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Abstract. Radial basis functions (RBF) enabled mesh morphing allows to adapt 

the shape of a computational grid onto a new one by updating the position of all 

the nodes. Usually nodes on surfaces are used as sources to define the interpola-

tion field that is propagated into the volume mesh by the RBF. The method comes 

with two distinctive advantages that makes it very flexible: it is mesh independent 

and it allows a node wise precision. There are however two major drawbacks: 

large data set management and excessive distortion of the morphed mesh. Two 

radial kernels are widely adopted to overtake such issues: the bi-harmonic spline 

(BHS) and the Wendland C2 (WC2). The BHS minimizes the mesh distortion 

but it is computational intense as a dense linear system has to be solved, the WC2 

leads to a sparse system but can lack in smoothness. In this paper we compare 

the two radial kernels with a specific focus on mesh distortion. A detailed insight 

about RBF fields resulting from BHS and WC2 is first provided by inspecting 

the intensity and the distribution of the strain for a very simple shape: a square 

plate with a central circular hole. An aeronautical example, the ice formation onto 

the leading edge of a wing, is then exposed adopting an industrial software im-

plementation based on state of the art RBF solvers. 

Keywords: CAE, Mesh Morphing, Radial Basis Functions. 

1 Introduction 

Radial basis functions (RBF) are a powerful mathematical tool introduced by Hardy [1] 

in the late sixties for the interpolation of scattered data in the field of surveying and 

mapping. A review of the multiquadric (MQ) approach was published by Hardy himself 

[2] twenty years later; here the author explains that the MQ is bi-harmonic for 3D prob-

lems. Since their inception RBF where adopted in many different fields and their math-

ematical framework developed [3] by exploring a variety of RBF kernels; among them 

the compact supported ones were introduced by Wendland [4]. 
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An RBF interpolation at a generic point 𝒙 (see equation 1) consists in the weighted 

summation of inter-distance interactions of the point 𝒙 with a set of given points, de-

fined sources 𝒙𝒔𝑖, where the inter-distance interaction consists in the Euclidean distance 

transformed by the radial function 𝜑(r). The weights 𝛾𝑖 are computed so that the RBF 

gets at the sources the known input values to be interpolated.  

 𝑠(𝒙) = ∑ 𝛾𝑖𝜑(‖𝒙 − 𝒙𝒔𝑖‖)
𝑁
𝑖=1  (1) 

RBF are nowadays adopted in several engineering applications [5] and are well ac-

cepted as one of the most powerful and versatile mathematical approach to manage 

mesh morphing. The RBF allows creating a scalar field that interpolates a function de-

fined on a set of source points: in the case of 3d mesh morphing a vector field is defined 

by individually interpolating the three components of the displacement known at source 

points. The RBF vector field is a point function independent from the mesh itself, all 

the points in the space receiving the field are called targets. A typical mesh morphing 

problem that can be faced using RBF consists in a three-dimensional mesh to be adapted 

according to a known displacement of the surface; surface nodes are extracted from the 

surface mesh as sources and all the nodes of the volume mesh receive the morphing 

field as targets. 

Computer Aided Engineering (CAE) is more and more demanding for advanced 

methods capable to generate and adapt computational grids for multi-physics models. 

High fidelity models are widely employed, for instance, in computational fluid dynam-

ics (CFD) and computational structural mechanics (CSM). The size of the grids daily 

adopted for CFD according to industrial best practices can be comprised of many mil-

lions of cells and, in some situation, close to one billion [6]; structured meshes of hex-

ahedrons, hybrid meshes of tetrahedrons with prisms layers at the wall and meshes of 

Cartesian polyhedrons with inflation of prisms at surfaces are common adopted options 

for CFD. For CSM applications the mesh size is about one-two order lower than CFD 

ranging from hundred thousand up to some million of nodes for the most complex cases 

[7]; parabolic tetrahedrons are in this case widely adopted and the extra complexity of 

mid-side nodes management is added. In view of mesh morphing we have to consider 

that to the complexity of the mesh typology (i.e. linear/parabolic, tetra/hexa/poly) we 

have to add special cases for management of interfaces: moving/rotating parts are com-

mon in CFD, contact connections are common in CSM. 

Mesh morphing for CAE applications is required both as a companion/replacement 

of meshing when multiple shape variations of the same component/system are required; 

this is typical of design optimization which requires the automatic update of the CAE 

grid onto new design configurations to be explored: the baseline mesh is updated onto 

the new configuration instead of generating a new mesh onto the updated geometry 

[8,9]. Morphing becomes very useful for optimization where the new shape is not 

known in advance but predicted by automatic sculpting methods as the adjoint [10,11] 

and the biological growth method [12]. Mesh morphing can furthermore help the solver 

itself as a tool to support the shape evolution (ice/snow deposition, erosion) [27], to 

enable fluid structure interaction (1-way, 2-way, structural modes embedding) [13,14] 

and to move the CAE model onto “as built” configurations surveyed. Mesh morphing 
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is also a key enabler toward the creation of reduced order models (ROM) that are 

adopted for the creation of digital twins [15]. 

Whatever is the need for mesh morphing there are common requirements to fulfill 

to set-up an effective mesh morphing approach, among them: 

 the ability to manage different element typology (linear/parabolic, tetra/hexa/poly); 

 the ability to go across interfaces (contact/rotating parts) and across partitions (dis-

tributed meshes for parallel calculations); 

 getting the adapted mesh with the minimum distortion (stretching/compression); 

 preserving the aspect ratio of cells at the boundary so that the ability to capture stress 

raisers/boundary layers is preserved; 

 adapt the mesh in a reasonable time even for very large models. 

RBF mesh morphing nicely fits above mentioned requirements because it comes 

with two distinctive advantages that makes it very flexible: it is mesh independent and 

it allows a node wise precision. Its meshless nature is due to the fact that once that the 

RBF field is defined, the mesh deformation becomes a point function; nodal positions 

are updated, regardless the attached mesh elements, and interfaces (contact/partitions 

boundaries) are implicitly preserved as the same field is received on coincident loca-

tions. The meshless nature is a distinctive feature of another widely adopted mesh 

morphing method: the free form deformation (FFD) [16]. However one of the major 

drawbacks of FFD is that a point-wise precision can’t be achieved. Mesh based meth-

ods, as for instance the use of an auxiliary FEM solution [17,18], allows to have 

pointwise control; despite this benefit their mesh based nature makes complex the man-

agement of arbitrary elements typology and of interfaces. 

In view of the great advantages of RBF, it’s clear why a great research effort has 

been invested over the last decades toward their effective implementation. There are 

however two major drawbacks to be considered: numerical complexity and deformed 

mesh quality.  

RBF requires the solution of large linear systems which size is equal to the number 

of source points. The source point count grows fast especially if a node-wise control is 

needed because large portions of the nodes on the surface mesh are used as sources. 

Most of the implementations that are considered for research purposes exploits direct 

linear solvers because a great flexibility is possible and different radial function kernels 

can be seamlessly tested. Unfortunately the numerical complexity scale up in this case 

with a cubic law and the maximum size of the RBF problem (number of sources) is 

limited to about 10 000 points. To overtake the numerical complexity limits there are 

different strategies: replacing the original cloud with a smaller one (point decimation) 

fine enough to guarantee the desired precision [19], adoption of iterative [20] solvers, 

use of the partition of unity [21], use of fast multipole expansion [22]. The best “recipe” 

for a fast and effective RBF solver is still an open issue and the acceleration extent is 

strictly related to the adopted kernel. 

The quality of the morphed mesh is a paramount and the effectiveness of defor-

mation depends on the radial kernel adopted. The distortion (stretching/compression) 

of the mesh should be limited as much as possible because the validity of the numerical 
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solution is maintained only within a certain range (which is solver related) of the ele-

ment/cell1 quality (skeweness, aspect ratio, …). Keeping a good quality usually is not 

enough; a proper spacing of the cells close to the surfaces is required for CFD meshes 

that feature layers of cells intended to properly represent the boundary layer; the same 

spacing is expected in the deformed mesh. This means that while the shape of the sur-

face is changed the deformation orthogonal to the surface itself should be minimum so 

that the boundary layers are adapted keeping a similar overall thickness and spacing. 

The aim of this paper is to provide useful insights about two specific kernels that are 

widely adopted for mesh morphing: the bi-harmonic spline (BHS) and the Wendland 

C2 (WC2). The BHS minimizes the mesh distortion and it is known to have the feature 

of “smoothest interpolant” for the three-dimensional case; it is computational intense 

because the full support of the radial function and so a dense linear system has to be 

solved. The WC2 is compactly supported and so a sparse system has to be solved; how-

ever it can lack in smoothness and the behavior close to the surfaces is strongly depend-

ent on the radius of the support.  

An overview of the studied problem is given in the first section (this introduction), 

a refresh of the math of RBF, including first derivatives calculation, is provided in the 

second section; the third section demonstrates how various RBF perform for a square 

plate with a central circular hole, the fourth section deals with an aeronautical example 

faced with an industrial software and then the fifth section wraps the study with the 

concluding remarks. 

2 Radial Basis Functions Mesh Morphing 

2.1 Radial basis functions background 

The RBF interpolation of a generic scalar field can be adopted to represent a variety of 

quantities. A generic component of a displacement field can be interpolated as 

 𝛿(𝒙) = ∑ 𝛾𝑖
𝛿𝜑(‖𝒙 − 𝒙𝒔𝑖‖)

𝑁
𝑖=1  (2) 

In this study we consider the case where the quantity to be interpolated 𝜹𝒔 is given 

at the source point locations 

 𝛿(𝒙𝒔𝑖) = 𝛿𝑠𝑖, 1 ≤ 𝑖 ≤ 𝑁  (3) 

The unknown coefficient vector 𝜸𝜹 can be computed by solving the linear system 

 𝑴𝜸𝜹 = 𝜹𝒔 (4) 

Where the interpolation matrix 𝑴 is 

                                                         
1  In this paper we use both “element” and “cell” terms for the same entity because in CSM the 

finite element method is the standard and the “element” term is commonly adopted whilst in 

CFD the finite volume method is the standard and the “cell” term is commonly adopted. 
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 𝑀𝑖𝑗 = 𝜑 (‖𝒙𝒔𝑖 − 𝒙s𝑗‖) , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁 (5) 

Table 1. Radial functions for RBF interpolation 

Full supported radial functions 

Linear spline (BHS) 𝜑(𝑟) = 𝑟 

Cubic spline (THS) 𝜑(𝑟) = 𝑟3 

Compact supported radial functions 

Wendland C0 (WC0) 
𝜑(𝑟) = (1 −

𝑟

𝑅𝑠𝑢𝑝
)
2

, 𝑟 ≤ 𝑅𝑠𝑢𝑝  

Wendland C2 (WC2) 
𝜑(𝑟) = (1 −

𝑟

𝑅𝑠𝑢𝑝
)
4

(4
𝑟

𝑅𝑠𝑢𝑝
+ 1) , 𝑟 ≤ 𝑅𝑠𝑢𝑝  

Wendland C4 (WC4) 
𝜑(𝑟) = (1 −

𝑟

𝑅𝑠𝑢𝑝
)
6

(
35

3

𝑟

𝑅𝑠𝑢𝑝

2
+ 6

𝑟

𝑅𝑠𝑢𝑝
+ 1) , 𝑟 ≤ 𝑅𝑠𝑢𝑝  

 

Different radial functions can be adopted but in this study the focus will be on the 

splines and on the Wendland ones summarized in Table 1. In the case of three-dimen-

sional spaces the interpolated function can be rewritten as 

 

 𝛿(𝒙) = ∑ 𝛾𝑖
𝛿𝜑(√(𝑥 − 𝑥𝑠𝑖x

)
2

+ (𝑦 − 𝑥𝑠𝑖y
)
2

+ (𝑧 − 𝑥𝑠𝑖z
)
2

) 𝑁
𝑖=1   (6) 

 

And can be differentiated, for instance, with respect to 𝑥 

 
∂𝛿(𝒙)

∂𝑥
= ∑ 𝛾

𝑖
𝛿 d𝜑(r)

dr

1 

2√(𝑥−𝑥s𝑖x
)
2

+(𝑦−𝑥s𝑖y
)
2

+(𝑧−𝑥s𝑖z
)
2
2 (𝑥 − 𝑥s𝑖x

)𝑁
𝑖=1   (7) 

The full gradient of the interpolated function can be computed accordingly 

 

∇𝛿(𝒙) =

(

 
 

∂𝛿(𝒙)

∂𝑥
∂𝛿(𝒙)

∂𝑦

∂𝛿(𝒙)

∂𝑧 )

 
 
= ∑ 𝛾𝑖

𝛿
∂𝜑(‖𝒙−𝒙s𝑖‖)

∂r

‖𝒙−𝒙s𝑖‖
(

𝑥 − 𝑥s𝑖x
𝑦 − 𝑥s𝑖y
𝑧 − 𝑥s𝑖z

)𝑁
𝑖=1    (8) 

2.2 RBF mesh morphing 

When RBF are used for mesh morphing the three components of a displacement field, 

that is typically assigned at a cloud of control points, here defined as RBF centers or 

source points, are interpolated in the space and used to update the nodal positions of the 

mesh nodes to be morphed.  
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{

𝑢(𝒙) = ∑ 𝛾
𝑖
𝑢𝜑(‖𝒙 − 𝒙𝒔𝑖‖)

𝑁
𝑖=1

𝑣(𝒙) = ∑ 𝛾
𝑖
𝑣𝜑(‖𝒙 − 𝒙𝒔𝑖‖) 

𝑁
𝑖=1

𝑤(𝒙) = ∑ 𝛾
𝑖
𝑤𝜑(‖𝒙 − 𝒙𝒔𝑖‖) 

𝑁
𝑖=1

  (9) 

The field is applied to process all the nodal positions to be updated. 

𝒙𝒏𝒐𝒅𝒆_𝒏𝒆𝒘 = 𝒙𝒏𝒐𝒅𝒆 + [

𝑢(𝒙𝒏𝒐𝒅𝒆)

𝑣(𝒙𝒏𝒐𝒅𝒆)

𝑤(𝒙𝒏𝒐𝒅𝒆)
]  (10) 

The local deformation due to the morphing field can be inspected by computing the 

derivatives of the three components of displacement obtaining the strains as follows 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
   𝜀𝑦 =

𝜕𝑣

𝜕𝑦
   𝜀𝑧 =

𝜕𝑤

𝜕𝑧
   𝜀𝑥𝑦 =

𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
  𝜀𝑦𝑧 =

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
  𝜀𝑥𝑧 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
 (11) 

The definition of the RBF problem, i.e. the arrangement of the cloud of RBF sources 

and their input values, is the key enabler for RBF based mesh morphing and, consider-

ing its meshless nature and the great flexibility offered by the RBF mathematics, there 

are a variety of options to impose a desired morphing action. An overview of RBF mesh 

morphing strategies is given in [23], [24], a deeper presentation about the use of RBF 

mesh morphing in industrial applications can be found in [25]. Among such a variety 

of mesh morphing paradigms the simpler one, which is the easiest to be automated, 

consists in the usage of all the nodes (or a subset) onto the surfaces as sources [26]. For 

the sake of simplicity the study herein presented is based on such approach. The exam-

ple of Fig. 1 demonstrates how the mesh of a notched bar can be updated controlling 

the radius of the notch. In this case the new CAD representation allows to define the 

positions of the RBF sources. An uniform spacing is imposed an all the curves of the 

original geometry; the deformed positions of sources are then computed onto the up-

dated CAD by keeping the same parametric distribution along the curve. The RBF field 

produced by source points is then used to update all the nodes of the mesh. 

  

 

Fig. 1. The notched bar is reshaped adopting RBF mesh morphing. The nodes on all the curves 

are updated onto the new geometrical model keeping the same parametric spacing along the 

curves. 
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3 A square plate with a circular hole 

The first application faced to understand how the different radial functions can handle 

mesh morphing consists in a simple geometry: the square plate (1.0 m side) with a 

circular hole (0.2 m radius) represented in Fig. 2. 

  

Fig. 2.  Square plate with a circular hole: the nodes on the curves are used to define the RBF 

sources, the nodes of the mesh are the morphing targets. FEM mesh on the left, FEM nodes in 

original and morphed position on the right.  

The implementation of this RBF mesh morphing demonstrator is comprised of two 

parts. The mesh morphing set-up is defined according to a universal pre-processor for 

FEA applications, the NX Femap in this case. The mesh is exported in a readable ASCII 

format (Nastran data deck in this example) so that the full mesh (nodes and elements) 

together with boundary conditions (constrained nodes with prescribed displacements) 

can be quickly translated. The second part is in this case a Mathcad application that 

implements basic RBF according to [5] and provides a quick bench to play around with 

the math and with obtained mesh morphing. This implementation is good for investi-

gate the method thanks to great flexibility provided, but is not intended to be used for 

the assessment of numerical performances. 

3.1 Changing the diameter of the hole 

All the nodes belonging to the curves on the boundary are in this case used as RBF 

sources. The ones on the squares are kept fixed while the ones of the hole are moved 

radially of 0.1 m so that the radius is changed from 0.2 m to 0.3 m. The effect of the 

radial functions is firstly investigated by generating a uniform map of points in the 

square (100 x 100 samples). The surface plot of the 𝜀𝑦 strain is then generated for all 

the points with the exception of the ones inside the circle for which a zero value is 

imposed. The surface plots of Fig. 3 (top BHS and THS, bottom WC2 with support 

radius 0.2 m and 0.1 m) are all with the same scale (-2, 1). We can clearly notice that, 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8
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as expected, the maximum strain is 0.5 for all the situations: it is the hoop strain im-

posed at the circle and it occurs along the x direction. As far as the minimum strain, 

this is related to the compression of the cell required to accommodate the morphing, 

and it has a peak along the y direction (pure radial on the circle). The minimum value 

represents the severity of element compression due to morphing. It is clearly growing 

moving form BHS to THS and becomes more and more severe with WC2, especially 

if a small support radius is selected. 

 

 

 

Fig. 3. Map of the 𝜀𝑦 strain for the BHS (top left), THS (top right) and WC2 with support ra-

dius 0.2 m (bottom left) and 0.1 m (bottom right) 

A better insight can be gained by plotting the 𝜀𝑦 strain along the vertical segment 

that starts from the midpoint of the bottom side of the square and ends at the intersection 

with the circle (Fig. 4). In this comparison also the WC0 and WC4 functions are in-

cluded. The value of the 𝜀𝑦 strain at the intersection with the circle for BHS, THS is 

respectively: 0.04, 0.109; its values with support radius 0.1 m for WC0, WC2, WC4 are 

respectively: 0.276, -0.242, -0.244; its values with support radius 0.2 m for WC0, WC2, 

WC4 are respectively: -0.093, -0.235, -0.238. 

The ability of the RBF for a successful adaption of the mesh is investigated by plot-

ting the minimum quality of the triangles (i.e. the ratio between the inner circle and the 

outer circle for each triangle) as a function of the deformation intensity (Fig. 5). The 

chart for BHS and THS is very similar so only BHS is plotted, the WC2 with radius 0.2 

m is at the limit whilst the case of WC2 with radius 0.1 m (Fig. 6 right) produces neg-

ative quality at an half of the intensity. 
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Fig. 4. Chart of 𝜀𝑦 along the path highlighted in the figure for BHS, THS, WC0, 

WC2 and WC4 (support radii 0.1 m and 0.2 m). 

 

 

Fig. 5. Chart of minimum mesh quality as a function of the deformation intensity for the BHS   

(left) and for the WC2 with support radius 0.2 m (right) 

To better understand the effect of the support radius for the WC2 a larger value has 

been considered, 0.4 m, the Fig. 6 (right) shows that in this case a valid mesh can be 

achieved for the full interval. The case of 0.1 m is plotted as well to show how the 

quality is strictly related to the support radius. It’s worth to notice that such large sup-

port radius allows to add the long distance interactions; the benefit of generating sparse 

system will be in this case reduced or lost. 
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Fig. 6. Chart of minimum mesh quality as a function of the deformation intensity for the WC2 

with support radius 0.4 m (left) and for the WC2 with support radius 0.1 m (right) 

4 Industrial example 

The application shown in this section is tackled adopting an industrial software imple-

mentation: the RBF Morph module for the ANSYS Fluent CFD solver [25]. RBF 

Morph allows to set-up RBF mesh morphing problems with a variety of methods in-

cluding the simple ones relevant for this study. The software features a fast RBF solver 

that comes with specific acceleration for the BHS. A library of Wendland functions is 

available as well.  

4.1 Ice profile on an aircraft wing airfoil 

 

Fig. 7. Lateral view of the CFD mesh (left) with a detail of the mesh around the airfoil profile 

(right). Mesh vertexes at the walls are used as RBF sources (red points). 

The study presented in this section refers to the problem studied in [27, 28]. Mesh 

morphing is adopted to simulate the growth of ice; advanced CFD simulations coupled 
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with icing models allow to compute the distribution of ice thickness onto the surfaces. 

The ice profile has an effect on the fluid movement and can’t be neglected if the shape 

change is relevant. In the icing workflow the mesh is adapted onto the new “as iced” 

shape after a certain number of iterations. The CFD model of the 2D geometry is 

meshed in 3D as a single layer of hexahedrons; the mesh is represented in Fig. 7 where 

a detail of the mesh around the airfoil profile is shown. The chord length of the wing is 

1 m and the thickness is 0.12 m. It’s worth to notice that, as anticipated in the introduc-

tion, the spacing of the cells close to the wall is defined to capture the boundary layer. 

A key feature of the mesh adapted onto new shapes is to preserve such spacing similar 

to the one of the baseline mesh. 

The mesh morphing set-up can be appreciated in Fig. 7 and in the detail of Fig. 8 

where the shape of the ice profile is shown. 

 

Fig. 8. Detail of the controlled sources that define the ice nose profile. 

The mesh morphing behavior depends from the radial function. In Fig. 9 the BHS is 

compared with the WC2 with support radius 0.1 m. The figure clearly shows the local 

nature of the compact supported RBF; it comes with lighter computational efforts, es-

pecially if a sparse solver is adopted; remote points on the inlet outlet walls could in 

this case deleted as there is no interaction. The BHS allows instead to distribute the 

deformation over the full domain at the cost of full long distance interactions and a 

dense interpolation matrix. 

 

Fig. 9. Morphed mesh around the ice nose for the BHS (left) and the WC2 with support radius 

0.1 m (right). 
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Fig. 10. Detail of the morphed mesh for the BHS (top left) and the WC2 with support radius  

0.5 m (top right), 0.3 m (bottom left) and 0.1 m (bottom right). 

The effect of the radial function can be visually inspected ine Fig. 10 where a detail of 

the deformed mesh is represented in overlay with the baseline one. To have a quanti-

tative metric of mesh distortion close to the wall the distance from the surface and the 

fifth layer of cells is measured along the horizontal direction starting from the nose of 

the leading edge. Such distance on the baseline mesh is 21.7 mm and, after morphing, 

becomes 22.3 mm for the BHS, 28.9 mm for the WC2 with radius 0.5 mm, 27.5 mm 

for the radius 0.3 mm, 17.5 mm for the radius 0.1 mm. Adopting a radius of 0.15 mm 

the distance becomes 22.7 mm. 

5 Conclusions 

In this paper a brief introduction about RBF mesh morphing is given with a special 

focus on the selection of the radial function. Among the many available options two 

well adopted ones have been considered in detail: the BHS and the WC2. The first 

example examined is a very simple mesh comprised of triangular elements representing 

a square plate with a circular hole. The deformation fields are in this case examined in 

detail for BHS, WC2 with various support radii and for THS, WC0, WC4 as well. The 

study clearly shows that the radial function has an important effect on how defor-

mations are distributed and on their peaks. A successful morphing is obtained with BHS 

and THS whilst the success of the WC2 depends from the radius, if too small values 

are adopted the morphed mesh results to have reversed cells. With increased radii (0.1 

m, 0.2 m, 0.4 m) the filling ratio of the matrix increases (4.0%, 7.9%, 23.7%) together 

with the linear system solving effort. 
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An industrial aeronautical application is then faced. In this case the morphing action 

is intended to adapt the airfoil so that a nose due to ice stacking is added to the leading 

edge of a wing profile. Inspected radial functions (BHS and WC2) allows to get a suc-

cessful morphing for all the examined combinations of parameters. Also for this appli-

cation the deformation intensity is strongly dependent from the radial function. A qual-

itative comparison between global supported BHS and compact supported WC2 with 

support radius 0.1m is firstly given showing the differences between the global and 

local morphing. The effect of the support radius is then investigated by examining how 

the spacing of first five layers of cells close to the leading edge nose evolves after 

morphing. The BHS allows to preserve such a spacing with a variation (small incre-

ment) that is less than 3%; as far as the WC2 is concerned, such variation is strongly 

affected by the radius. The smaller radius considered (0.1 m) results in a reduction of 

such distance of about 20%; the larger one produces an opposite effect with an incre-

ment of about 33%. A proper tuning of the radius (0.15 m) allows to almost preserve 

the distance with an increment lower than 5%. 

The numerical experiments presented in this paper support what is well known from 

practical experience in industrial applications of mesh morphing. BHS, if compared 

with WC2, allows to get less distortion, a better overall quality and a good preservation 

of mesh spacing close to the boundaries. With WC2 the results are strongly affected by 

the support radius. The BHS, on the other hand, produces a full populated linear system 

and requires far source points to limit the morphing field not needed with the WC2 that, 

thanks to the compact support, produces a decaying morphing field. 
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