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Abstract. This paper introduces a new cross-platform programming
framework for developing quantum-accelerated scientific computing ap-
plications and executing them on most of today’s cloud-based quan-
tum computers and simulators. It makes use of C++ template meta-
programming techniques to implement quantum algorithms as generic,
platform-independent expressions, which get automatically synthesized
into device-specific compute kernels upon execution. Our software frame-
work supports concurrent and asynchronous execution of multiple quan-
tum kernels via a CUDA-inspired stream concept.
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1 Introduction

The development of practically usable quantum computing technologies is in full
swing involving global players like Alibaba, Atos, Google, IBM, and Microsoft
and specialists in this field such as Rigetti Computing and D-Wave. These parties
compete for technology lead and, finally, simply the raw number of qubits they
can provide through their quantum processing units (QPUs), which can be either
hardware quantum computers or quantum computer simulators running on clas-
sical high-performance computing hardware. This situation resembles the very
early days of GPU-accelerated computing when the first generation of general-
purpose programmable graphics cards became available but their productive use
in scientific applications was largely hindered by the non-availability of software
development kits (SDKs) and easy-to-use domain-specific software libraries and,
even more severe, the lack of standardized non-proprietary development envi-
ronments that would lower the dependence on a particular GPU vendor.

Today’s quantum software landscape can be grouped into three main cate-
gories: quantum SDKs [6,22,1,15,19], stand-alone quantum simulators [5,13,11],
and quantum assembly (QASM) [12,3,2] or instruction languages (QUIL) [21].
A recent overview and comparison of gate-based quantum software platforms by
LaRosa [14] shows that the field is highly fragmented making it impossible to
perform a fair quantitative performance comparison. Moreover, the tools focus
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on quantum computing experts who are mainly interested in the development of
stand-alone quantum algorithms rather than their use as computational building
blocks within a possibly hybrid classical-quantum solution procedure.

In our opinion, practical quantum computing has the highest chances to
become a game-changer for the computational sciences if it is positioned as
special-purpose accelerator technology that will become available in future het-
erogeneous compute platforms equipped with GPUs, QPUs and other emerging
accelerators like field-programmable gate arrays (FPGAs). Researchers and sci-
entific application developers will then have the free choice between, say, running
the HHL-algorithm [9] on a QPU accelerator and adopting one of the many clas-
sical numerical methods for solving linear systems of equations on CPUs, GPUs
or FPAGs depending on problem sizes and matrix characteristics. In [17] we
have outlined a conceptual framework for QPU-accelerated automated design
optimization that builds on the HHL-solver as main computational driver.

We believe that end-users from the community of computational science
and engineering would be interested in giving QPU-accelerated computing a try
with the right software tools at hand. With this vision in mind, we created the
|Lib〉-project [16] (pronounced Lib-Ket), which is a cross-platform programming
framework that aims at making QPU-accelerated computing as easily accessible
for the masses as GPU computing is today through frameworks like CUDA [18].

The remainder of this paper is structured as follows: Section 2 discusses
the design principles underlying the |Lib〉 framework, which is introduced in
Section 3. Implementation details are discussed in Section 4 followed by a brief
demonstration of |Lib〉’s capabilities in Section 5. Section 6 completes the paper
with a conclusion and an outlook on functionality planned for future releases.

2 Design principles

To achieve our set-out vision, |Lib〉 is designed based on the following principles:

– QPU-accelerated computing: Quantum computers are used as special-
purpose accelerator devices within a heterogeneous computer system that
can host multiple accelerator technologies (GPUs, FPGAs, ...) side by side.

– Concurrent task offloading: Quantum algorithms are implemented as
compute kernels describing concurrent tasks launched on QPU devices.

– Single-source quantum-classical programming: Classical and quantum
code is implemented in a single source file, which is compiled into one hybrid
binary executable executed on the host computer, who offloads certain parts
of the computation to the accelerator devices.

– Write once run anywhere: Quantum algorithms are implemented once
and for all as generic expressions, which can be executed on current and
future QPU-device types. Support for a particular type is realized by a small
set of conversion functions between |Lib〉’s unified interface layer and the
device-specific low-level application programming interface (API).

– Standing on the shoulders of giants: |Lib〉 is developed on top of existing
vendor-specific tools and libraries to exploit their full optimization potential.
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– Seamless integration into status quo: |Lib〉 does not create new stan-
dards that need to be implemented by others but utilizes the available tools.

The first three principles suggest a conceptual design in the spirit of CUDA [18]
or OpenCL [23], which are de-facto standards for GPU computing. To underline
the postulated similarity between QPU- and GPU-accelerated computing and
to make quantum computing more accessible to experts in classical accelerator
technologies, we will utilize a GPU-inspired terminology such as host (the CPU
and its memory) and device (the QPU and its memory), kernels and streams, as
well as asynchronous execution and synchronization throughout this paper.

The write-once-run-anywhere principle has led us to adopt template meta-
programming techniques to implement quantum algorithms as generic expres-
sions, whose evaluation for a particular QPU type is delayed until the program
flow has reached the point, where its actual value is really needed. This approach
is also known as lazy evaluation or call-by-need principle in programming lan-
guage theory and is used successfully in linear algebra libraries [4,7,24,10,8,20].

The last two principles are mainly based on pragmatic considerations. Firstly,
introducing yet another approach to quantum programming incompatible to the
existing ones would escalate the fragmentation of the quantum software land-
scape instead of improving the situation for the potential end-users. Moreover,
the chosen approach allows for exploiting the expertise and manpower of scien-
tists worldwide working on different aspects of quantum computing and their
expert knowledge of non-disclosed technical details of QPU devices to create an
open software ecosystem that immediately benefits from any improvement in one
of the underling core components. Finally, most human beings are more open to
emerging technologies if they come as evolutionary increments of the status quo
instead of radical paradigm shifts that call for dumping all previous work.

3 The |Lib〉 programming framework

The open-source, cross-platform |Lib〉 programming framework is designed as
header-only C++14 quantum expression template library1 with minimal external
dependencies, namely, an embedded Python interpreter and, possibly, header
and/or library files from the respective quantum backends. It can be downloaded
free-of-charge from the GitLab repository https://gitlab.com/mmoelle1/LibKet,
which provides documentation in form of a wiki and an API documentation and
several tutorial examples to get started. In addition to the primary C++ API, C
and Python APIs are being implemented, which adopt just-in-time compilation
techniques to exploit the full potential of C++ template meta-programming
internally and expose |Lib〉’s functionality in C and Python-style to the outside.

A comprehensive overview of the |Lib〉 programming framework is given in
Figure 1. It consists of three layers that provide components for application

1 In the Dutch language, the word quantum is spelled kwantum. Hence, the name |Lib〉
(pronounced Lib-Ket) is an allusion to the bra-ket notation introduced in 1939 by
Paul Dirac that is widely used for expressing quantum algorithms.
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programmers (high-level (HL) API), quantum algorithm developers (mid-level
(ML) API), and QPU providers (low-level (LL) API), respectively.

HL Q-acceleration SDKs (C/C++, Python)

ML Q-expressions: algorithms and circuits

LL Q-abstraction: filters and gates
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Fig. 1. Overview of the cross-platform |Lib〉 programming framework.

Before we describe the different software layers in more detail we give a
short example on |Lib〉’s general usage. Consider the C++ code snippet given
in Listing 1 which puts the first and third qubit of a quantum register into the
maximally entangled first Bell state, where A is qubit 1 and B is qubit 3:

∣∣Φ+
〉

=
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) =
|00〉AB + |11〉AB√

2
. (1)

The easiest way to achieve this is to start from the computational basis |0〉 and
apply a Hadamard gate to one qubit followed by a controlled-NOT (CNOT) gate

|0〉A H •

|0〉B

This is realized by the quantum expression that is constructed in lines 8–9 of the
code snippet, thereby demonstrating two of |Lib〉’s most essential components,
namely, Quantum Filters and Quantum Gates, which are implemented in the
namespaces LibKet::filters and LibKet::gates, respectively.

As the name suggests, filters select a subset of the quantum register; see
Section 4.1 for more details. Here, sel<1>() selects the first qubit for applying
the Hadamard gate. This sub-expression serves as first argument, the control, to
the binary CNOT gate, whose action is applied to the third qubit (sel<3>(...)).
The init() gate puts all qubits of the quantum register into the computational
basis |0〉. More information on gates is given in Section 4.2. It should be noted
that the resulting quantum expression is generic, that is, object expr holds an
abstract syntax tree (AST) representation of the Bell state creation algorithm
that can be synthesized to any of |Lib〉’s quantum backends. For the cloud-
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1 #include <LibKet.hpp>
2 using namespace LibKet;
3 using namespace LibKet::filters;
4 using namespace LibKet::gates;
5

6 int main()
7 { // Create quantum expression for Bell state between first and third qubit
8 auto expr = cnot( h( sel<1>() ),
9 sel<3>( init() ) );

10

11 // OPTIONAL: Print quantum expression, cf. Listing 2 (left)
12 show<10>(expr);
13

14 // Create Quantum-Inspire (QI) device with 6 qubits in total
15 QDevice<QDeviceType::qi_26_simulator, 6> device;
16

17 // Populate quantum kernel with quantum expression
18 device(expr);
19

20 // OPTIONAL: Print quantum kernel code, cf. Listing 2 (top-right)
21 std::cout << device << std::endl;
22

23 // Evaluate quantum kernel on Quantum-Inspire platform in the cloud
24 try { utils::json result = device.eval();
25 std::cout << device.get<QResultType::histogram>(result) << std::endl;
26 } catch (const std::exception &e) { std::cerr << e.what() << std::endl; }
27 return 0;
28 }

Listing 1: Creation of the first Bell state |Φ+〉 using |Lib〉’s C++ API.

based Quantum-Inspire (QI) platform2, this is accomplished by lines 15 and 18.
In short, line 15 creates a device object that holds 6 qubits and specializes
the generic quantum expression expr into common QASM code v1.0 [12], the
programming language for the QI backend. The internally stored quantum kernel
code as well as the quantum expression expr can be printed as illustrated in lines
21 and 12, respectively; see Listing 2. The probability amplitudes resulting from
1024 runs of the quantum algorithm are presented in the same diagram.

The actual execution of the quantum kernel is triggered in line 24, which
starts an embedded Python interpreter as sub-process to communicate with the
cloud-based quantum simulator platform via the vendor-specific QI-SDK3. This
call performs blocking execution and returns a JSON object upon successful
completion, from which the result can be retrieved. More details on how to
customize the execution process, run multiple quantum kernels concurrently and
perform non-blocking asynchronous kernel execution are given in Section 4.5.

2 https://www.quantum-inspire.com designed and built by the Dutch research center
for Quantum Computing and Quantum Internet QuTech (https://qutech.nl). The
basic user account only allows utilization of the 26-qubit version of the QI simulator.

3 https://github.com/QuTech-Delft/quantuminspire
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1 BinaryQGate
2 | gate = QCNOT
3 | filter = QFilterSelect [ 1 3 ]
4 | expr0 = UnaryQGate
5 | | gate = QHadamard
6 | | filter = QFilterSelect [ 1 ]
7 | | expr = QFilterSelect [ 1 ]
8 | expr1 = UnaryQGate
9 | | gate = QInit

10 | | filter = QFilterSelect [ 3 ]
11 | | expr = QFilter

1 version 1.0
2 qubits 6
3 h q[1]
4 cnot q[1], q[3]

000000 001010
0

0.2

0.4

0.6

0.8

1

0.49 0.52

Listing 2: AST of quantum expression (left), resulting QASM code (right-top),
and probability amplitudes computed by QuTech’s QI simulator (right-bottom).

4 Implementation details

In what follows, we address the individual |Lib〉 components and shed some light
on their internal realization and ways to extend them to support new backends.

4.1 Quantum filter chains

As stated before, |Lib〉’s quantum filters are meant to select subsets of qubits
from the global quantum register to which the following quantum operation is
being applied, which is comparable to matrix views in the Eigen library [8].

Since today’s and near-future quantum processors have a very limited number
of qubits, typically, between 5-50, we consider the assumption of a single global
quantum register and the absence of dynamic memory (de)allocation capabilities
most practical. Moreover, quantum computing follows the in-memory computing
paradigm, that is, data is stored and manipulated at fixed locations in memory.
This is in contrast to the classical von-Neuman computer architecture, where
data is transported between the randomly accessible main memory (RAM) and
the central processing unit (CPU), the latter performing the computations.

Table 1 lists all quantum filters supported by |Lib〉. All filtering operations
are applied relative to the given input, which makes it possible combine mul-
tiple filters to so-called filter chains. Consider, for instance, the filter chain
qubit<2>(shift<2>(range<2,5>())), which selects the 6-th qubit from the
global register, more precisely, the pre-selected set of qubits passed as input.

Thanks to the use of C++ template meta-programming techniques, quantum
filters are evaluated at compile time and, hence, even complex filter chains cause
no overhead costs at run time. With the aid of gototag<Tag>() it is possible
to restore a previously stored filter configuration that has been tagged by the
tag<Tag>() function. It is generally recommended to safeguard quantum expres-
sions that should be used as building blocks in larger algorithms by tag-gototag

pairs to prevent side effects from internal manipulation of the qubit selection.
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Class Function Example usage Explanation

QFilterSelectAll all all(...) selects all qubits
QFilterSelect sel sel<0,3>(...) selects q0 and q3
QFilterShift shift shift<2>(...) shifts qubit selection by 2
QFilterSelectRange range range<2,5>(...) selects q2, q3, q4, q5
QRegister qureg qureg<2,3>(...) selects q2, q3, q4
QBit qubit qubit<2> selects q2
QFilterTag tag tag<42>(...) assigns tagID #42 to current selection
QFilterGotoTag gototag gototag<42>(...) restores selection with tagID #42

Table 1. |Lib〉’s quantum filters.

All components listed in Table 1 come in two flavours, a class whose instanti-
ated objects span the abstract syntax tree (AST) of the expression and a creator
function that returns an object of the respective type. Classes are required to
implement the operator() for all expressions that should be supported; see
Listing 3 for an example. Here and below the universal-reference variant, i.e.
operator()(QFilterSelect<_ids...>&&) is omitted due to space limitations
but it is implemented for all types to support C++11 move semantics.

Though not foreseen in the current implementation, the just described quan-
tum filter mechanism can be easily extended to support rudimentary stack
memory based on a reserved region of the global quantum register. Together
with |Lib〉’s just-in-time (JIT) capabilities (see below) even dynamic memory
(de)allocation would be possible with the adopted concept once a sufficiently
large number of qubits and circuit depths are reliably supported in quantum
hardware to make this feature relevant for practical applications.

4.2 Quantum gates

|Lib〉’s implementation of quantum gates follows the same programming paradigm
(class with overloaded operator() and gate-creator function) as described above.
Additionally, the class provides an overloaded apply(QData<...>& data) method,
which is specialized for each supported backend type. Listing 4 illustrates how
the application of the Hadamard gate appends QASM code to the data’s inter-
nal quantum kernel for the cQASMv1 backend; see lines 4–13. The static range()

method is one of several filter utility functions that returns the actual list of
selected qubits based on data’s concrete register size at compile time.

Invoking the Hadamard function (lines 16–19) returns a UnaryQGate object
(see below) that stores the current sub-expression, the gate to be applied next,
and the filter selection internally. The specialized overload in lines 21–25 ensures
that the immediate double-application of the Hadamard gate gets eliminated.
|Lib〉 makes extensive use of this type of rule-based optimization to eliminate
gate-level expressions of the form t(tdag(...)) as well as entire quantum cir-
cuits followed immediately by their inverse, e.g., qft(qftdag(...)).

To orchestrate the interplay of expressions, filters and gates, |Lib〉 imple-
ments unary, binary, and ternary gate containers that hold the aforementioned

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_35

https://dx.doi.org/10.1007/978-3-030-50433-5_35
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1 template<long int _offset>
2 class QFilterShift : public QFilter
3 { public:
4 ...
5 template<std::size_t... _ids>
6 inline constexpr auto operator()(const QFilterSelect<_ids...>&) const noexcept
7 { return QFilterSelect<_offset + _ids...>{}; }
8

9 template<std::size_t... _ids>
10 inline constexpr auto operator()(QFilterSelect<_ids...>&&) const noexcept
11 { return QFilterSelect<_offset + _ids...>{}; }
12 ...
13 };
14

15 template<long int _offset>
16 inline static constexpr auto shift()
17 { return QFilterShift<_offset>{}; }
18

19 template<long int _offset, typename Expr>
20 inline static constexpr auto shift(Expr expr)
21 -> typename std::enable_if<std::is_base_of<QBase, typename std::decay<Expr>::type>::value,
22 decltype(QFilterShift<_offset>{}(expr))>::type
23 { return QFilterShift<_offset>{}(expr); }

Listing 3: Example of an overloaded operator() for the QFilterShift class.

information as types except for the actual sub-expression which is stored by-
value. Instantiations of these nearly stateless classes span the quantum expres-
sion’s AST (see Listing 2 (left)), whereby an overloaded operator() method
dispatches between the different variants to apply quantum gates to expressions.

Next to the set of quantum gates that are typically supported by most QPU
backends, |Lib〉 comes with a special hook-gate that can be used to implement
common quantum building blocks, e.g., the first Bell state from Listing 1

1 QFunctor_alias( Bell, cnot(h(sel<1>()),sel<3>(init())) );
2 auto expr = hook<Bell>();

4.3 Quantum circuit

The main advantage of |Lib〉’s generic quantum-expression approach becomes
visible for circuits, which represent compile-time parametrizable algorithms like
the well-known Quantum Fourier transform, invoked via the qft() function. The
implementation follows the same programming paradigms (class with overloaded
operator() and corresponding creator function with rule-based optimization)
but, typically, with a generic apply() method, whose synthetization to device-
specific instructions is handled by the gates. Our approach makes it, however,
possible to also specialize full circuits for selected QPU backends, e.g., to use
Qiskit’s [1] internal realization of the HHL-solver [9] for the IBM Q platform.
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1 class QHadamard : public QGate
2 { public:
3 ...
4 // Apply() - overload for common QASM v1.0
5 template<std::size_t _qubits, QBackendType _qbackend, typename _filter>
6 inline static typename std::enable_if<_qbackend == QBackendType::cQASMv1,
7 QData<_qubits, QBackendType::cQASMv1>>::type&
8 apply(QData<_qubits, QBackendType::cQASMv1>& data) noexcept
9 { std::string expr = "h q[";

10 for (auto i : _filter::range(data))
11 expr += utils::to_string(i) + (i != *(_filter::range(data).end() - 1) ? "," : "]\n");
12 data.append_kernel(expr);
13 return data; }
14 ... };
15

16 // h() - constant reference
17 template<typename _expr>
18 inline constexpr auto h(const _expr& expr) noexcept
19 { return UnaryQGate<_expr, QHadamard, typename filters::getFilter<_expr>::type>(expr); }
20

21 // h() - constant reference with rule-based optimization
22 template<typename _expr, typename _filter>
23 inline constexpr auto h(const UnaryQGate<_expr, QHadamard,
24 typename filters::getFilter<_expr>::type>& expr) noexcept
25 { return expr.expr; }

Listing 4: Example of an overloaded apply() method for the QHadamard class.

To ease the development of generic quantum circuits, |Lib〉 implements a
static for-loop that accepts the body as functor being passed as template argu-
ment together with loop bounds and step size as illustrated in Listing 5.

Moreover, |Lib〉 comes with just-in-time (JIT) compilation capabilities mak-
ing it possible to generate quantum expressions dynamically from user input.
Quantum expressions that are given in string format are JIT compiled into dy-
namically loaded libraries that are cached across multiple program runs.

1 template<long int start, long int end, long int step, long int index>
2 struct body {
3 template <typename _expr>
4 static constexpr auto func(_expr&& expr) noexcept
5 {
6 // Apply controlled phase shift on the odd qubits q[1], q[3], ... by the angle
7 // theta = pi/2^k, k = 1, 3, ... controlled by the values of q[0], q[2], ...
8 return crk<index>(sel<index-1>(all()),
9 sel<index >(all(expr)));

10 }
11 };
12 auto expr = static_for<1,5,2,body>();

Listing 5: Example of a static for-loop.
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4.4 Quantum devices

The synthetization of generic quantum expressions into device-dependent quan-
tum instructions that can be executed on a specific QPU is realized by the many
specializations of the QDevice class, which brings together a particular backend
type with device-specific details, such as credentials and parameters for connect-
ing to cloud-based services, the maximum number of qubits, the native gate set,
and the lattice structure, which might require internal optimization passes.

Lines 15 and 18 of Listing 1 create a device instance for running the quantum
algorithm remotely on the Quantum-Inspire simulator platform and populate its
internal quantum kernel with the expression given by Eq. (1) for creating the first
Bell state, respectively. Next to providing methods for executing the kernel as
described in the next section, some device types support extra functionality such
as the transpilation of the generic quantum circuit into device-optimized quan-
tum instructions and the export of the resulting circuit to LATEX. The quantum
circuits depicted in Figure 2 were produced by the following code snippet

1 QDevice<QDeviceType::ibmq_london_simulator, 2> ibmq;
2 QDevice<QDeviceType::cirq_foxtail_simulator, 2> cirq;
3 ibmq(expr); std::cout << ibmq.to_latex() << std::endl;
4 cirq(expr); std::cout << cirq.to_latex() << std::endl;

We consider this functionality helpful for getting a better understanding of the
actual circuit – possibly with extra swap gates added to enable two-qubit opera-
tions on non-neighboring qubits – that is executed on the device rather than its
idealized textbook version. The transpilation step can be bypassed by choosing
generic simulators such as ibmq_qasm_simulator and cirq_simulator.

(a) Quantum circuit transpiled for IBM’s 5-qubit London chip

q0 7→ 0 : |0〉 U2 (0, π) •
q1 7→ 1 : |0〉

ancilla0 7→ 2 : |0〉
ancilla1 7→ 3 : |0〉
ancilla2 7→ 4 : |0〉

c0 : 0

c1 : 0

(b) Quantum circuit transpiled for Google’s 22-qubit Foxtail chip

(0, 0) PhX(0.5)0.5 •

(1, 0) PhX(-0.5)0.5 • PhX(-0.5)0.5

Fig. 2. Quantum circuits for producing the first Bell state, cf. Eq. (1), optimized for
(a) IBM’s 5-qubit London chip and (b) Google’s 22-qubit Foxtail chip.
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4.5 Quantum kernel execution

Once the generic expression has been synthesized into device-dependent instruc-
tions it can be executed on the respective QPU device. As explained before, our
aim is to ease the transition from GPU programming to QPU-accelerated com-
puting. |Lib〉 therefore adopts a CUDA-inspired stream-based execution model,
which enables concurrent quantum kernel execution on multiple QPU devices.

The device’s eval() method called in line 24 of Listing 1 accepts a so-called
QStream<QJobType::Python> object as optional parameter and so do the meth-
ods execute() and execute_async() as shown in the following code snippet

1 QStream<QJobType::Python> stream;
2 auto job = ibmq.execute_async(1024, "", "", "", stream);
3 while(!job->query()) { /* Do other stuff here */ }
4 utils::json result = job->get();

While the eval() method waits until the execution has finished and returns
the result as JSON object or throws an exception upon failure, the execute()

method returns a pointer to a job object QJob<QJobType::Python> that sup-
ports query(), wait(), and get() operations. Its non-blocking counterpart
execute_async() can be used to hide the latency stemming from the execution
of the quantum kernel on remote QPUs and the overhead costs due to invoking
the embedded Python interpreter with other computations on the CPU or other
accelerator devices. It is even possible to execute multiple quantum algorithms
concurrently on multiple QPUs by launching their kernels in different streams.

Use of an embedded Python interpreter as interface between classical host
code and quantum kernels has the advantage that the full potential of vendor-
specific SDKs can be exploited to perform circuit optimization and other pre- and
post-processing tasks including possible validity checks on the host side before
communicating the quantum kernel to the remote QPU device for execution.

The three unused parameters in line 2 of the above code snippet can be used
to inject user-defined code preceding the import of Python modules and right
before and after the execution of the quantum circuit, respectively. A possible
application of this feature is the internal post-processing of measurement re-
sults with the functionality provided by a particular SDK4, e.g., to visualize the
measurement outcome as histogram and write it to a graphics file

1 auto job = ibmq.execute( /* number of shots */ 1024,
2 /* script to be run before initialization */
3 "\tfrom qiskit.visualization import plot_histogram\n",
4 /* script to be run before kernel execution */
5 "",
6 /* script to be run after kernel execution */
7 "\tplot_histogram(result.get_counts()).savefig('histogram.pdf')\n");

While retrieving the outcome of a quantum experiment as JSON object is
most flexible it requires backend-specific post-processing steps to extract the

4 Generation of the history plot by the ibmq device requires the packages qiskit and
matplotlib to be installed and accessible by the embedded Python interpreter.
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desired information. For widely used data such as job identifier and duration,
histogram of results, and the state with highest likelihood, each QDevice class
specialization provides functionality to extract information from the JSON ob-
ject and convert it into |Lib〉-specific or intrinsic C++ types, e.g.

1 auto duration = ibmq.get<QResultType::duration >(result);
2 auto histogram = ibmq.get<QResultType::histogram>(result);

Let us finally remark that |Lib〉 also supports the native execution of quan-
tum kernels written in C++, e.g., for quantum simulators like QX [13] and
QuEST [11], using the multithreading capabilities that come with C++11.

5 Demonstration

|Lib〉 is a rather young project that is under continuous development. The correct
functioning of the core framework described in this paper has been verified by
extensive unit tests. A comprehensive presentation of computational examples is
beyond the scope of this paper and not possible within the given page limit. We
therefore restrict ourselves to a single test case, namely, the quantum expression
qft(init()) and apply it to a quantum register consisting of 1-12 qubits as a
first benchmark to measure the performance of different QPU backends.

Figure 3 depicts the run times measured for the following QPU backends:
Cirq [6] (v0.7.0, generic simulator), pyQuil [21] (v2.19.0, 9q-square-simulator),
QI [13] (v1.1.0), Qiskit [1] (v.0.17.0, qasm-simulator), and QuEST [11] (v3.1.1,
CPU-OpenMP simulator). All runs were performed with 1024 shots on a dual-
socket Intel Xeon E5-2687W Sandy Bridge EP system with 2x8 cores running
at 3.1 GHz with 128 GB of DDR3-1600 memory except for the QI runs, which
were executed on a remote system with unknown hardware specification.

Cirq QI QiskitpyQuil QuEST

10−5

10−4

10−3

10−2

R
u
n

ti
m

e
fo

r
si

n
g
le

sh
o
t

[s
ec

]

Fig. 3. Run times for the Quantum Fourier transformation executed with 1-12 qubits
(per group from left to right) on five different QPU simulator backends.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_35

https://dx.doi.org/10.1007/978-3-030-50433-5_35


|Lib〉: A cross-platform quantum programming framework 13

For some backends, such as pyQuil and Qiskit, increasing the number of
qubits and the circuit depth results in significantly longer run times, while others
are less sensitive to these parameters. It should be noted that the run times
measured for the pyQuil backend include the transformation of the quantum
circuit into executable code by the Quil Compiler, which might explain the
higher values. The QuEST backend does not allow repeated evaluation of the
circuit so that the measured run time might be dominated by overhead costs.

We would like to stress that the presented results are preliminary and should
not be considered a comprehensive performance analysis of the QPU backends
under consideration. Systematic benchmarking of many more simulator and
hardware backends for quantum circuits of different depth and level of entangle-
ment is underway and will be presented in a forthcoming publication.

6 Conclusion

In this paper we have introduced our novel cross-platform programming frame-
work |Lib〉, which aims at facilitating the use of quantum computers (and their
simulators) for accelerating the solution of scientific problems. Primarily ad-
dressing today’s GPU programmers as early adopters, our framework is largely
inspired by Nvidia’s CUDA toolkit and offers a similar programming model based
on quantum kernels that can be executed concurrently using multiple streams.
As a unique feature, |Lib〉 does not focus on one particular QPU backend but
adopts C++ template meta-programming techniques to enable the development
of quantum algorithms as generic expressions that can be synthesized to various
QPU-backend types, following the write-once-run-anywhere principle.

Ongoing developments focus on the extension of the algorithm library (mid-
level API; cf. Figure 1), especially, variants of the HHL-solver [9] and its com-
putational ingredients such as eigenvalue estimation. Another line of research
work addresses the implementation of basic arithmetic routines, which are also
used inside the HHL-algorithm to invert eigenvalues. Finally, the extension of
the low-level API to support additional QPU backends and to reduce the com-
putational overhead incurred by the use of the embedded Python interpreter
and the conversion from JSON objects to C++ types is a permanent quest.

Despite the early development stage of the |Lib〉 framework, we would like to
encourage the scientific computing community to report their experience with it
and express feature requests for forthcoming releases to the authors.
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