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Abstract. Modern aerospace, automotive and construction industries rely on ma-

terials with non-homogeneous properties like composites or multiphase struc-

tures. Such materials offer a lot of advantages, but they also require application 

of advanced numerical models of exploitation condition, which are of high im-

portance for designers, architects and engineers. However, computational cost is 

one of the most important problems in this approach, being very high and some-

times unacceptable. In this paper we propose approach based on Statistically 

Similar Representative Volume Element (SSRVE), which is generated by com-

bination of isogeometric analysis and optimization methods. The proposed solu-

tion significantly decreases computational cost of complex multiscale simula-

tions and simultaneously maintains high reliability of solvers. At first, the moti-

vation of the work is described in introduction, which is followed by general idea 

of the SSRVE as a modelling technique. Afterwards, examples of generated 

SSRVEs based on two different cases are given and passed further to numerical 

simulations of exploitation conditions. The results obtained from these calcula-

tions are used in the model predicting gradients of material properties, which are 

crucial results for discussion on uniqueness of the proposed solution. Addition-

ally, some aspects of computational cost reduction are discussed, as well. 

Keywords: multiscale modelling, SSRVE, multiphase materials, gradients of 

properties 

1 Introduction 

In recent years it was observed that heterogeneous materials benefit from the best fea-

tures due to the mix of phases they are made of. Taking an advantage of heterogeneity 

is the main strengthening mechanism for multiphase steels, which are developed today. 

On the other hand, steep gradients of properties between various phases in these steels 

may lead to low local fracture resistance [1,2]. Thus, searching for a compromise be-

tween strengthening by multiphase microstructure and tendency to local fracture due to 

steep gradients of properties became an important field of research in materials engi-

neering [3]. This research requires multiscale material models, which explicitly account 

for the microstructure. Thus, a detailed description of the microstructure features of the 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_30

https://dx.doi.org/10.1007/978-3-030-50433-5_30


2 

Complex Phase (CP) steels is required to investigate the correlation between the multi-

phase structure and exploitation properties. Smoothing of gradients of properties can 

be reached by control of such phenomena as segregation of elements, evolution of the 

morphology of hard phases, evolution of dislocation populations in the soft phase and 

precipitation. Modelling of these phenomena requires advanced models. Large spec-

trum of material models with various complexity and various predictive capabilities are 

available now [4]. However, mean field models, which predict only average parameters 

of the microstructure, are not applicable. Multiscale models, which use representative 

volume element (RVE) have to be used. Since computing costs are an important crite-

rion in the model selection, designers intensively search for methods of model reduc-

tion, see discussion in [4]. Application of the statistically similar representative volume 

element (SSRVE), which was proposed in [5], is one of the possibilities. 

The basic idea of the SSRVE is to replace a RVE with an arbitrary complex inclusion 

morphology by a periodic one composed of optimal unit cells [5]. To reach this goal, 

the parameters describing fraction of different phases and their geometrical character-

istics are determined for a considered microstructure. Following this, optimization 

methods are used to design morphology of hard inclusions in the SSRVE. Authors have 

already applied SSRVE to modelling deformation of Dual Phase (DP) steels with the 

microstructure composed of hard martensite islands in soft ferrite matrix [6]. In publi-

cation [7] four shape coefficients were considered to describe multiphase microstruc-

ture. Seven more parameters, which are used in the image analysis, were added and 

described in the paper [6]. Since a large number of parameters can be used to describe 

multiphase microstructure, uniqueness of the solution is always questionable.  

The objectives of the present paper were formulated with the above comments in 

mind. Computational aspects of the SSRVE design for the microstructures were dis-

cussed and accuracy as well as uniqueness of the solution were evaluated. Beyond this, 

as it has been mentioned above, complex phase steels microstructures, which allow to 

obtain smoother gradients of properties, are of particular interest now. Thus, an attempt 

to design SSRVE for multiphase microstructures composed of various constituents and 

phases was the main objective of the work. 

2 Statistically Similar Representative Volume Element 

2.1 General idea 

In the micro-macro modelling approach an RVE representing the underlying microscale 

domain is usually attached at each Gauss point of the macroscopic solution [8]. The 

constitutive law describing material behaviour in the macroscale is obtained by averag-

ing the first Piola-Kirchoff stresses with respect to the RVE. The theoretical basis of 

the micro-macro modelling is well described in the scientific literature (e.g. [5]) and it 

is not repeated here. In the SSRVE application to DP steel, already mentioned in intro-

duction [6], the focus was on development of the simplest SSRVE, which allows to 

decrease the computing costs and will make micro-macro modelling approach more 

efficient. The basic idea was to replace an RVE with an arbitrary complex inclusion 

morphology by a periodic one composed of optimal unit cells, as shown in Figure 1.  
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Fig. 1. Illustration of the basic concept of the SSRVE, a) RVE, b) periodically arranged 

SSRVE. 

This idea is applied in the present work to the analysis of the more sophisticated 

steels microstructures composed of more than two phases like CP or TRIP steels with 

Transformation Induced Plasticity effect. Both of these materials are difficult to analyse 

and model, while various phases are characterized by different properties and morphol-

ogies. This fact highly influences computational complexity of both creation and appli-

cation of SSRVE models for such materials in practice. 

2.2 Design of the SSRVE 

The process of SSRVE creation consists of the following steps (Fig. 2): 

• image analysis aiming at conversion of set of original micrographs from optical mi-

croscope to RVE containing separated phases and grains inside of them, 

• qualitative and quantitative analysis leading to obtain information on shape coeffi-

cients based on grains/phases shapes, which allows to apply sensitivity analysis and 

indicate the most important coefficients characterizing microstructure, 

• construction of a cost function for optimization procedures, implementation of a 

proper optimization procedure and selection of the most suitable results. 

 

Fig. 2. Procedure of SSRVE creation 

The procedure of SSRVE creation starts with an analysis of original micrographs, 

which aims at creation of binary (segmented) images with separated phases or inclu-

sions. The algorithms for processing of various micrographs are presented in details in 

[9]. Then, in the case of 2D SSRVE, the shape coefficients of inclusions in original 

images are estimated directly from the segmented pictures. In the case of 3D procedure, 
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the reconstruction of 3D microstructure on the basis of 2D images has to be performed 

[10]. Afterwards, the shape coefficients of 3D inclusions are estimated. Ohser and 

Muecklich [7] proposed four basic parameters for statistical shape description. Few 

more parameters, which are used in the image analysis, were added and described by 

Authors in [6]. In consequence, the following parameters describing shape of inclusions 

were considered: volume fraction, area/volume, roundness, ellipsoid fit, contour to cen-

ter ratio, border index, mean curvature, total curvature, Malinowska coefficient, Blair-

Bliss coefficient, Danielsson coefficient and Haralick coefficient. Not all of these pa-

rameters can be adapted from 2D to 3D. Thus, some of the coefficients are used only 

for 2D SSRVE. 

Additionally, statistical and rheological coefficients are calculated to obtain full set 

of reference coefficients, which describe all aspects of material properties and which 

are used further in optimization procedure. Brandts et al. [11] introduced the higher 

order statistical measures for microstructures: n-point probability functions, spectral 

density and lineal-path function. The latter parameter is crucial in description of aniso-

tropic microstructures, while it describes the probability that a complete line segment a 

= 
1 2a a  is located in specific direction in the same phase, where a1 = {x1,y1} and a2 = 

{x2,y2} are coordinates of the ends of the line segment. Lu and Torquato [12] gave a 

general mathematical description of this measure for multi-phase anisotropic materials. 

Simplified approach, which is applicable to DP microstructures represented in form 

digital images composed of a set of pixels, can be defined by the following equation: 
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The estimated shape coefficients as well as statistical measures are the main ele-

ments of optimization function aiming at SSRVE creation. Optimization procedure is 

based on approach proposed in [6]. Originally, a method for the construction of simple 

periodic structures for the special case of randomly distributed circular inclusions with 

constant equal diameters was proposed by Povirk [13]. In that work the positions of 

circular inclusions with given diameter were found by minimizing the objective func-

tion, which was defined as a square root error between spectral density of the periodic 

RVE and non-periodic real microstructure. In our work this function was adapted to the 

following form:  
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where: wi – normalized weights, n – number of coefficients, i – ith reference coefficient 

obtained from original microstructure, iSSRVE – ith coefficient obtained from SSRVE. 

The coefficients include all mentioned parameters describing shape, rheology and sta-

tistics. The current implementation of optimization procedure is based on genetic algo-

rithm (GA), where chromosome is composed of m elements representing coordinates 

of control points determining SSRVE shape. These points are connected with spline 

functions forming smooth shape of SSRVE inclusion. Calculations of the objective 

function are performed iteratively for each proposition of new SSRVE shape. The op-

timization loop is preceded by sensitivity analysis (SA), which allows to determine the 

most influential parameters of the optimization or to determine the weights used in the 

objective function (3). 

2.3 Optimization procedure 

On the basis of results obtained from sensitivity analysis the reference coefficients, their 

values and weights were established. A set of these parameters was used further in op-

timization procedure as i  in (3). Multi-iterative genetic algorithm [14] was applied as 

an optimization procedure. The procedure is composed of the following steps: 

• Generation of initial population – random generation of n specimens containing in-

formation about coordinates of control points and their weights. Size of the specimen 

depends strongly on a number of control points describing inclusions in the SSRVE. 

At the beginning of calculations the control points form m random shapes, where m 

is a number of inclusions. 

• Estimation of the objective function value – the procedure calculates values of 

iSSRVE  on the basis of shapes of inclusions in subsequently generated SSRVEs. 

Shapes of these inclusions are described by Non-uniform Relational B-Splines 

(NURBS). These parametric curves are controlled by basic interpolation functions 

and a set of mentioned control points. The weight of each control point influences 

the position of curve near the particular control point. The shapes of inclusions in-

fluence also rheological properties and statistical description of microstructure. Rhe-

ological model of SSRVE is determined by processing of this element in virtual uni-

axial compression, tensile and shear deformation tests. Obtained stress-strain rela-

tions allow to calculate equivalent tensile stress, which describes material rheology. 

The main statistical measure is lineal-path function, calculated directly from pixels 

or voxels values of SSRVE. 

• Stop conditions – two fundamental conditions are implemented i.e. number of itera-

tions and mean square error between expected and actual objective function. 
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• Application of genetic operators – crossing and mutation operators were imple-

mented in the presented approach. The former operator is responsible for exchange 

of random number of genes between two specimens (Fig. 3). 

 

Fig. 3. Illustration of crossing operator for 2D specimens. 

 

The first of mutation operators (Fig. 4) changes positions of control points regarding 

centre of gravity of the shape. The operator determines random set of control points, 

which will be mutated, and then the new position is calculated also on the basis of 

randomized operations. The second mutation operator changes the positions of control 

points in X or Y axis direction by using random values of coordinates in the vector of 

translation. 

 

Fig. 4. Illustration of mutation operator for 2D specimens. 

c) effect of crossing 

a) 1st base specimen  b) 2nd base specimen 
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• Generation of a new population – the specimens obtained after operations of crossing 

and mutation are included in the new population. In each subsequent iteration, each 

specimen is validated. On the basis of validation the worst specimens are removed 

from population, some of the best specimens go further without changes and the rest 

is passed again to crossing and mutation operators. 

In the case of 3D calculations shape of inclusion is composed of 2D layers, which 

are used in reconstruction algorithm mentioned at the beginning of this section. Thus, 

the specimen in 3D contains additional Z coordinates, which influence all the algo-

rithms inside optimization procedure. Therefore, the crossing operator is based on ex-

change of a set of whole layers between two specimens instead of a set of single control 

points. The first mutation operator behaves similarly by translating of whole layers in 

Z axis direction, while the second mutation operator chooses two layers randomly and 

replaces them inside one SSRVE. 

3 SSRVE for complex phase steel 

Verification of the SSRVE concept for more than two phases inside material micro-

structure was performed on micrographs obtained for CP steels. This group of steels is 

a part of Advanced High Strength Steels (AHSSs), widely used by modern industry and 

characterized by elevated mechanical properties [15]. High strength of CP steels is 

gained through extremely fine grain size and microstructure containing small amounts 

of martensite, pearlite and retained austenite embedded in a ferrite-bainite matrix. 

Therefore, from numerical simulations point of view such material is very difficult to 

be modelled, especially meshing of computational domain and coverage of larger scale 

with full field micro model. Example of CP micrograph is presented in Fig. 5. 

 

Fig. 5. Microstructure of CP steel composed of bainite (1st phase in blue), martensite (2nd phase 

in green), ferrite matrix (yellow), small inclusions of retained austenite (light yellow). 
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A set of fundamental input data is composed of series of images, like in Fig. 5, obtained 

from optical microscope or EBSD, which marks various phases and inclusions in dif-

ferent colours. Such set of images is passed to image analysis procedures to divide 

original micrographs into subsets dedicated to different phases (Fig. 6). 

  

Fig. 6. Separated phases of microstructure: a) bainite – 40% of volume fraction, b) martensite – 

2% . 

3.1 SSRVE generation 

For validation purposes and SSRVE generation two CP steels were analysed with dif-

ferent volume fraction of phases: I – 40% of bainite and 7% of martensite, II – 30% of 

bainite and 15% of martensite. Both steels contained 50% of ferrite. Optimization pro-

cedure responsible for generation of SSRVEs was performed several times for both 

cases assuming random initial generation of SSRVE in the first iteration. The set of 

images for each steel contained six micrographs taken in various places in material. 

This assumption allowed to evaluate whether obtained elements will result in the same 

material response as far as gradient of properties is considered (section 4.2). The results 

of SSRVE calculations are presented in Fig. 7. 

3.2 Computing cost analysis  

Computing cost mostly depends on selected shape coefficients. Preliminary sensi-

tivity analysis allowed for the identification of representative geometric coefficients for 

each phase. In the case of bainite grains: volume fraction of phases ξ1, mean curvature 

ξ8, ratio between maximum distance in inclusion phase and its circumference Lp2, ratio 

between maximum and minimum distance in inclusion phase Lp3, compactness factor 

Rc were selected. In the case of martensite grains: volume fraction of phases ξ1, ellipsoid 

fit ξ5, mean curvature ξ8 were used. The details of each coefficient are broadly described 

in [6, 16]. Satisfactory results were obtained after about 300 iteration for each attempt. 

Minimal improvements in the objective functions were observed in further analysis. 

Full calculations (1000 iterations) took about 10 hours on a typical, 8 cores, desktop 

computer, but a satisfactory threshold was reached after just 2 hours. Examples of the 

a) b

) 
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changes of the Root Mean Square Error (RMSE) in the optimization procedure are 

shown in Fig. 8.  

a)  b) c) 

  
d)  e) f) 

   
Fig. 7. Three selected results of SSRVE generation for CP steel variant I (a-c) and variant II 

(d-f) 

 

Fig. 8. Root Mean Square Error minimization during SSRVE generation procedure. 

4 Solution uniqueness analysis  

As it has been mentioned in the introduction, depending on their microstructure multi-

phase steels show differing damage mechanisms. In general global formability and lo-

cal formability is distinguished [2]. The former is an ability of a material to undergo 

plastic deformation without formation of a localized neck respectively to distribute 

strains uniformly. The latter is an ability of a material to undergo plastic deformation 
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in a local area without fracture. These two features can be characterized experimentally 

as described in [2]. In the present work, however an attempt of the numerical approach 

to this problem is described. An assumption was made that by evaluation of gradients 

of properties in the microstructure, local formability can be predicted. 

4.1 Simulation of deformation of complex phase steels 

Distribution of the properties in complex phase steels depends on several phenomena, 

which are mentioned in the introduction. In the present paper the focus is on calculation 

of gradients of properties, and therefore, properties of each phase were described by the 

work-hardening curve. The curves were taken from the literature [17] without an anal-

ysis of phenomena responsible for the hardening. Typical CP microstructure was ana-

lysed and SSRVE was created, as described in section 3.1. To reveal different behaviour 

of hard and soft constituents, that SSRVE was subjected to small plastic deformation 

of 5%. The calculations were performed using Finite Element Method (FEM) and re-

sults are presented in Fig. 9. 

a)  b)   c) 

    
d) e)   f) 

   

Fig. 9. Results of uniaxial compression tests for SSRVE with distribution of the flow stress for 

variant I (a-c) and  variant II (d-f).  

4.2 Gradients of properties 

As it was shown in [3], gradients of mechanical properties in the microstructure can be 

considered as a measure of the local formability. The local flow stress of the material 

was selected as a measure of these properties in the present work. It was assumed that 

description of the gradients can be based on the local and global sensitivity analysis 

(SA) methods [18]. Considered physical phenomenon during material manufacturing 

or processing can be described as a non-stationary system y(t,p,x), where p is a vector 
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of process parameters including model coefficients, x is a position vector in the com-

putation domain, t is time. To predict gradient distributions in the whole material vol-

ume, the first order sensitivity indices were applied and expressed through a Taylor 

series expansion with respect to a position vector x. Thus, locally, sensitivity matrix 

can be computed as: 

    /ij i js y x= =  S  (4) 

where yi - model outputs, xi - components of a position vector x. 

On the other hand, the screening sensitivity analysis method, called Morris Design 

(MD) [15], allows to estimate a global measure of the sensitivity. In this algorithm 

elementary effects (i) are defined: 

 1 1 1( , , , , , , ) ( )
( ) :

j j j j k

j

j

x x x x x


− ++  −
=



y y x
x  (5) 

where: y - model output, x     k – k - dimensional vector of model inputs xj, j - 

an increment of the model input 
jx .  

Sampling 
jx  in the space  gives a finite distribution of elementary effects j calculated 

for the jth component of an input vector x . Based on this distribution expected value j 

for jth model input can be estimated through the classic estimators for independent ran-

dom samples. 

For estimation material gradient properties let x  from MD algorithm be a position vec-

tor x in the equation describing a process. Thus, the elementary effects (5), for j → 0, 

correspond to derivatives in the sensitivity matrix (4). In the present work only one 

model output was considered (i = 1). The matrix S is a vector calculated for one model 

input x  and for gradient estimation S  was taken. The distribution of S  was obtained 

by sampling x  over the whole computation domain. Next, based on the MD method 

assumptions, two sensitivity indices were estimated: expected values  of all S  as a 

global measure of properties gradient and 0.05 as expected values of the gradient prop-

erties for 5% of maximum values. The last measure was introduced to evaluate maxi-

mum gradients in the microstructure. However, since a single maximum value of gra-

dient could be a result of a numerical error, a mean of 5% of maximum values was 

calculated. 

One of the main assumptions of the gradients estimation algorithm is that the data 

for which gradients are estimated may be either experimental or derived from numerical 

simulations. In general, the data is defined as a points cloud form. The efficient man-

agement of this cloud required the introduction of a specific data structure for a flexible 

search of single points and their neighbours. For this, a quadtree structure [19] was 

developed and adopted for gradients estimation requirements. 

To approximate value v for point of coordinates (x1,x2), based on N points of known 

values vi, i  = 1,…,N, Shepard’s method and the inverse distance weighting were applied 

[20]: 
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Gradients of the flow stress in the SSRVE were calculated in an analytical way for 

the approximation given by equation (6) and using the finite difference method. Finally, 

expected values  and 0.5 were computed as global measures of gradients of properties. 

The gradient distributions for two variants of SSRVE are presented in Fig. 10 and the 

quantities of  were as follows: 55.2 MPa/m, 53.4 MPa/m and 502.5 MPa/m for 

variant I and plots (a-c), and 62.6 MPa/m, 36.8 MPa/m, 110.4 MPa/m for variant 

II and plots (d-f), respectively. For the measure 0.5 the results were: 412.0 MPa/m, 

277.6 MPa/m and 17508.7 MPa/m for variant I (plots (a-c) Fig.  10), and 524.8 

MPa/m, 179.7 MPa/m, 1802.9 MPa/m for variant II (plots (d-f) Fig.  10). 

 

a) b)   c) 

    
d) e)   f) 

   

Fig. 10. Gradient distributions for SSRVE: variant I (a-c), variant II (d-f).  

4.3 Discussion of results 

SSRVE elements were generated with the goal function based on the selected geometric 

coefficients and a proper description of a microstructure morphology was obtained. 

Optimization based on the genetic algorithms was efficient and satisfactory results were 

obtained after about 300 iteration for each attempt. On the other hand, although the 

geometrical effect was correct, subsequent runs of the optimization procedure yielded 

the properties of material, which were not unique and different values of gradients were 
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obtained for the same phase composition. In the present work the SSRVEs were se-

lected and analysis was performed to highlight those differences.  

Analysis of the results of global measures of material gradient properties showed 

that the differences are significant and they can reach an order of magnitude in extreme 

examples. Keeping in mind the results of calculations performed so far, a suggestion 

was made that the goal function for SSRVE generation cannot be based solely on the 

geometrical parameters and it should include also the data of maximum strains or 

stresses for each of the material phase. Further investigations over these problems will 

be carried out. 

5 Conclusions 

Methodology of design of the SSRVE for complex phase steel composed of three 

phases and application of this SSRVE to evaluation of gradients of properties is de-

scribed in the paper. The following conclusions were drawn: 

• Application of the SSRVE allowed significant decrease of the computing costs com-

paring to classical RVE solution in terms of element dimension. Following this, it is 

possible to apply more SSRV elements in a multiscale simulation than when RV 

elements are with the same computation cost.  

• Good convergence of the optimization was observed during SSRVE generation. Sat-

isfactory results were obtained after about 300 iteration for each attempt. 

• Design of the SSRVE based on the geometrical features only does not guarantee 

uniqueness of the solution. Different gradients were obtained for one phase compo-

sition and several optimization runs. It leads to a conclusion that additional parame-

ters based on maximum strains and stresses in various phases should be introduced 

in the objective function. This will be subject of the future works. 

• The methodology based on the sensitivity analysis proved to be efficient for evalua-

tion of gradients of materials properties when they are defined as a cloud of points. 
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