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Abstract. In this paper, we apply the projective integration method
to moment models of the Boltzmann-BGK equation and investigate the
numerical properties of the resulting scheme. Projective integration is an
explicit, asymptotic-preserving scheme that is tailored to problems with
a large spectral gap between fast and slow eigenvalues of the model.
A spectral analysis of the moment model shows a clear spectral gap
and reveals the multi-scale nature of the model. The new scheme over-
comes the severe time step constraint of standard explicit schemes like
the forward Euler scheme by performing a number of inner iterations and
then extrapolating the solution forward in time. The projective integra-
tion scheme is non-intrusive and yields fast and accurate solutions, as
demonstrated using a 1D shock tube test case. These observations open
up many possibilities for further use of the scheme for high-resolution
discretizations and different collision models.
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1 Introduction

The Boltzmann BGK equation is widely used to model applications in kinetic
theory, such as rarefied gases [15, 19]. It is a high-dimensional equation for the
evolution of the particle density function that describes the distribution of par-
ticles in position-velocity phase space. An efficient discretization of the BGK
equation is necessary due to its high-dimensionality. A simple mesh-based dis-
cretization in the velocity dimensions, the so-called Discrete Velocity Method
(DVM) typically requires a large number of variables and thus leads to a large
system of equations [1, 15]. Another approach is the discretization by means of
moments [19, 23]. Moments are integrals of some quantities of interest with re-
spect to the distribution functions over the velocity dimensions. These moment
models lead to smaller PDE systems and allow for more physical insight.

Both for the moment models and the DVM, the resulting PDE models are
in balance law form and typically contain a stiff right-hand side governed by a
smallness parameter ε. For small values of ε, which correspond to flow conditions
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close to the continuum regime, suitable time-stepping schemes need to be applied
to overcome the severe time step constraint posed by the stiff right-hand side.

Implicit time stepping methods can in principle be used with a very large time
step, but they are costly because they require the solution of a large non-linear
system of equations in each time step. As they use the information of all spatial
grid points for the update of each single unknown, this method may not reflect
the properties of the underlying BGK equation, which is a hyperbolic transport
problem describing a directed transport of information in our application.

Explicit time stepping methods on the other hand are fast and straight-
forward to apply but typically suffer from a severe time step constraint when
the stiff right-hand side function features multiple scales. The stability condi-
tion then poses a more severe restriction to the time step size than the typical
CFL constraint, which might otherwise be sufficient to acquire a desired level of
accuracy.

Several methods have been developed to overcome these problems. For ex-
ample, IMEX Runge-Kutta methods split the right hand side in a stiff and a
non-stiff part and apply the respective explicit and implicit solvers to each of the
parts to allow for an efficient solution [16, 5]. However, they need to be tailored
to the specific form of the right-hand side. In the context of discrete velocity
methods, we refer to [22] for an efficient method to evaluate the full Boltzmann
operator and [20, 21] which both make use of a splitting into a relaxation and a
transport stages for near-equilibrium flows.

In this paper we will use projective integration, a fully explicit, potentially
high-order scheme that is asymptotic preserving [14]. The asymptotic preserving
property means that the time step constraint of the projective integration scheme
does not depend on the stiffness parameter ε in the limit where ε tends to zero
[8]. Instead, a standard CFL-type time step constraint will be sufficient to allow
for accurate and fast solutions. The scheme is furthermore non-intrusive and can
be used with different collision models and spatial discretizations.

In this paper we present the first application of a first order scheme us-
ing projective integration for moment models. We thus combine the efficient
discretization in velocity space using moment models with the asymptotic pre-
serving discretization in time using projective integration. This is a first step
towards high-order schemes in future work.

The rest of this paper is organized as follows: in Section 2 we present a fully
non-linear, hyperbolic moment model and a linearized version thereof. In Section
3 we analyse the spectrum of the linearized, semi-discrete system to determine
the parameters of the projective integration scheme in the following Section 4.
Simulation results for a shock tube test case are presented in Section 5. The
paper ends with a short conclusion.

2 Moment Models for the Boltzmann BGK Equation

The Boltzmann BGK equation is used to model rarefied gases. It describes the
evolution of the particles’ mass density distribution function f(t, x, c), where
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x, c ∈ Rd denote the physical space and the velocity space, respectively. For the
rest of this paper we consider the 1D case (d = 1) so that the kinetic equation
reads

∂

∂t
f(t, x, c) + c

∂

∂x
f(t, x, c) =

1

ε
(fM − f) , (1)

The right-hand side operator models collisions. Several collision models are pos-
sible, but we use the simplified BGK model [2], which describes a relaxation with
relaxation time ε ∈ R+ towards the local Maxwellian fM (t, x, c) given by

fM (t, x, c) =
ρ(t, x)√
2πθ(t, x)

exp

(
− (c− u(t, x))

2

2θ(t, x)

)
. (2)

The macroscopic quantities density ρ(t, x), bulk velocity u(t, x) and tem-
perature θ(t, x) are so-called moments of the distribution function f(t, x, c) in
velocity space and they are computed via integration over velocity space

ρ(t, x) =

∫
R
f(t, x, c) dc, (3)

ρ(t, x)u(t, x) =

∫
R
cf(t, x, c) dc, (4)

ρ(t, x)θ(t, x) =

∫
R
|c− u|2 f(t, x, c) dc. (5)

For vanishing ε, Equation (1) only allows solutions that are in the kernel of
the right-hand side collision operator. These solutions are given by the standard
compressible Euler equations for ρ, u and θ. The dynamics of the kinetic equation
is governed by the relaxation speed ε with propagation speeds proportional to
1
ε , as we will see in Section 5, whereas the macroscopic quantities might evolve
on a much slower time scale. We are interested in numerical schemes that allow
for an efficient solution in the limit ε→ 0.

2.1 Hyperbolic Quadrature-Based Moment Equations (QBME)

Equation (1) is difficult to solve because of the additional microscopic velocity
dimension. A direct discretization of the microscopic velocity variable, the so-
called Discrete Velocity Method (DVM) is possible, but leads to a large system
of equations [1, 15]. A more efficient choice of variables is the discretization via
moments leading to a smaller set of moment equations [23].

The distribution function f is therefore expanded in a series of basis functions
multiplied with basis coefficients around some equilibrium state. In this paper
the expansion will be performed around local equilibrium (2) first, before we
consider a linearized version in the next section. In [7] the expansion uses a
series of Hermite basis functions

f(t, x, c) =

M∑
α=0

fα(t, x)H[u(t,x),θ(t,x)]
α (c), (6)
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for coefficients (also called moments) fα(t, x), α ∈ [0,M ], and weighted Hermite

basis functions H[u,θ]
α

H[u,θ]
α (c) = (−1)α

dα

dcα
ω[u,θ](c), α ≥ 0, ω[u,θ](c) =

1√
2πθ

exp

(
− (c− u)2

2θ

)
.

(7)
We note that the coefficients encode information about how much the distribu-
tion function deviates from the equilibrium distribution function, which is given
by the Maxwellian in Equation (2). The more coefficients are used, the better
the deviations can be represented in the weighted Hermite basis. It is the goal
of a moment model to use relatively few variables in comparison to a standard
discretization of the velocity space while still allowing for high model accuracy.
It can be attributed to the fact that the coefficients are a more clever choice of
variables than normal point values of the distribution function.

The macroscopic variables as defined in Equation (3) result in the following
additional constraints that can be easily applied

f0 = ρ, f1 = f2 = 0. (8)

Substituting expansion (6) into the kinetic equation (1) a system of equations
can be derived by either matching coefficients of the basis functions [6] or by
multiplying with a set of test functions (also called testing) [10]. The result is
an explicit set of PDEs in space and time for the unknown coefficients fα of the
expansion and the additional macroscopic variables. This set of PDEs is called
the moment model.

The whole set of variables reads wM = (ρ, u, θ, f3, f4, . . . , fM )
T ∈ RM+1.

Using this definition the moment system can be given by

∂wM

∂t
+ A (wM )

∂wM

∂x
= −1

ε
S (wM ) , (9)

with system matrix A (wM ) ∈ R(M+1)×(M+1) depending on the variables. The
vector S (wM ) ∈ RM+1 results from the corresponding discretization of the
right-hand side collision operator [12].

Following the derivation in [6], the so-called Grad model’s system matrix A
reads

A (wM ) =



u ρ
θ
ρ u 1

2θ u 6
ρ

4f3
ρθ
2 u 4

− θf3ρ 5f4
3f3
2 θ u 5

...
...

...
...

. . .
. . .

. . .

− θfM−2

ρ MfM−1
(M−2)fM−2+θfM−4

2 − 3fM−3

ρ θ u M

− θfM−1

ρ (M + 1)fM
(M−1)fM−1+θfM−3

2 − 3fM−2

ρ θ u


,

(10)
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where all other entries in the system matrix A are set to zero.
The right-hand side S is given by

S (wM ) = (0, 0, 0, f3, f4, . . . , fM ) . (11)

Unfortunately, Grad’s system (9) is not hyperbolic, as shown in [3, 4]. Nu-
merical simulations using this model might suffer from instabilities and break
down due to nonphysical values [3, 12]. New hyperbolic models have recently
been developed that overcome these problems and make an efficient solution of
Equation (1) possible. In this paper, we will use the Quadrature-Based Moment
Equations (QBME), first developed in [10]. The model was derived using a dif-
ferent framework in [6] and was extended to the multi-dimensional case in [11].
It requires only a small modification of the Grad model in (10) to ensure hy-
perbolicity while still preserving the conservation laws and the most important
physical properties of the model. For more information we refer to [9].

In comparison to Grad’s model, the QBME model adds regularization terms
in the last and the second to last equation

AQBME(M, 3) =
(M − 2) fM−2 + θfM−4

2
− M(M + 1)

2

fM
θ
, (12)

AQBME(M + 1, 3) = −fM−1 +
fM−3θ

2
, (13)

AQBME(M + 1, 4) = −3fM−2

ρ
+

3(M + 1)fM
ρθ

. (14)

Due to the additional terms, the two changed equations can no longer be
written in conservative form. However, the effect of the non-conservative form on
the solution was investigated in [3, 12] and it was found that stable and accurate
non-equilibrium solutions can be computed despite the non-conservative form.
In addition, we expect no problems for the equilibrium case ε → 0, as the non-
conservative terms then vanish.

2.2 Hermite Spectral Method (HSM)

The expansion (6) is performed around local equilibrium (ρ, u, θ), which leads
to a non-linear model. A simpler, linear model can be derived when considering
the expansion around a Gaussian distribution function instead. The expansion
then reads

f(t, x, c) =

M∑
α=0

fα(t, x)Hα(c), (15)

where the weighted Hermite basis functions Hα are defined as

Hα(c) =
1√
2π

exp

(
−c

2

2

)
Heα(c) · 1√

2αα!
, (16)

where Heα is the standard Hermite polynomial of degree α and the last factor
is chosen for normalization of the basis functions.
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Similar to the non-linear model, the following constraints hold for the linear
model

f0 = ρ, f1 = ρu, f2 =
1√
2

(
ρθ + ρu2 − ρ

)
. (17)

The linear moment model is then derived in the same way as the non-linear
model, by testing Equation (1), and can be written as

∂wM

∂t
+ A

∂wM

∂x
= −1

ε
S (wM ) , (18)

using a constant system matrix A ∈ R(M+1)×(M+1) given by

A =



1

1
√

2
√

2
. . .

. . .
√
M√

M

 . (19)

The right-hand side vector S (wM ) ∈ RM+1 is given by

Sα =

∫
R
f(t, x, c)ψα(c) dc, for ψα(c) = Heα(c) · 1√

2αα!
, (20)

using the ansatz from (15) and can be computed analytically beforehand. We
omit the details of the derivation here for conciseness.

3 Reference Splitting Scheme

In the case of the simple BGK collision operator, a first-order time splitting
scheme can be easily implemented. In a splitting scheme the computation of a
single time step with step size ∆t = tn+1− tn is formally split into two separate
steps that are performed each after the other as follows

1.
∂wM

∂t
+ A

∂wM

∂x
= 0,

2.
∂wM

∂t
= S (wM ) ,

(21)

so that the first step solves only the hyperbolic transport part of the PDE and
the second step solves only the relaxation with the right-hand side collision term.

The second step can be solved exactly for the simple BGK model, both in
the linear and in the non-linear case. We refer to [9] for more details. However,
a splitting scheme highly depends on the specific form of the right-hand side
operator and can become difficult for different (and more realistic) collision op-
erators. Furthermore, a splitting scheme is not easily extendable to higher-order
accuracy, which is a significant disadvantage if high-order solutions are necessary.
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In this paper we will thus use the splitting scheme only as a reference method
to compare it to our new projective integration scheme for moment models. For
this first application we will use a standard first-order splitting (see [12] for more
details) to compare it with the first-order projective integration method.

4 Projective Integration Scheme

Projective Integration (PI) is an asymptotic preserving time stepping scheme
consisting of an inner integrator and an extrapolation step [14]. The first order
PI scheme uses the standard forward Euler method as inner integrator, but
higher order schemes using Runge-Kutta methods have been derived, see [13].
For the description of the scheme we use that the semi-discrete version of the
model equation after spatial discretization is given by

∂wM

∂t
= Dt (wM ) , Dt (wM ) = −Dx (wM ) +

1

ε
S (wM ) , (22)

where the term Dx is the result of the spatial discretization and the second term
represents the collision operator. Note that this form does not rely on any special
form of the collision operator and it can also be used for models other than the
BGK model.

As inner integrator we use the explicit forward Euler scheme with time step
size δt for K + 1 steps

wn,k+1
M = wn,k

M + δtDt

(
wn,k
M

)
, k = 0, 1, . . . ,K. (23)

After the K + 1 inner steps a discrete derivative using the last two values is
obtained and used in an outer step to compute the value at the new time step
wn+1
M via extrapolation in time

wn+1
M = wn,K+1

M + (∆t− (K + 1)δt)
wn,K+1
M −wn,k+1

M

δt
. (24)

5 Spectral Analysis

The dynamic behavior of the semi-discrete system in Equation (22) is governed
by the eigenvalue spectrum of the right-hand side function Dt (wM ). In [14]
a spectral analysis was performed for the similar DVM model and a spectral
gap could be shown analytically. Here, we do something similar numerically for
the moment model. For the linear moment model from Equation (18) using
M = 5 and the UPRICE spatial discretization for 400 spatial discretization
points, Figure 1 shows the spectrum of the right-hand side operator.

The spectrum shows a clear spectral gap, ideally suited for projective in-
tegration. The spectral gap increases with smaller ε, such that the time step
constraint for a standard explicit Euler method becomes more and more severe.
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(a) Eigenvalue spectrum for ε = 10−2.
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(b) Eigenvalue spectrum for ε = 10−3.
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(c) Eigenvalue spectrum for ε = 10−4.

Fig. 1. The eigenvalue spectra for ε = 10−2, 10−3, 10−4 clearly show an increasing
spectral gap, which is ideally suited for the application of projective integration.

However, projective integration can be used to overcome that time step con-
straint. Following the stability criterion of the projective integration scheme [14]
and the eigenvalue spectrum of the moment model, we can choose the inner time
step size as δt = ε. Furthermore, we choose K = 2 so that three inner time steps
are performed before the extrapolation step.

6 Computational Speedup

In this paper projective integration is used to speed up simulations of moment
models close to equilibrium, where the stiffness of the model equation would
normally require an extremely small time step size. Here we want to derive an
estimate of the speedup factor when using projective integration in comparison
to a standard time stepping method.

A standard time stepping method needs to resolve the fast eigenvalues, the
time step size is thus ∆t ∼ ε. This method then needs 1

∆t ∼
1
ε time steps to

compute the solution over a unit time interval.
The projective integration method only does K + 1 small inner time steps

and then extrapolates over the remainder of a standard CFL time step size
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∆t ∼ ∆x. The projective integration method then needs K+1
∆t ∼

K+1
∆x time steps

to compute the solution over a unit time interval.
Neglecting the computational overhead of the extrapolation step, the speedup

S can be computed by the ratio of the respective number of time steps that need
to be performed. For the projective integration method, we get

S =
time steps standard method

time steps projective integration
=

∆x

(K + 1) · ε
. (25)

In the test cases below, we used ∆x = 0.001, K = 2 and up to ε = 10−5. In
this case, the speedup can thus be estimated as S = 100

3 . This is mainly due to
the larger time step of the projective integration method, which uses an outer
time step size ∆t ≈ 0.001 versus the standard method, which uses the finer
∆t = 10−5.

We note that the speedup will be significantly higher for smaller values of ε
or coarser spatial discretization, i.e. larger ∆x. This will be possible when using
higher-order spatial discretization.

7 Simulation results

7.1 Shock-tube Test Case Setup

For the numerical tests in this paper we consider a 1D shock tube test case, which
is a standard benchmark problem in rarefied gases, see [3, 12]. The shock tube fea-
tures a strong shock wave propagating forward. Close to the shock, the solution
will be in non-equilibrium if the relaxation time ε is large. However, for small
relaxation time, the solution will quickly relax to the equilibrium Maxwellian
and in the limit it can be derived easily by the well known Euler equations. It is
important for any model, to correctly predict the limit of vanishing relaxation
time, as large parts of any simulation will typically feature equilibrium condi-
tions. This is exactly the region in which the kinetic Boltzmann-BGK equation
becomes stiff and is difficult to solve. We are thus interested in a speedup of
moment models for simulations close to equilibrium like in this test case.

At t = 0, the gas is in exact equilibrium, whereas the density, velocity, and
temperature are given by

(ρ, u, θ) =

{
(7, 0, 1) if x < 0
(1, 0, 1) if x > 0

, (26)

modeling a jump in density at the discontinuity at x = 0.
The computational domain is [−2, 2]. The simulations run until tEND = 0.3

and ∆t = 0.0001 corresponds to a CFL number of approximately 0.45 on a
spatial grid discretized with 4000 cells as used in [12]. The first order, path
conservative UPRICE method from [12] is used for the spatial discretization,
see [17, 18]. The scheme needs the eigenvalues of the system matrix, but not the
eigenvectors. It is therefore computationally more expensive for the non-linear
model from Section 2.1, as the eigenvalues change throughout the simulation.
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The linear model from Section 2.2 has a constant system matrix and thus only
requires one eigenvalue computation in the beginning of the simulation. Note
that higher-order spatial discretization methods are available (for examples see
[9], but we will focus on the first order scheme for the first application of the
new projective integration method.

According to the spectral analysis in Section 5, we will use δt = ε for the
inner time step size use K = 2 for the number of inner time steps.

7.2 Hermite Spectral Method

First we verify that the projective integration method results in the same solution
as the reference method, which uses the splitting scheme. For both schemes we
use the same HSM model (18) with M = 10 on a grid using 4000 cells and outer
time step size ∆t = 0.0001, so that the only cause of difference could be the time
stepping method. Figure 2 shows the results for both ε = 10−2 and ε = 10−5.
There is no visual difference between the reference method and the projective
integration method for both values of ε.
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(a) Shock tube solution for ε = 10−2.
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(b) Shock tube solution for ε = 10−5.

Fig. 2. Reference method (grey) and projective integration (colored) yield same accu-
racy. Left axis is for ρ and p = ρθ, right axis is for u.

With the help of the projective integration method we can thus get a reliable
solution for smaller and smaller values of ε. In Figure 3, we compare the different
solutions and can see that the limit approaches the shock structure of a standard
Euler equations model. This has been shown for the discrete velocity model in
[14]. It is important to note that the runtime of the new projective integration
scheme for the HSM moment model does not depend on ε and the scheme is
thus asymptotic preserving in terms of computational cost. A standard explicit
forward Euler scheme would lead to an increasing number of time steps for
smaller values of ε to ensure stability.
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Fig. 3. The projective integration solution of HSM model approaches the Euler shock
structure for vanishing ε. The runtime of the projective integration scheme does not
depend on ε.

7.3 Hyperbolic Moment Equations

The projective integration method can readily be extended towards using the
non-linear QBME model in (9), as it requires no special treatment of the right-
hand side collision operator. In this case the non-linearity of the system matrix
is not a problem, as the system is close to equilibrium. We choose the standard
five moment case M = 4 [3, 9] and use the same settings as for the linear model
from before to obtain stability from the previous linear stability analysis. The
solutions in Figure 4 show that the QBME model gives the same solution as the
HSM model for this range of the parameter ε despite the simplicity of the linear
model. This is due to the small value of ε that leads to solutions very close to
equilibrium with no significant rarefaction effects. Due to that, the linear model
yields accurate solutions and can be used equivalently for the more complex,
non-linear model. We note that this is not the case for large values of ε, but this
is not the regime of interest for the scope of this paper. For simulations further
in the kinetic regime, we refer to [12].

8 Conclusion

We showed the first application of an explicit, asymptotic preserving scheme
for moment models based on projective integration. A linear stability analysis
showed that the projective integration scheme is ideally suited for the eigenvalue
structure due to the clear spectral gap. The spectrum is essentially the same as
in the case of a discrete velocity model and the same parameters can be used.
The projective integration scheme was validated in comparison to a splitting
scheme that is specifically tailored to the type of the collision operator. However,
the projective integration scheme is non-intrusive and does not depend on the
implementation of the right-hand side collision operator. It can thus be used
in further tests and applications using a more advanced collision operator. We
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(a) Shock tube solution for ε = 10−2.
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(b) Shock tube solution for ε = 10−5.

Fig. 4. HSM (grey) shows the same accuracy as QBME model (colored) for both
ε = 10−2 and ε = 10−5.

have consistently extended the projective integration scheme to the non-linear
moment model and achieved fast and accurate solutions. This allows for further
applications of the scheme to full high-order simulations using the non-linear
model.
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