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Abstract. Molecular-continuum flow simulations combine molecular dy-
namics (MD) and computational fluid dynamics for multiscale consider-
ations. A specific challenge in these simulations arises due to the “open
MD boundaries” at the molecular-continuum interface: particles close
to these boundaries do not feel any forces from outside which results
in unphysical behavior and incorrect thermodynamic pressures. In this
contribution, we apply neural networks to generate approximate bound-
ary forces that reduce these artefacts. We train our neural network with
force-distance pair values from periodic MD simulations and use this net-
work to later predict boundary force contributions in non-periodic MD
systems. We study different training strategies in terms of MD sampling
and training for various thermodynamic state points and report on ac-
curacy of the arising MD system. We further discuss computational effi-
ciency of our approach in comparison to existing boundary force models.

Keywords: open boundary · machine learning · molecular-continuum ·
boundary forcing · molecular dynamics

1 Introduction

1.1 Molecular Dynamics

Molecular dynamics (MD) enables investigations of fluids, suspensions and ma-
terials at the nanoscale. For this purpose, the considered system is modeled in
terms of molecules or atoms that are characterized through positions xi and
velocities vi, as well as through forces Fi, with the latter typically arising from
pairwise inter-molecular interactions in terms of pair potentials [13]. The inter-
play of these variables is described by Newton’s equations of motion

dxi

dt
= vi,

dvi

dt
=

1

mi
Fi.

(1)
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We will restrict considerations in the following to short-range single-site Lennard-
Jones NVT systems, that is two spherical particles i, j interact via forces

Fij =
48ε

σ2

( σ

rij

)14

−
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2

(
σ

rij

)8
 rij (2)

with rij := xi − xj , rij := ‖rij‖, as long as the particles lie within a cut-
off distance rij ≤ rc; the total force on a particle arises as Fi =

∑
i 6=j

Fij . The

parameters ε, σ are material-dependent parameters. Temperature is controlled
via a thermostat. Despite its simplicity, this model is used in a great variety of
applications and implemented in basically all popular MD packages; we made
use of the package LAMMPS for all our tests [12].

1.2 The Challenge: Modeling Open Boundaries

MD for fluid systems is often used in combination with periodic boundary condi-
tions. This approach naturally extends the molecular interaction potential across
the actual boundaries of the considered system. However, modeling open bound-
aries for non-periodic domains—which are relevant for actual flow scenarios in
engineering applications or, in particular, in multiscale flow simulation such as
molecular-continuum coupling [3, 9, 14]—poses a grand challenge, especially for
dense particle systems: as no particle interactions exist between near-boundary
particles and the fluid domain beyond the boundary, particles would be pushed
out of the domain. This results in invalid thermodynamic conditions and pres-
sure distributions as well as in unphysical particle fluxes. Consequently, an open
boundary force model is required to counteract this behavior and ties back into
the MD system via an additional forcing term Fext

i , i.e. Fi =
∑
i 6=j

Fij + Fext
i for

particles close to the open boundary.

1.3 Open Boundary Force Modeling: State-of-the-Art

The goal of an open boundary force model is typically (i) to impose the correct
average hydrodynamic pressure on the MD system, (ii) to take into account the
molecular information of the system, (iii) to yield the correct molecular structure
close to the boundary, i.e. the model shall add as little physical perturbations to
the particle system as possible, and (iv) to perform at acceptable computational
cost, that is particle updates close to the boundary must not be inhibitively more
expensive than particle updates in the inner part of the computational domain.

The first developed open boundary force models were based on analytical
formulae, incorporating the pressure, particle density and, potentially, weight-
ing functions to take into account the distance of a particle from the boundary [3,
4, 11]. These approaches, however, lack molecular information (ii) and resulted
in rather severe density perturbations in proximity of the open boundary (iii).
A significant reduction of perturbations could be achieved through the use of
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radial distribution functions (RDFs) [14], which impose the average hydrody-
namic pressure (i) and—through the RDFs—incorporate molecular information
(ii). Although accurate density profiles near the boundary were obtained for sev-
eral particle systems, stronger oscillations were observed in case of very dense
particle systems (iii). Besides, the creation of the actual force model from the
measured RDFs required an additional interpolation/ integration step. An ex-
tension of this approach to multi-site molecules was presented in [10].

A purely density-driven approach was presented in [7]: the particle density
is measured close to the boundary, and its trend is captured over time via noise
filters and gradient approximations. Based on this trend, the boundary force is
adopted to yield a flat density profile at the boundary. While this algorithm also
naturally extends towards multi-site molecules [6], easily extends towards non-
stationary flows (i.e. adopting boundary forces to varying flow velocities) and
can be automatically employed for arbitrary MD systems, it misses molecular
information (ii); to the authors’ knowledge, no molecular structure investiga-
tions have been provided for this method (iii), except for molecular orientation
measurements in case of multi-site molecules [6]. Besides, an amplification factor
for the force relaxation needs to be prescribed which is not necessarily known a
priori.

Finally, a parameter space exploration was carried out in [15, 16] for single-
site Lennard-Jones systems and a regression formula for a boundary force in
dependence of a particle’s distance from the open boundary was derived over
a wide range of temperature and density values. While this formula is highly
valuable for many systems and provides accurate forcing (i), (ii), no molecular
investigations were reported so far (iii). Besides, entire parameter space explo-
rations are computationally very expensive.

All derived methods were found to perform at acceptable cost (iv) in molecular-
continuum simulations with open boundaries, with some limitations of the ap-
proach presented in [10].

1.4 Outline and Objective

In the following, we describe a methodology that uses neural networks to estimate
open boundary forces from existing MD data (ii) via regression. We demonstrate
that the neural network-based approach

– provides accurate open boundary force predictions that are in good agree-
ment with and partly outperform the model by Zhou et al. [15, 16] (i),

– retains the molecular structure rather well, even in very close proximity of
the open boundary (iii); this is also shown for the Zhou model in this context,

– performs at acceptable computational cost (iv).

MD data is very noisy and there are several variants available to improve neural
networks for these cases. For the sake of simplicity and facilitated applicability
of our method, we make use of standard neural network formulations and we
further implemented the algorithm using the freely available open source software
TensorFlow.
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We describe the design and discuss the choice of our ML-based approach
in Sec. 2. The sensitivity of our ML-based approach with regard to sampling
methodology and used parameters as well as of the Zhou model are studied in
Sec. 3.1; more in-depth comparison of the molecular structure close to the open
boundary for the Zhou model and the best ML-based approximation is given in
Sec. 3.2. Estimates on sampling numbers and training epochs are provided in
Sec. 3.3. To underpin the generality of the method, various MD state points are
examined in Sec. 3.4, followed by a discussion of run times of the open boundary
force-augmented MD systems in Sec. 3.5. We close with a summary and give an
outlook to future work in Sec. 4.

2 Machine-Learning Approach to Boundary Forcing

We use Tensorflow [1, 2] to develop a neural network model for nonlinear regres-
sion of boundary forces in non-periodic boundary conditions. Our initial model
contains one hidden layer with five neurons. This number results from a reason-
able estimate to approximate the average force and its gradient sufficiently well,
given, for example, the interpolating representation described by Zhou et al. [15,
16]. The commonly used sigmoid function tanh [8] serves as activation function
within the hidden layer whereas on the output layer a linear activation function
is used.

For optimization of the parameters, we apply the ADAM [5] optimizer in com-
bination with the mean-squared-error (MSE ) function. ADAM is an extension of
the standard stochastic gradient descent which claims to be computationally ef-
ficient, especially in terms of memory usage; MSE is a default choice for the error
function. Due to rotational symmetry of single-site particles, we use solely the
distance of particles from the open boundary as input feature and the boundary
force perpendicular to the respective boundary as output feature. Both input
and output features are obtained from periodic MD simulations in which we
assume a virtual wall inside the domain: we determine corresponding distances
of the particles from the virtual wall as well as forces that act onto the particles
from beyond the virtual wall. The network thus only contains one input and one
output neuron. Input data are normalized to lie within the unit interval [0, 1].
Since MD systems are typically equilibrated initially in periodic settings, the
equilibration phase can be immediately used to generate these values for both
training and validation of the network.

The learning rate was set so 0.001 in all of our scenarios which is the default
for the ADAM optimizer, and the network was trained with a number of epochs
between 1000 and 30,000.

3 Results

For our initial tests, we set up a short-range single-site Lennard-Jones based
system with reduced parameters σ = ε = m = kB = 1, where kB denotes
the Boltzmann constant. The Lennard-Jones potential has a cut-off distance
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Fig. 1. Predicted boundary forces compared to Zhou force. (a) Force predictions and
actual, measured samples. (b) Close-up of predicted force profiles.

rc = 2.5σ. We simulate a box of size 30× 30× 30 with a mass density ρ = 0.81,
resulting in 21, 952 particles homogeneously distributed within the simulation
box. Temperature was set to 1.1. The time step size ∆t was set to 0.002.

MD equilibration was performed over 20,000 time steps employing periodic
boundary conditions on all sides of the simulation box. This results in a ran-
dom distribution of the molecules with a fluctuating density profile with the
same mean value ρ; every corresponding MD simulation with open boundaries
should feature the same mean value and, optimally, no or only small deviations
from it. We used this state to generate training samples for the neural network
from a subsequent period of 110,000 time steps. Afterwards, the left and the
right boundary were changed into reflecting boundaries to hinder particles from
escaping. Besides, the force model was activated.

The system was then equilibrated for another 5,000 time steps. From this
point on, each simulation was run over a period of 20,000 time steps. Sampling
of all quantities reported in this work was performed within this last part of the
simulations.

3.1 Sensitivity of Machine Learning-Based Algorithm

For first investigations, we generated 200,000 samples from the periodic simula-
tion. As a base setup for training, we randomly chose 80,000 of these samples
(we refer to this strategy as regular sampling in the following) for training over
30,000 epochs.

In Fig. 1(a), the resulting boundary forcing estimate is displayed together
with the Zhou profile, and actual force contributions used to train the model.
Both our ML model and Zhou’s method perform a regression upon the Lennard-
Jones force model; Fig. 1(b) shows a close-up of the arising force profiles. Appar-
ently, the trained ML model diverges from the Zhou profile in close proximity of
the boundary. The minimum of the force profile is approximately the same for
both models, yet it is slightly shifted towards the right in the ML approach.
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Fig. 2. (a) Density profile of a simulation using a model trained with 80,000 samples,
compared to the density profile of a simulation using Zhou forcing. (b) RDF of the
same simulation computed over a strip close to the boundary with thickness rc. Dashed:
Density and RDF as result of applying the Zhou force at the boundaries. Continuous:
Resulting quantities when using our predicted force model in the simulation. Dotted:
Periodic RDF

The remaining parameters are the same as in Sec. 2. The following analy-
ses have been computed by sampling periodic and, especially, open boundary
simulations over 20,000 timesteps.

Figure 2(a) shows the density profile of our simulation using this setup in
comparison to a simulation using Zhou boundary forcing. The quality of the neu-
ral network’s force computation reaches basically the same accuracy as the Zhou
method: the maximum density deviation of our ML-based simulation is 12.9%
compared to 11.4% in the Zhou model. Note that our sampling is carried out in
small bins of size 0.1 to capture fine-scale structures in the different quantities
in very close proximity of the boundary, which explains the actual visibility of
these deviations. This is done for a detailed comparison of the methods; very
good accuracy was already shown for the Zhou model in [15]. In a distance of
one cut-off region (2.5σ), the density profiles of periodic and open boundary
simulation are basically indistinguishable.

The RDF in Fig. 2(b) has been computed over the boundary region within a
boundary strip of thickness rc. Due to non-periodicity of our domain, we scaled
the distribution by a volumetric factor per particle depending on the distance
from the open boundary to account for the correspondingly missing particle pairs
across the open boundary. The RDF of our simulated model near the boundary
exhibits the same contour as the RDF obtained from a fully periodic and a
Zhou-based open boundary simulation. We further checked the distribution of
x-velocities (i.e., the velocity component of the molecules perpendicular to the
open boundary) within the same boundary strip. Figure 3 demonstrates that the
expected normal distribution is captured well.
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Fig. 3. Distribution of x-velocities for particles using Zhou model and ML-based model
within a boundary distance rc. Gray: Distribution resulting from a simulation using
(a) the Zhou boundary force and (b) our predicted boundary force
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Fig. 4. (a) Density profile of a simulation trained with binned sampling approach. (b)
Density profile for run with regular sampling using 10,000 epochs for training

In order to increase the efficiency of the training, we reduced the number of
samples needed to train the model. For this purpose, we organized the boundary
region in bins and evenly distributed the training samples over these bins.

Figure 4(a) shows the results for training with binned samples, using 100 bins
with 512 samples in each bin to discretize the boundary strip rc. The resulting
density exhibits only slight fluctuations similar to the Zhou model and the orig-
inal ML-based regular sampling model, i.e. the density deviates by less than
10.8%; yet, through the binning and corresponding homogeneous distribution of
samples, we require 36% less samples than in the regular sampling case.

We further investigated the influence of the number of epochs used in the
training. A resulting density profile for a reduced number of 10,000 epochs is
shown in Fig. 4(b). The deviations are higher, amounting to approx. 16% in this
case.

Using the ML-based approach, we were able to even outperform the Zhou
model in terms of particle density approximation. One of the results is shown
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Fig. 5. Force and density profiles of best case scenario using 19,000 samples over 30,000
epochs

in Figs. 5(a) and (b). This run used 19,000 randomly selected samples and
training was carried out over 30,000 epochs. The force estimate behaves similarly
compared to the force estimate from Fig. 1(b) but the gradient is smoother within
the range [0, 0.5] and there seems to be little more emphasis on attracting forces.

The density in this run deviates by 8.4%, which is ca. 3% less than the
deviations in the Zhou-based forcing scenario.

We further studied the influence of the size of the ML-based model’s hidden
layer, e.g. changing from five to three hidden neurons. Two of the resulting
density profiles are shown in Figure 6. Figure 6(a) shows the best run using
regular sampling during training, Fig. 6(b) shows the best result using binned
sampling. Using binning results in a density deviation of 9.8%, whereas the
regular sampling method reaches 11.5%. As we were not able to produce better
results in most configurations that could compare to the other models, we decided
to stay with the initial five neurons. We further experimented with different
learning rates. This approach did not significantly improve the quality of the
trained models, but could possibly be employed for optimizing the performance
of the training phase.

3.2 Best Case Properties

In the previous section we have demonstrated the general applicability of our
approach to a Lennard-Jones fluid. Next, we examine the best run so far more
closely and compare its results with those of the Zhou simulation.

Figure 7 shows the RDF profiles sampled from the simulation in significantly
thinner boundary strips. Both RDFs from Zhou and ML-based model slightly
underestimate the maximum peak of the expected RDF (obtained from the
periodic case).

We sampled the distribution of x-velocities in the same boundary strips, cf.
Fig. 8. While the estimation in the strip of thickness 1.25σ resembles the normal
distribution, (very) slight fluctuations are visible for the 0.3125σ-thick strip.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_26

https://dx.doi.org/10.1007/978-3-030-50433-5_26


Open Boundary Modeling in Molecular Dynamics with Machine Learning 9

0.0 2.5 5.0
r/

0.6

0.8

1.0

samples 80000 epochs 30000

Zhou Force
Predicted Force

(a) Regular Sampling

0.0 2.5 5.0
r/

0.6

0.8

1.0

bins 100 samples 25600 epochs 15000

Zhou Force
Predicted Force

(b) Binned Sampling

Fig. 6. Two examples from running simulations using models which were trained with
three instead of five neurons
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Fig. 7. RDF profile sampled over boundary strip of thickness (a) 1.25σ and (b) 0.3125σ
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Fig. 8. Distribution of x-velocities sampled over boundary strip of thickness (a) 1.25σ
and (b) 0.3125σ

3.3 Estimating the Sampling Properties

We further aimed at an estimate for how many samples are needed to obtain
accurate force profiles for the subsequent simulation. We therefore ran tests with
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(b) 20,000 epochs
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Fig. 9. Maximum density deviations for varying sample size using different numbers
of epochs
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Fig. 10. Density and RDF for setup ρ = 0.5 using boundary force prediction

training sample sizes ranging from 1000 to 150,000 samples. We ran theses tests
with 10,000, 20,000, and 30,000 epochs and extracted the maximum density
deviation per simulation.

The results of these experiments are shown in Fig. 9. Obviously, less than
10,000 samples is not enough to generate a valid model.

3.4 Varying State Points

We further validated our method in simulations of varying densities. For this pur-
pose, we set up two more simulations, using density values ρ = 0.5 and ρ = 0.3.
In both cases, temperature was set to T = 1.1. Simulation time was scaled up
linearly according to the base setup of ρ = 0.81 to provide comparable sampling
quality and, thus, to enable comparison with the results reported in prior sec-
tions. We did not compare the resulting models to the Zhou model, since this
model’s underlying parameter space exploration does not capture these state
points.

Figure 10(a) displays the resulting density profile of one simulation for the
case of ρ = 0.5. The periodic density profile deviates from the expected density
by 6.5%, the ML profile deviates by 5.9%. Close to the boundaries, we can still
observe slightly higher fluctuations within the ML profile. Figure 10(b) shows
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Fig. 11. Distribution of x-velocities for ρ = 0.5, boundary strip thickness 0.3125σ
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Fig. 12. Density and distribution of x-velocities for ρ = 0.3 using boundary force pre-
diction

the RDF estimate from the boundary strip of thickness 0.3125σ. The estimated
RDF fits the expected radial distribution nearly perfectly.

The estimated velocity distribution is shown in Fig. 11. Similar to the default
case ρ = 0.81, the normal distribution is basically perfectly matched.

We made similar observations for the test case with density ρ = 0.3. In this
case, the density in the periodic simulation deviates by 6.7% whereas the shown
ML model deviates by 8.2% (cf. Fig. 12(a)). The estimated velocity distribution
is again captured well near the boundary, cf. Fig. 12(b)).

3.5 Run Time Considerations

Performance tests were conducted on a small cluster at the Scientific Computing
Group, University of Hamburg. The utilized nodes contain two CPUs of type
Intel Xeon X5650 with six cores each. The size of the memory per node is 12GB.
All tests were performed in sequential mode.

Regarding the training step of our method, the number of samples plays a
considerable role. The higher the size of our sample set, the longer the training
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Setup Run time(s) Steps/s

Periodic 589.05 42.44
Reflecting 563.33 44.36
Zhou 579.04 43.18
ML, 5 neurons 617.06 40.48
ML, 3 Neurons 612.8 40.78
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Fig. 13. (a) Training times of different sampling setups. (b) Run times of different
setups, running periodic simulations or open boundary simulations with the Zhou or
ML-based models

takes to complete. Furthermore, the complexity of the model affects its run time
during training as well as during a simulation.

Table 13(a) shows the times needed for training of some of the ML models
considered in this work. Using the binning method, the training completes ca.
nine times faster. Due to the number of samples, not only the run time of one
epoch is lower, but also the overall number could be reduced while retaining the
quality of the density profile or even improving it.

Table 13(b) contains the measured run times of the different setups. The
Zhou model is slightly faster than a purely periodic simulation. The ML-based
runs are not as efficient as Zhou and yield higher run times than the periodic
version. The force computation during a simulation employing the ML model is
conducted in bulk mode. That is, at each time step the force and distance values
of each particle in the boundary regions are collected and passed at once to the
neural network. As Tensorflow is optimized for parallel computation, there is
quite some overhead expected when the tool is used in sequential mode.

4 Conclusion and Outlook

We have introduced a novel ML-based model to predict open boundary forcing.
The model is built from molecular data from a prior equilibration and thus re-
flects the molecular structure of the fluid well. It further yields accurate forcings
at acceptable computational performance, which has been demonstrated in vari-
ous tests, including a detailed comparison with the parameter space exploration-
based Zhou model. It shall be remarked that relying on a prior equilibration is
only necessary for the startup phase: in case of molecular systems, that change
dynamically over time, the ML model could be adjusted “on-the-fly” by simply
using more molecular data from the inner part of the MD domain where valid
MD information should be available. This should in principal work well, since our
analysis showed that potential perturbations in the molecular systems are very
marginal and have only been observed in close proximity of the open boundary.
Yet, enough samples need to be found in this case in a sufficiently short time
frame. This appears a promising route that shall be investigated in the future.
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We have discussed various aspects of parametrization of our ML-based model
and also provided estimates on how many samples and training epochs are re-
quired to generate valid open boundary force models, cf. Sec. 3.3. Yet, improved
explainability of the arising network weights in relation to, e.g., the impact of
thermal fluctuations or the RDFs of the fluid would be desirable.

Further research to optimize the overall neural network and improve its out-
puts, e.g. by optimizing the learning rate as briefly discussed in Sec. 3.1 would
be desirable. Employing ensemble strategies is another possibility to improve the
quality of ML-based boundary forcing. Both aspects were, however, beyond the
scope of this work.

The actual power of machine learning lies in the prediction of highly complex
systems, e.g. deducing information from higher-dimensional inputs. With the
method presented in this contribution delivering very good results, an extension
towards multi-site molecules or dynamic systems with locally varying densities
as well as further computational performance improvements would therefore be
logical next steps in our analysis and are, partly, work in progress. Since the ML-
based model can potentially be used in conjunction with arbitrary MD solvers
and is not restricted to LAMMPS that has been used in our studies, we further
plan to incorporate the model into MaMiCo, a coupling tool for hybrid molecular-
continuum simulations [9]. This would thus provide the functionality and make
it re-usable for different combinations of MD solvers and molecular-continuum
coupling algorithms in the future.

In terms of performance, we observed, besides the slight overheads of the ML
approach compared to periodic simulations, that modifications of the learning
rate could reduce the number of epochs needed for training in some of our test
scenarios. Optimization of the learning rate would, thus, be also helpful in our
case, similar to many other ML systems.
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