error which is limited by the parameters h and J which value ranges are also limited4,
the low connectivity5 in T , and the in fine small number of useful qubits once the
topological constraints are accounted for. In [4], the authors show that using large
energy gaps in the Ising representation of the model one wants to optimize can greatly
mitigate some of the intrinsic limitations of the hardware like precision of the coupling

4 The range of hi∈ [−2,+2] and Ji,j∈ [−1,+1] is a limitation for all values of the variables
to be included in the graph. If the values of hi and Ji,j are outside their respective
ranges, then they are unavailable and not mapped

5 If the problems to be solved do not match the structure of the T graph architecture,
then they cannot be mapped and resolved directly.
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values and noises in the spin measurements. They also suggest using ferromagnetic
Ising coupling between qubits (i.e., making qubit duplication) to mitigate the issues
with the limited connectivity of the Chimera graph. All these suggestions can be
considered good practices (which we did our best to follow) when trying to use the
D-Wave machine to solve real Ising or QUBO problems with higher probabilities of
outputting the best solution despite hardware and architecture limitations.

Thus, preprocessing algorithms are required to adapt the graph of a problem
to the hardware. Pure quantum approaches are limited by the number of variables
(duplication included) that can be mapped on the hardware. Larger graphs require the
development of hybrid approaches (both classical and quantum) or the reformulation of
the problem to adapt to the architecture. For example, for a 128×128 matrix size, the
number of possible coefficients Jij is 8128 in the worst-case, while the Chimera graph
which associates 128 qubits (4×4 unit cells) has only 318 couplers. The topology there-
fore accounts only for∼4% of the total number of couplings required to map a 128×128
matrix in the worst case. Although preliminary studies (e.g., [27]) have shown that it
is possible to obtain solutions close to known minimums for Q matrices with densities
higher than those permitted by the Chimera graph by eliminating some coefficients,
they have also shown that doing so isomorphically to the Chimera topology is difficult.
It follows that solving large and dense QUBO instances requires nontrivial pre and post-
processing as well as a possibly large number of invocations of the quantum annealer.

3 Solving maximum cardinalty matching on a quantum
annealer

3.1 Maximum cardinality matching and the Gn graph family

Given an (undirectered) graph G= (V,E), the maximum matching problem asks
for M⊆E such that ∀e,e′∈M2, e 6=e′ we have that e∩e′ =∅ and such that |M | is
maximum. The maximum matching problem is a well-known polynomial problem
dealt with in almost every textbook on combinatorial optimization (e.g., [19]), yet
the algorithm for solving it in general graphs, Edmond’s algorithm, is a nontrivial
masterpiece of algorithmics. Additionally, when G is bipartite i.e. when there exists
two collectively exhaustive and mutually exclusive subsets of E, A and B, such that
no edge has both its vertices in A or in B, the problem becomes a special case of
the maximum flow problem and can be dealt with several simpler algorithms [19].

It is therefore very interesting that such a seemingly powerful method as simulated
annealing can be deceived by special instances of this latter easier problem. Indeed,
in a landmark 1988 paper [25], Sasaki and Hajek, have considered the following
family of special instances of the bipartite matching problem. Let Gn denote the
(undirected) graph with vertices

⋃n
i=0A

(i)∪⋃ni=0B
(i) where each of the A(i)’s and

B(j)’s have cardinality n+1 (vertex numbering goes from 0 to n), where vertex A
(i)
j

is connected to vertex B
(i)
j and where vertex B

(i)
j is connected to all vertices in A(i+1)

(for i∈ {0,...,n} and j ∈ {0,...,n}). These graphs are clearly bipartite has neither
two vertices in

⋃n
i=0A

(i) nor two vertices in
⋃n
i=0B

(i) are connected. These graphs
therefore exhibit a sequential structure which alternates between sparsely and densely
connected subsets of vertices, as illustrated on Figure 2 for G3.
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Fig. 2. G3.

As a special case of the bipartite matching problem, the maximum cardinality
matching over Gn can be solved by any algorithm solving the former. Yet, it is even
easier as one can easily convince oneself that a maximum matching in Gn is obtained
by simply selecting all the edges connecting vertices in A(i) to vertices in B(i) (for i∈
{0,...,n}), i.e. all the edges in the sparsely connected subsets of vertices, and that is the
only way to do so. This therefore leads to a maximum matching of cardinality (n+1)2.

We hence have a straightforward special case of a polynomial problem, yet the
seminal result of Sasaki and Hajek states that the mathematical expectation of the
number of iterations required by a large class of (classical) annealing-type algorithms to
reach a maximum matching on Gn is in O(exp(n)). The Gn family therefore provides
an interesting playground to study how quantum annealing behaves on problems that
are hard for simulated annealing. This is what we do, experimentally, in the sequel.

3.2 QUBO instances

In order for our results to be fully reproducible we hereafter describe how we con-
verted instances of the maximum matching problem into instances of the Quadratric
Unconstrained Boolean Optimization (QUBO) problem which D-Wave machines
require as input. Let G=(V,E) denote the (undirected) graph for which a maximum
matching is desired.We denote xe ∈ {0,1}, for e∈E, the variable which indicates
whether e is in the matching. Hence we have to maximize

∑
e∈Exe subject to the

contraints that each vertex v is covered at most once, i.e. ∀v∈V ,∑
e∈Γ(v)

xe≤1, (5)

where Γ(v), in standard graph theory notations, denotes the set of edges which have
v as an endpoint. In order to turn this into a QUBO problem we have to move the
above constraints into the economic function, for example in maximizing,

∑
e∈E

xe−λ
∑
v∈V

1−
∑
e∈Γ(v)

xe

2

,
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which, after rearrangements, leads to the following economic function,∑
e∈E

xe+
∑
v∈V

∑
e∈Γ(v)

2λxe−
∑
v∈V

∑
e∈Γ(v)

∑
e′∈Γ(v)

λxexe′

Yet we have to reorganize a little to build a proper QUBO matrix. Let e=(v,w),
variable xe has coefficient 1 in the first term, 2λ in the second term (for v) then 2λ
again in the second term (for w) then −λ in the third term (for v and e′ =e) and
another −λ again in the third term (for w and e′ =e). Hence, the diagonal terms
of the QUBO matrix are,

Qee=1+4λ−2λ=1+2λ.

Then, if two distinct edges e and e′ share a common vertex, the product of variables
xexe′ has coefficient −λ, in the third term, when v corresponds to the vertex shared
by the two edges, and this is so twice. So, for e 6=e′,

Qee′ =

{
−2λ if e∩e′ 6=∅,

0 otherwise.

Taking λ= |E|6, for example for G1, we thus obtain an 8 variables QUBO (the
corresponding matrix is given in [28]) for which a maximum matching has cost 68,
the second best solutions has cost 53 and the worst one (which consist in selecting
all edges) has cost -56.

4 Experimental results

4.1 Concrete implementation on a D-Wave

In this section, we detail the steps that we have followed to concretely map and
solve the QUBO instances associated to Gn, n∈{1,2,3,4}, on a DW2X operated by
the University of South California. Unfortunately (yet unsurprisingly), the QUBO
matrices defined in the previous section are not directly mappable on the Chimera
interconnection topology and, thus, we need to resort to qubit duplication i.e., use
several physical qubits to represent one problem variable (or “logical qubit”). For-
tunately, the D-Wave software pipeline automates this duplication process. Yet, this
need for duplication (or equivalently the sparsity of the Chimera interconnection
topology) severely limits the size of the instances we were able to map on the device
and we had to stop at G4 which 125 variables required using 951 of the 1098 available
qubits. Table 1 provides the number of qubits required for each of our four instances.
For G1, G2 the maximum duplication is 6 qubits and for G3, G4 it is 18 qubits.

Eventually, qubit duplication leads to an expanded QUBO with more variables
and an economic function which includes an additional set of penalty constraints to
favor solutions in which qubits representing the same variable indeed end up with the
same value. More precisely, each pair of distinct qubits q and q′ (associated to the

6 As |E| is clearly an upper bound for the cost of any matching, any solution which violates
at least one of the constraints 5 cannot be optimal.
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#var. #qubits average dup. max. dup.

G1 8 16 2.0 6
G2 27 100 3.7 6
G3 64 431 6.7 18
G4 125 951 7.6 18

Table 1. Number of qubits required to handle the QUBO instances associated to G1, G2,
G3 and G4. See text.

same QUBO variable) adds a penalty term of the form ϕq(1−q′). Where the penalty
constant ϕ is (user) chosen as minus the cost of the worst possible solution to the
initial QUBO which is obtained for a vector filled with ones (i.e., a solution that selects
all edges of the graph and which therefore maximizes the highly-penalized violations
of the cardinality contraints). This therefore guarantees that a solution which violates
at least one of these consistency constraints cannot be optimal (please note that we
have switched from a maximization problem in Sect. 3.2 to a minimization problem
as required by the machine). Lastly, as qubit duplication leads to an expanded QUBO
which support graph is trivially isomorphic to the Chimera topology, it can be mapped
on the device after a renormalization of its coefficients to ensure that the diagonal
terms of Q are in [−2,2] and the others in [−1,1].

4.2 Results summary

This section reports on the experiments we have been able to perform on instances of
the previous QUBO problems. As already emphasized, due to the sparsity of the qubit
interconnection topology, our QUBO instances were not directly mappable on the
D-Wave machine and we had to resort to qubit duplications (whereby one problem
variable is represented by several qubits on the D-Wave, bound together to end up with
the same value at the end of the annealing process). This need for qubit duplication
limited us to G4 which, with 125 binary variables, already leads to a combinatorial
problem of non trivial size. Yet, to solve it, we had to mobilize about 87% of the 1098
qubits of the machine. The results below have been obtained by running 10000 times
the quantum annealer with a 20 µs annealing time (although we also experimented
with 200 and 2000 µs, which did not appear to affect the results significantly).

Additionally, in order to improve the quality of the results obtained in our ex-
periments, we used different gauges (spin-reversal transformations). The principle
of a gauge is to apply a Boolean inversion transformation to operators σi in our
Hamiltonian (in QUBO terms, after qubit duplication, this just means replacing
some variable xi by 1−yi, with yi = 1−xi and updating the final QUBO matrix
accordingly). This transformation has the particularity of not changing the optimal
solution of the problem and of limiting the effect of local biases of the qubits, as well
as machine accuracy errors [6]. Following common practices (e.g., [2]), we randomly
selected 10% of the physical qubits used as gauges for each Gn instance that we
mapped to the D-Wave. The results are given in Table 2.
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opt. best worst mean median stdev best worst mean median stdev

G1 -68 -68 -9 -66.8 -68 4.6 -68 -37 -66.8 -68 4.2
G2 -495 -495 -29 -398.2 -388 48.1 -495 -277 -400.4 -388 44.6
G3 -2064 -1810 -505 -1454.8 -1548 157.7 -1810 -911 -1496.5 -1550 111.8
G4 -6275 -5527 -2507 -4609.9 -4675 346.5 -5527 -3030 -4579.2 -4527 314.1

Table 2. Experimental results summary without (left) and with (right) majority voting to
fix qubit duplication issues on G1, G2, G3, G4. See text.
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Fig. 3. Histograms on the left represent the economic function over 10000 annealing runs on
G3 and G4. Histograms on the right represent the economic function over 10000 annealing
runs on G3 and G4 (with duplication inconsistencies fixed by majority voting).

4.3 Instances solutions

G1. This instance leads to a graph with 8 vertices, 8 edges and then (before
duplication) to a QUBO with 8 variables and 12 nonzero nondiagonal coefficients7;
16 qubits are then finally required. Over 10000 runs, the optimal solution (with a cost
of -68) was obtained 9265 times (with correction 9284 times). Interestingly, the worst

7 In the Chimera topology the diagonal coefficient are not constraining as there is no
limitation on the qubits autocouplings.
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solution obtained (with a cost of -9) violates duplication consistency as all the 6 qubits
representing variable 6 do not have the same value (4 of them are 0, so in that particular
case, rounding the solution by means of majority voting gives the optimal solution).

G2. This instance leads to a graph with 18 vertices, 27 edges and then to a QUBO
with 27 variables and 72 nonzero nondiagonal coefficients. Overall, 100 qubits are
required. Over 10000 runs the optimal solution (with cost -495) was obtained only
510 times (i.e., a 6% hitting probability). Although the best solution obtained is
optimal, the median solution (with cost -388) does not lead to a valid matching since
four vertices are covered 3 times8. As for G1, we also observe that the worst solution
(with cost -277) has duplication consistency issues. Fixing these issues by means of
majority voting results only in a marginal left shift of the average solution cost from
-398.2 to -400.4, the median being unchanged.

G3. This instance leads to a graph with 32 vertices, 64 edges and then to a QUBO
with 64 variables and 240 nonzero nondiagonal coefficients. Postduplication, 431
qubits were required (39% of the machine capacity). Over 10000 runs the optimal
solution was never obtained. For G3, the optimum value is −2064, thus the best
solution obtained (with cost -1810) is around 15% far-off (the median cost of -1548
is 25% far-off). Furthermore, neither the best nor the median solution lead to valid
matchings since in both, some vertices are covered several times. We also observe
that the worst solution has duplication consistency issues. Figure 4.2 shows the
(renormalized) histogram of the economic function as outputted by the D-Wave for
the 10000 annealing runs we performed. Additionally, since some of these solutions
are inconsistent with respect to duplication, Figure 4.2 shows the histogram of the
economic function for the solutions in which duplication inconsistencies were fixed
by majority voting (thus left shifting the average cost from -1454.8 to -1496.5 and
the median cost from -1548 to -1550 which is marginal).

G4. This instance leads to a graph with 50 vertices, 125 edges and then to a QUBO
with 125 variables and 600 nonzero nondiagonal coefficients. Postduplication, 951
qubits were required (i.e., 87% of the machine capacity). Over 10000 runs the optimal
solution was never obtained. Still, Figure 4 provides a graphic representation of the best
solutions obtained, with cost −5527 (median and worst solutions obtained respectively
had costs −4675 and −2507). For G4, the optimum value is −6075, thus the best
solution obtained is around 10% far-off (a better ratio than for G3) and median cost
25%. Furthermore, neither the best nor the median solution lead to valid matchings
since in both, some vertices are covered several times. We also observe that the worst
solution (as well as many others) has duplication consistency issues. Figure 4.2 shows
the (renormalied) histogram of the economic function as outputted by the D-Wave
for the 10000 annealing runs we performed. Additionally, since some of these solutions
are inconsistent with respect to duplication, Figure 4.2 shows the histogram of the
economic function for the solutions in which duplication inconsistencies were fixed by

8 Fixing this would require a postprocessing step to produce valid matchings. Of course
this is of no relevance for a polynomial problem, but such a postprocessing would thus
be required when operationally using a D-Wave for solving non artificial problems.
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majority voting (thus left shifting the average solution cost from -4609.9 to -4579.2
and the median cost from -4675 to -4527 which is also marginal).

Fig. 4. Graphic representation of the best solution obtained for G4. See text.

5 Discussion and perspectives

In this paper, our primary goal was to provide a first study on the behavior of an
existing quantum annealer when confronted to old combinatorial beasts known to
defeat classical annealing. At the very least, our study demonstrates that these special
instances of the maximum (bipartite) matching problem are not at all straightfor-
ward to solve on a quantum annealer and, as such, are worth being included in a
standard benchmark of problems for these emerging systems. Furthermore, as this
latter problem is polynomial (and the specific instances considered in this paper even
have straightforward optimal solutions), it allows to precisely quantify the quality
of the solutions obtained by the quantum annealer in terms of distance to optimality.

There also are a number of lessons learnt. First, the need for qubit duplication
severely limits the size of the problem which can be mapped on the device leading to
a ratio between 5 and 10 qubits for 1 problem variable. Yet, a ≈1000 qubits D-Wave
can tackle combinatorial problems with a few hundred variables, a size which is clearly
nontrivial. Also, the need to embed problem constraints (e.g., in our case, matching
constraints requiring that each vertex is covered at most once) in the economic function,
even with carefully chosen penalty constants, often lead to invalid solutions. This is
true both in terms of qubits duplication consistency issues (i.e., qubits representing
the same problem variable having different values) as well as for problem specific
constraints. This means that operationally using a quantum annealer requires one or
more postprocessing steps (e.g., solving qubit duplication inconsistencies by majority
voting), including problem-specific ones (e.g., turning invalid matchings to valid ones).

Of course, the fact that, in our experiments, the D-Wave failed to find optimal
solutions for nontrivial instance sizes, does not rule out the existence of an advantage
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of quantum annealing as implemented in D-Wave systems over classical annealing (the
existence of which, as previously emphasized, as already been established on specially
designed problems [1]). However, our results tends to rule out (or confirm) the absence
of an exponential advantage in the general case of quantum over classical annealing.

Also, since the present study takes a worst-case (instances) point of view, it does
not at all imply that D-Wave machines cannot be practically useful, and, indeed,
its capacity to anneal in a few tens of µs makes it inherently very fast compared to
software implementations of classical annealing. Stated otherwise, in the line of [23],
the present study provides additional experimental evidences that there are (even
non NP -hard) problems which are hard for both quantum and classical annealing
and that on these quantum annealing does not perform significantly better.

In terms of perspectives, it would of course be interesting to test larger instances
on D-Wave machines with more qubits. It would also be very interesting to benchmark
a device with the next generation of D-Wave qubit interconnection topology (the so-
called Pegasus topology [10]) which is significantly denser than the Chimera topology.
On the more theoretical side of things, trying to port Sasaki and Hajek proof [25]
to the framework of quantum annealing, although easier said than done, is also an
insighful perspective. Lastly, bipartite matching over the Gn graphs family also gives
an interesting playground to study or benchmark emerging classical quantum-inspired
algorithms (e.g. Simulated Quantum Annealing [9]) or annealers.
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