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Abstract. This paper presents a Python library to simulate different
kinds of quantum finite automata on a classical computer. The library
also provides tools for language generation and visual representation of
simulation results. We have conducted experiments to measure time com-
plexity of the simulation in function of automaton size, alphabet size and
word length. Examples of library usage are also provided.
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1 Introduction

Finite automata are real models of computers, which have only limited amount
of memory. Finite automata are also interesting models themselves, due to their
simplicity but at the same time rich structure and interesting properties [7]. Since
introduction of finite automata in 1959 by Rabin and Scott [13], the theme have
been quite well recognized and approached from various aspects. Connections
with different domains, including algebra and logics, have also been established.

The picture for theory of quantum automata and languages generated by
them is less clear, and various important problems remain open [2,11]. Task
of quantum finite automata is to recognise quantum languages. Studying these
languages is useful in establishing the expressivity and computational power of
quantum machines in general. However, such devices are not yet available and
simulators have to be used instead. Because of that, we developed a library writ-
ten in Python, running on a classical computer and providing implementation
of several types of quantum finite automata.

This paper presents the library for simulating quantum finite automata. The
library can help in exploring hypotheses on unknown relations between clas-
ses of quantum finite automata and quantum languages by providing evidence
about accepting probabilities of particular words and sets of words. The library
could also be useful for teaching students courses on finite automata in quantum
context.
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2 Related Work

Simulation of classical finite automata is a mature area. A comprehensive survey
of simulators of classical finite automata is given in [5] and JFLAP emerges as
the most mature and popular tool [14].

On the other hand, there have been many libraries focused on bringing quan-
tum computation onto the classical architectures, perhaps the best known being
Q+#"'. The low-level libraries include Quirk?, with graphical interface available
through a web browser, or Quantum-++-3, a high performance library written in
C++11. The high-level libraries provide similar functionalities but focus more
on code expressiveness. They often enable using real life simulators or quantum
computers as their back-ends. Examples of such libraries include ProjectQ?,
Qiskit® and the aforementioned Q.

However, we have not found a solution focused solely on quantum finite
automata. The available pieces of software were either too low-level, focusing
on quantum gates and quantum phenomena in micro-scale, or too abstract,
providing interfaces for developing quantum algorithms in general, but without
tools dedicated specifically for quantum automata.

3 Quantum Finite Automata

In this work we consider only one-way finite automata, i.e., in each step of a
simulation the head reads one symbol from the tape and moves forward. Bac-
kward or empty moves of the head are forbidden. The paper defines all automata
in a uniform framework, which means that for classical finite automata notation
differs slightly from one adopted widely in literature.

Preliminaries. An input alphabet X' is a finite set of symbols. The working alp-
habet I" equals X' U{$}, where $§ denotes a special end-marker symbol outside the
input alphabet. Set @ is a finite set of states and q; € @ is a distinguished state,
called the initial state. Each classical state ¢ € @ has a quantum counterpart
|g). A pure quantum state |¢)) of quantum automaton is defined as

a7 n
py=1":1= Z%‘\%? ; (1)
o, i=1
where a1,...,a, € Cand Y., |a;|* = 1.

Vector 1 denotes column vector consisting of || ones. Matrix I denotes
square |Q| x |@| matrix containing ones on a diagonal and zeros elsewhere.

! https://docs.microsoft.com/en-us/quantum/language
2 https://algassert.com/quirk

3 https://github.com/vsoftco/qpp

4 https://github.com/ProjectQ-Framework/ProjectQ

® https://qiskit.org/
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Definition 1. Nondeterministic Finite Automaton (NFA) [13] is a 5-tuple A =
(X,Q, 41, Qaces {Ms}res), where Qace € Q is a set of accepting states, and
for all 0 € X transition matrix M, satisfies M, € {0,1}QXIQI If transition
matrices M, additionally satisfy for all ¢ € X

M,1=1, (2)

then automaton is Deterministic Finite Automaton (DFA). Classes of NFAs and
DFAs are equivalent as they recognize the same class of languages, i.e., class of
regular languages.

Definition 2. Probabilistic Finite Automaton (PFA) [12] is a 5-tuple A =
(Q, 2,1, F,{M,},cx), where vector I is a stochastic column vector describing
initial distribution of states, i.e., I € [0,1]/9/*1 and Z[ﬁ'l I; = 1. Vector F'is a
column vector of size |@| with i-th entry equal 1 if ¢; is a accepting state and 0
otherwise. For all 0 € X transition matrix M, is Markovian, i.e., its rows define
probability distribution. Thus, for all o € ¥ we have M, € [0,1]!?/*IQl and M,
satisfies (2).

Definition 3. Measure-Once Quantum Finite Automaton (MO-QFA) [9] is a
5-tuple A = (@, X, qr, Qacc, {Us }oex), Where Qaecc C @ is a set of accepting
states. Transition matrices {U, },cx satisfy U, € ClQIXIQl for all ¢ € X and are
unitary, i.e., for all o € X we have

UlU, =U,Ul = 1Iq . (3)

The set of accepting states corresponds to a projective operator:

Pacc = Z |q><Q| : (4)

7€ Qacc

Definition 4. Measure-Many Quantum Finite Automaton (MM-QFA) [8] is a
6-tuple A = (Q, X, g1, Qacc; Qrej, {Us }oer), where Qrej C @ is a set of rejecting
states, and U, € CQXIQl are transition matrices satisfying (3).

The automaton partitions set Q) into Q = Qacc U Qrej U Qnon, Where Qnon is
a set of nonhalting (neutral) states. Sets Qacc, Qrej and Qnon should be pairwise
disjoint.

In a manner analogous to (4), projective operators Pej and P,on are defined

as follows:
Prej = Z |Q><q| ’ (5)
qEQ rej
Pnon = Z |Q><Q‘ . (6)
q€Qnon

Definition 5. General Quantum Finite Automaton (GQFA) [10] is a 6-tuple
A= (Q, X, q1, Qaccs Qrejs {Us }ocr). The model is similar to MM-QFA, but the

transition matrices U, are more general — they are a composition of a finite

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-50433-5_34 |



https://dx.doi.org/10.1007/978-3-030-50433-5_34

sequence of applications of unitary transformations followed by orthogonal me-
asurements. Note, that there is a more general definition of GQFA, provided by
Hirvensalo [6], but it is not considered in our work.

For a broader description of these and other types of quantum automata we
refer a reader to [3,7,11].

3.1 Language Acceptance Modes

Let P4(x) denote probability of accepting word x € X* by automaton .4 and let
A be a real number such that A € [0,1). Given & = 07 ... 0y, probability P4(z)
is computed as || PaccUs, - - - Uy, |qo)||? for MO-QFA, but for MM-QFA is more
complicated.

There exist several modes of language acceptance:

— with a cut-point X € [0,1), if for all z € L, we have Pa(x) > A and for all
x ¢ L, we have Pa(z) < X. This mode of acceptance is also called with an
unbounded error.

— with an isolated cut-point X € [0,1), if there exists ¢ > 0, such, that for all
x € L, we have Pa(x) > A+ ¢ and for all ¢ L, we have Pa(z) < A —e¢.

— with a bounded error € € [0, %), if for all « € L, we have Pa(z) > 1 — ¢ and
for all z ¢ L, we have Ps(z) < e. This mode of acceptance is equivalent
to acceptance with an isolated cut-point, where cut-point A = % is isolated
with value % —€.

— with a positive one-sided unbounded error if for all x € L, we have P4(x) > 0.

— with a negative one-sided unbounded error if for all x € L, we have P4(z) =
1.

— Monte Carlo acceptance [4], if there exists € € (0, 1] such, that for all z € L,
we have Pg(z) = 1 and for all z ¢ L, we have P4(z) < e. Such A is called
Monte Carlo QFA for L.

Acceptance with a cut-point and acceptance with an isolated cut-point are
the most import modes of language acceptance, and are implemented in our
library.

4 Library

The simulation library® provides its interface through a number of classes, each
representing one of the automata models. It also uses modules LanguageGenera-
tor, LanguageChecker and Plotter. Figure 1 presents main components of the
simulation library, which offers the following functionality.

Automaton definition. A new automaton is constructed with an object belonging
to a class representing implemented automaton (one of PFA, MO_1QFA, MM_1QFA,
GQFA) and data defining chosen automaton, such as the alphabet, transition
matrices and matrices of projective measurements are passed. A user has to
assure unitarity of transition matrices.

S https://github.com/gustawlippa/QFA
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Fig. 1: Model of Quantum Finite Automata library

Generation of language samples. The LanguageGenerator module is responsible
for this functionality. For finite languages, a user can provide a list of words
which entirely define the language. To account for infinite regular languages,
a language can be defined with a regular expression. Generation of samples of
stochastic languages is not implemented in the current version of the library.

Automaton simulation. The LanguageChecker module of the library enables
simulation of automaton run on a single word or on a random or user-defined
sample of defined language. A simulation is determined by a transition matrix
and one simulation of the automaton on a given word is sufficient to obtain
all information about word acceptance or rejection. Thus, there is no need to
repeat a simulation since transition matrices are stationary. Simulation results
are returned with respect to two modes of language acceptance: with a cut-point
and with an isolated cut-point.

Results visualisation. The library has a dedicated Plotter module to plot histo-
grams of counts of words accepted and words rejected with a given probability.
A cut-point and an isolation interval can also be shown.
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5 Simulations and Results

There exist two ways of simulating systems of a probabilistic nature. One is
the strong simulation, which requires calculating the exact probability of an
outcome. The other is the weak simulation, which is based on sampling from the
output distribution in order to approximate the probability. The latter is the
only tractable way of simulating quantum computers because of the complexity
of the task. However, our library performs a strong simulation, which is adequate
because of the simpler nature of quantum automata.

5.1 Experiments

We have performed a handful of experiments to determine the time complexity
of the simulations depending on various parameters.

Computational complezxity. During our research we concluded that the most
important factor in time complexity of simulation is the number of automaton
states. In a true QFA, the relation between the number of states and computation
time would be linear. In our simulator the time complexity is exponential, which
agrees with the result proven in [3]. Figure 2 shows simulation time of GQFA
with the growing number of its states. The results are quite close to the values
predicted theoretically. Simulation time is reported as the arithmetic mean from
5 simulations for each automaton size.

800 A

600

400 -

200 -

Execution time (1 word, length 1000)

T T T T T
0 200 400 600 800 1000
Automaton size

Fig. 2: Simulation time of GQFA in function of number of states
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Alphabet size. Figure 3 presents simulation time of GQFA as a function of size
of alphabet, over which automaton is defined. For each alphabet size, simulation
time was measured as the arithmetic mean over 500 random words. It should
be noted that the scale in ordinate axis (y-axis) does not start from 0. Figure 3
shows that there is no dependence between the size of the alphabet and the time
of simulation. That is because the change of alphabet size influences only the
amount of input data (transition matrices and projective measurement matrices)
required to define an automaton but does not impact computation time at all.
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0.0270 4
0.0105

0.0265 4
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Time (s)
Time (s)
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0.0255 4
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Fig. 3: Simulation time of GQFA in function of alphabet size

Word length. The relation between the time of computation and the length
of input word is linear. This is not surprising, because with each letter of the
input word, an automaton performs a fixed number of matrix multiplications.
Size of these matrices is determined by the number of states of automaton. For
each letter a transition function must be applied and a measurement may be
performed, depending on the type of an automaton. Figure 4 shows simulation
time of GQFA as a function of length of simulated words. For each word length,
100 random words were simulated and simulation time taken as the arithmetic
mean over these 100 words.

5.2 Usage example

Listing 1.1 presents exemplary code for defining a MM-QFA automaton. This
automaton is well-known in literature and was proposed by Ambainis and Frei-
valds [1] as a part of the proof that there exists a one-way QFA, which recognizes
language a*b* with probability p = 0.68.., where p is the real root of equation
p? 4+ p = 1. Figure 5 visualizes obtained acceptance probabilities and their cor-
responding word counts.
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import numpy as np

from math import sqrt

from QFA.MM_1QFA import MM_1QFA

from QFA.LanguageGenerator import LanguageGenerator
from QFA.LanguageChecker import LanguageChecker
from QFA.Plotter import Plotter

alphabet = ’ab’

p = 0.682327803828019 # Auxillary variable

# Initial state of automaton

initial_state = np.array([[sqrt(1-p)], [sqrt(p)l, [0], [01])
# Transition matrices
U_a = np.array([[1-p, sqrt (p*(1-p)), 0, -sqrt(p) 1,
[sqrt (p*(1-p)), p, 0, sqrt(1-p)],
[o, 0, 1, 0 1,
[sqrt (p), -sqrt (1-p), 0, 0 1D
U_b = np.array([[0, O, O, 1],
(o, 1, o, ol,
(o, o, 1, ol,
(1, o, 0, 011D
U_end = np.array([[0, O, O, 1],
(o, o, 1, o1,
(o, 1, o, ol,
(1, o, o, 011)

# Accepting and rejecting states are defined with matrices
# representing projective measurements

P_acc = np.array([[0O, O, O, O],
[o, o, o, o1,
(o, o, 1, ol,
(o, 0, o, 011
P_rej = np.array([[0O, O, O, O],
(o, o, o, ol,
(o, o, o, o1,
(o, o, o, 111)
gfa = MM_1QFA(alphabet, initial_state,

[U_a, U_b, U_end], P_acc, P_rej)

LanguageGenerator (’a*b*’, alphabet)
language_generator.get_language_sample ()

language_generator =
language, not_in_language =
language_checker = LanguageChecker (qfa, language, not_in_language)
plotter = Plotter (language_checker)

plotter.plot ()

Listing 1.1: Code for defining MM-QFA automaton
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Fig. 4: Simulation time of GQFA in function of length of simulated word
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Fig. 5: Visualisation of acceptance probabilities and acceptance modes for MM-
QFA

6 Conclusions

The library provides a simple API for functionality required to simulate quantum
finite automata. We hope the library will encourage research at the intersection of
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quantum computations and theory of formal languages and automata. We have
experimentally shown that the time complexity of simulating quantum finite
automaton is exponential in relation to the size of the automaton. Nevertheless,
we believe that the library may be useful for researchers, lecturers and students as
a tool to prove or disprove certain properties of quantum automata and languages
in a reasonable time. We have successfully used our library and thus shown that
it returns expected results for examples taken from literature.

The scope of the project can be broadened in several directions, e.g. by ad-
ding new types of automata.
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