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Abstract. In this paper, a high order mesh-free continuation for non-
linear elasticity problems is presented. This proposal consists to intro-
duce the Weighted Least Squares (WLS) in a High Order Continuation
(HOC). The WLS has been employed to create shape functions using
a local support domain. The HOC permits to transform the nonlinear
problems in a succession of linear problems of the same tangent matrix.
A strong formulation of the problem is adopted to avoid the numerical
integration and mesh generation. In this work, a numerical study has
been conducted in nonlinear elasticity problems in order to study the
behaviour and stability of the proposed approach. Several examples are
investigated numerically in order to demonstrate the robustness and ef-
ficiency of the proposed approach. This proposed approach has shown
its efficiency in management of complex geometries and irregular nodal
distributions with respect to other approaches.

Keywords: Nonlinear elasticity · High Order Continuation · Weighted
Least Squares · Strong formulation · Irregular nodal distributions .

1 Introduction

In the recent years, many authors have shown the interest in developing mesh-
free methods to overcome some difficulties. These methods provide the possibility
to avoid mesh generation and connectivity between the nodes which require a
considerable computation time. Nevertheless, not all mesh-free methods have this
advantage. They are divided in two categories. The first one concerns the mesh-
free methods based on weak formulation that still require a background mesh
like the Diffuse Element Method (DEM) [1], Element Free Galerking(EFG) [2]
and Point Interpolation Method (PIM) [3] etc. The second category of mesh-free
methods is based on strong formulation. This category don’t need a background
mesh and the numerical integration [4, 5].

The Weighted Least Squares (WLS) approximation is wildly used in data
fitting [6]. Wallstedt et al. [7] took advantage of the concepts of weighted least
squares surface estimation and implicit surface definition to more precisely de-
fine the region of integration for solid mechanics simulations that are performed
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within a PIC framework. Onate et al. [8] presented an approach termed generi-
cally the ’Finite Point Method’ based on a Weighted Least Square Interpolation
of point data and point collocation for evaluating the approximation integrals.
Baeza et al. [9] have presented a technique based on the application of a vari-
ant of the Lagrange extrapolation through the computation of weights capable
of detecting regions with discontinuities. Recently several authors developed a
high order continuation using the Moving Least Squares approximation [10] as
a discretization method under a strong formulation to solve various non linear
problems [11–19]. Other authors used a high order continuation using Radial
Point Interpolation method under a strong formulation [20].

In this paper, a new numerical approach is proposed. This approach com-
bines a high order continuation [21] and the Weighted Least Squared(WLS) as
a discretization method. Thanks to the development of the main variables into
Taylor series, non-linear elastic problem is transformed into a succession of linear
differential equations with the same tangent operator followed of a continuation
technique is used to obtain the whole solution. In this work, the proposed ap-
proach has been referred to it as HOC-WLS. The performance of this proposed
approach is illustrated on examples of non-linear elasticity problems. A compari-
son has been held between the proposed approach, the High Order Continuation
coupled with Moving Least Squares (HOC-MLS) and the High Order Continu-
ation coupled with Finite Element Method (HOC-FEM).

2 Description of Weighted Least Squares (WLS) and
Moving Least Squares (MLS) methods

In this section, we present in detail the description of the approximations by the
Weighted Least Squares and by the Mobile Least Squares methods.

2.1 Weighted Least Squares approximation

The Weighted Least Squares (WLS) approximation is highly used for data fitting
[6]. The approximation uh(x) of a field u(x) at a point x by WLS in an influence
domain Ω is given by:

uh(x) =
∑m
i=1 pi(x)ai = < p(x) > {a} (1)

where < p(x) >=< p1(x), p2(x), · · · , pm(x) > is a vector of monomial basis
functions, with m is the number of monomials and t{a} =< a1, a2, · · · , am > is
a vector of the unknown constant coefficients. The most used vector of monomial
basis functions is defined as follows :

m = 3 p = < 1, x, y >

m = 6 p = < 1, x, y, xy, x2, y2 >

m = 10 p = < 1, x, y, xy, x2, y2, x2y, xy2, x3, y3 >

m = 15 p = < 1, x, y, xy, x2, y2, x2y, xy2, x3, y3, x3y, xy3, x4, y4 >

(2)
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To determine the vector of constant coefficients {a} in equation (1), we select
n nodes in the local support domain for the approximation. We can solve the
equation (1) for all nodes in the support domain using a Weighted Least Square
(WLS) method by minimizing the weighted discrete L2 norm :

J =
∑n
i=1 wi

(
uh(xi)− u(xi)

)2
(3)

where wi is the weight function associated to the node i and n is the number of
nodes in the support domain. We note that weight functions plays an important
role in constructing the WLS shape function. We should note that the weights
used here are considered constant i.e they do not depend on x. They can be
computed from any weight function with the bell shape [6].

For an arbitrary point x, the vector {a} is chosen to minimize the weighted
residual. The stationary condition of the quadrature form J is given by :

∂J
∂{a} = 0 (4)

After the calculation, the stationarity condition (4) can take the following form:

[A]{a} = [B]{U} (5)

where the matrices [A] and [B] are defined by:

[A] = T [Pm][w][Pm] ; [B] = T [Pm][w] (6)

where [Pm] is a matrix of order n×n evaluated at all nodes of influence domain,
[w] is the diagonal matrix constructed from the weight constants. The vector {U}
collects all nodal unknowns. The resolution of equation (5) gives the following
expression of the vector {a}:

{a} = [A]−1[B]{U} (7)

Using equation (7), the local approximation uh(x) of equation (1) is written as
follows:

uh(x) = < φ(x) > {U} (8)

where the vector of shape functions < φ(x) > and its derivatives are defined as
follows :

< φ(x) > = < φ1(x), φ2(x), · · · , φn(x) > = < p(x) > [A]−1[B]

< φ(x),i > = < φ1,i(x), φ2,i(x), · · · , φn,i(x) > = < p,i(x) > [A]−1[B]

< φ(x),ij > = < φ1,ij(x), φ2,ij(x), · · · , φn,ij(x) > = < p,ij(x) > [A]−1[B]
(9)

where the symbol (•),i denotes the derivative with respect to the ith coordinate
and the symbol (•),ij denotes the derivative with respect to ith and to jth coor-
dinates. It should be noted that the vector {a} is constant and the derivatives of
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the matrices [A] and [B] are null. This leads to a considerable reduction in com-
putation time. Under a strong formulation, the shape function can be derived
twice or more and we notice when the matrix [A] is differentiable and it’s deriva-
tives increase the instability of the solution. If the matrix [A] is constant, the
degree of instability of the solution decreases. This effect has been investigated
in the numerical examples.

The shape functions so constructed do not have the Kronecker delta function
property, which can cause difficulties in imposing the boundary conditions, [6]. In
this case, the collocation methods are necessary [6] to overcome this difficulty.
Note also that the WLS shape functions are compatible only in the influence
domain rather than in the global domain. This is not a problem when the WLS
shape functions are used in the local weak-form methods or collocation methods.
But, care needs to be taken when it is used in a global weak-form formulation
for which the Moving Least Squares method is chosen of a smart manner [6].
Fortunately in this paper we are using the WLS under a strong formulation
(mesh-free collocation methods) and a local support domain.

2.2 Moving Least Squares approximation

The Moving Least Squares (MLS) method is an efficient numerical method that
is classed as a meshless approach that have a highly accurate approximation.
Due to the method flexibility, numerous authors have used it to solve a large
number of problems [10, 6]. For the implementation of this method, we use the
same procedure as presented in section 2.1. In this case, the approximation uh(x)
is defined as follows :

uh(x) =
∑m
j=1 pj(x)aj(x) = < p(x) > {a(x)} (10)

In the same way as before, the weighted residual is constructed and minimized
with respect to the vector {a(x)} which depends on the point x in this case. In
addition, in this case the weighted function depends on the variable x. In the
same manner as in section 2.1, the vector {a(x)} is the solution of the following
system:

[A(x)]{a(x)} = [B(x)]{U} (11)

where the matrices [A(x)] and [B(x)] are defined by:

[A(x)] = T [Pm][WI(x)][Pm] ; [B(x)] = T [Pm][W (x)] (12)

and {U} is the vector that collects the nodal unknowns of the influence domain.
We should note that the matrix [A(x)] is not always invertible and depends
on the nodal distribution inside the support domain. Assuming that [A(x)] is
invertible, the vector {a(x)} is given by:

{a(x)} = [A(x)]−1[B(x)]{U} (13)

Substituting the equation (13) in equation (10) leads to:

uh(x) =< φ(x) > {U} (14)
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In this case, the vector of shape functions < φ(x) > and its derivatives are
defined as follows :

< φ(x) > = < p(x) > [A(x)]−1[B(x)]

< φ,i(x) > = < p,i(x) > [A(x)]−1[B(x)]+ < p(x) > [A,i(x)]−1[B(x)]

+ < p(x) > [A(x)]−1[B,i(x)]

< φ,ij(x) > = < p,ij(x) > [A(x)]−1[B(x)]+ < p,i(x) > [A,j(x)]−1[B(x)]

+ < p,i(x) > [A(x)]−1[B,j(x)]+ < p,j(x) > [A,i(x)]−1[B(x)]

+ < p(x) > [A,ij(x)]−1[B(x)]+ < p(x) > [A,i(x)]−1[B,j(x)]

+ < p,j(x) > [A(x)]−1[B,i(x)]+ < p(x) > [A,j(x)]−1[B,i(x)]

+ < p(x) > [A(x)]−1[B,ij(x)]
(15)

Properly constructed MLS shape functions are compatible and consistent with
the order of polynomials included in the formulation. These shape functions do
not have the Kronecker delta function property because they are not interpola-
tion functions.

3 Strong form formulation of two-dimensional nonlinear
elastic problems

We consider a two dimensional elastic problem described by the equilibrium
equations and boundary conditions. Let Ω be the domain occupied by a two
dimensional solid, ∂Ωu and ∂Ωf are complementary portions of ∂Ω in which
the Dirichlet and Newman conditions are applied. The equilibrium of this solid
is governed by the following matrix equations :

[div]{T} = 0 in Ω

[N ]{T} = λ{f} in ∂Ωf

{u} = λ{ud} in ∂Ωu

(16)

where the matrices [div] and [N ] are given by:

[div] =

[
∂
∂x 0 ∂

∂y 0

0 ∂
∂y 0 ∂

∂x

]
; [N ] =

[
Nx 0 Ny 0
0 Ny 0 Nx

]
(17)

{T} is the vector containing all the components of the first Piola-Kirchhoff stress
tensor, Nx and Ny are the components of the normal vector outward the bound-
ary ∂Ωf , λ is a control parameter, {ud} is the imposed displacement on Ωu and
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{f} is the stress vector applied on Ωf . The relation between the first and second
Piola-Kirchhoff stress tensors and the constitutive law are represented by the
following equations: 

{T} = ([III] + [B(θ)]){S}

{S} = [D]{γ}

{γ} = ([H] + 1
2 [A(θ)]){θ}

T {θ} = < ∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y >

(18)

The matrices [D], [H], [A(θ)], [III] and [B(θ)] are defined as follows [20] :

[D] = E′

1−ν′2


1 ν′ 0

ν′ 1 0

0 0 (1−ν′)
2

 ; [H] =


1 0 0 0

0 0 1 1

0 1 0 0

 ; [III] =



1 0 0

0 1 0

0 0 1

0 0 1



[A(θ)] =


∂u
∂x 0 ∂v

∂x 0

0 ∂u
∂y 0 ∂v

∂y

∂u
∂y

∂u
∂x

∂v
∂y

∂v
∂x

 ; [B(θ)] =



∂u
∂x 0 ∂u

∂y

0 ∂v
∂y

∂v
∂x

0 ∂u
∂y

∂u
∂x

∂v
∂x 0 ∂u

∂y



(19)

where u and v describe respectively the horizontal and vertical displacements,
[D] is the elasticity matrix and {γ} is the strain vector. For a plane stress E′ = E
and ν′ = ν and for a plane strain E′ = E

(1−ν2) and ν′ = ν
1−ν2 with E is the Young

modulus and ν is the Poisson ratio.

Finally, we have obtained a nonlinear problem that requires a resolution
numerical method. For this effect, we have proposed a high order continuation
coupled with the Weighted Least Squares method HOC-WLS and with Moving
Least Squares method HOC-MLS to solve this nonlinear problem.

4 Resolution strategy

The solution of the problem governed by equations (16) and (18) is sought un-
der the Taylor series expansion truncated at order P with respect to the path
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Solving non-linear elasticity problems by a WLS high order continuation 7

parameter ”r” [21, 22]: 

{T} = {T0} +
∑P
i=1 r

i{Ti}

{S} = {S0} +
∑P
i=1 r

i{Si}

{γ} = {γ0} +
∑P
i=1 r

i{γi}

{u} = {u0} +
∑P
i=1 r

i{ui}

λ = λ0 +
∑P
i=1 r

iλi

(20)

where the terms with the subscript 0 represent the initial solutions of the starting
point of each solution branch and the terms with the subscript i are the solutions
at each order i. Injecting the development (20) in equations (16) and (18), we
have obtained a succession of linear problems which have the same tangent
operator. This succession of linear problems is written as follows: Problem at
order i = 1

[div]{T1} = {0} in Ω

[N ]{T1} = λ1{f} on Ωf

{T1} = ([III] + [B0]){S1}+ [B1]{S0} in Ω

{S1} = [D]{γ1} in Ω

{γ1} = ([H] + [A0]){θ1} in Ω

{u1} = λ1{ud} on Ωu

(21)

Problem at order 2 ≤ i ≤ P

[div]{Ti} = {0} in Ω

[N ]{Ti} = λi{f} on Ωf

{Ti} = ([III] + [B0]){Si}+ {Tnli } in Ω

{Si} = [D]{γi} in Ω

{γi} = ([H] + [A(θ0)]){θi}+ {γnli } in Ω

{ui} = λi{ud} on Ωu

(22)

where the terms with the superscript nl are found using the solutions at the pre-
vious orders. The approximation of the unknown {ui} using WlS approximation
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is given by:
{ui} = [φ(x)]{Un} (23)

where n is the number of nodes inside the support domain, [φ(x)] is the matrix
of the shape functions and {Un} is the vector collecting the nodal unknown dis-
placements in the support domain. Taking into consideration the approximation
of the unknown in (23) and after substitution and assembly technique, we get the
discrete problems of equations (21) and (22) completed by the pilotage equation
in the following compact form :

Problem at order i = 1 :

 [KT ]{U1} = λ1{F}

< U1 > {U1}+ λ21 = 1

Problem at order 2 ≤ i ≤ P :

 [KT ]{Ui} = λi{F}+ {Fnli }

< Ui > {U1}+ λiλ1 = 0

(24)

where [KT ] is the tangent stiffness matrix evaluated at the initial solution ({T0},
{S0}, {U0}, {γ0}), {Fnli } is a right hand side that depends on the previous orders
and {Ui} is the vector of unknown nodal displacements at each order i. The
Taylor series expansion of equation (20) has a validity radius ”rmax” given by :

rmax =

(
ε
‖ {U1} ‖
‖ {UP } ‖

) 1
P−1

(25)

where ε is a given tolerance parameter.

5 Numerical examples and discussions

In this section, the robustness and efficiency of the proposed approach has been
putting to the test. To compute the shape functions in each examples, the trun-
cated Gauss-type distribution is used as a weight function.

w(q) = e−(
q
c
)2−e−( 1

c
)2

1−e−( 1
c
)2

q ≤ 1

w(q) = 0 q > 1

(26)

the influence domain for all nodes is a circle with a varying radius r = h×dmax,
q = di/r, di =‖ x − xi ‖, h is controlled by the user and dmax is the distance
between two successive nodes. (see figure 1). In the case of a nodes irregular
distribution inside a varying influence domain, we measure dmax only for the
points inside this domain.

The obtained solutions of each problem will be verified by computing the
residual logarithmic norm log10(‖ Res ‖) of problem (16) via inserting the ob-
tained solution of equation (20).
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r

:nodesinsidethesupport domaine. :point of interest

di

Fig. 1. Influence domain of a point

5.1 Two dimensional elastic plate in bending

To investigate the convergence of the two approaches, geometrical nonlinearity is
considered in this example. A two dimensional plate is clamped on the left hand
side and subjected to loading λF on the right hand side, with F = 1N . The
mechanical and geometrical characteristics of the plate are: length L = 100mm,
height l = 10mm, Young’s modulus E = 210GPa and Poison’s ratio ν = 0.3.
The comparison has been executed with same control parameters of the both
approaches for various values of parameter h, the truncation order P = 15,
the tolerance parameter ε = 10−6, a shape parameter c = 0.2 and fixed nodal
distribution 605 and for HOC-FEM approach as the reference solution, we take
825 T6 elements. In table 1, we present the validity range ”rmax” and the solution

(a) Two dimensional elastic plate

0 10 20 30 40 50 60 70 80 90 100 110

0

5

10

15

(b) Nodal distribution

Fig. 2. Two dimensional elastic plate and nodal distribution

quality measured by ”log10(‖ Res ‖)” obtained by HOC-WLS approach for
different numbers of monomial basis and parameter h. In this table, we remark
that the proposed approach converges from h = 2.3 for the quadratic basis
while for cubic and quartic basis it converges from h = 2.8. When this approach
converges, the validity range is almost constant. In table 2, we present the validity
range ”rmax” and the solution quality ”log10(||Res||)” obtained by HOC-MLS
approach for different numbers of monomial basis and parameter h. In this table,
we remark that the HOC-MLS approach converges for the values 2.3 ≤ h ≤ 3 for
the quadratic basis while for cubic basis it converges only for h = 3. The HOC-
MLS approach diverges always for quartic basis. When this approach converges,
the validity range is almost constant.
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Table 1. Effects of parameters of HOC-WLS on the validity range and the solution
quality

basis type Quadratic basis Cubic basis Quartic basis

h rmax log10(||Res||) rmax log10(||Res||) rmax log10(||Res||)
2 637.54 diverge 976.57 diverge 0.91 diverge

2.3 678.63 -3.95 685.12 diverge 211.10 diverge
2.5 638.82 -4.59 583.56 diverge 634.11 diverge
2.8 639.61 -4.67 648.32 -4.58 410.65 -2.87
3 640.36 -4.68 678.69 -3.39 537.70 -3.01

3.5 643.27 -4.66 620.88 -4.29 456.87 -5.13
4 648.77 -4.54 573.36 -4.75 683.45 -3.35

4.5 658.52 -4.26 649.59 -3.69 641.42 -4.45

Table 2. Effects of parameters of HOC-MLS on the validity range and the solution
quality

Basis type Quadratic basis Cubic basis Quartic basis

h rmax log10(||Res||) rmax log10(||Res||) rmax log10(||Res||)
2 774.78 diverge 188.81 diverge 37.04 diverge

2.3 667.08 -3.79 31.62 diverge 22.17 diverge
2.5 637.67 -4.45 124.08 diverge 580.49 diverge
2.8 642.63 -4.49 255.19 diverge 336.27 diverge
3 642.98 -4.44 588.97 -4.61 319.49 diverge

3.5 195.19 diverge 595.89 diverge 634.96 diverge
4 80.16 -diverge 381.12 diverge 183.50 diverge

4.5 635.83 diverge 349.34 -2.11 205.55 diverge

In figure 3, we plot the load-displacement curve obtained by HOC-WLS,
HOC-MLS and HOC-FEM algorithms. The horizontal displacement u and the
vertical displacement v are plotted at the interest point. The HOC-WLS and
HOC-MLS algorithms are in good agreement with the reference solution obtained
by HOC-MEF algorithm. However, the HOC-WLSM algorithm shows a better
solution quality than that of HOC-MLS algorithm.

5.2 Two dimensional plate under traction load

We consider a two dimensional plate with a length L = 100mm and a height
l = 10mm. The structure is clamped at the left hand side x = 0 and subjected
to a loading at the right hand side x = 100 (see figure 4a). The mechanical
properties are : Young’s modulus E = 210GPa and Poison’s ratio ν = 0.3. We
adopt the following numerical parameters: a truncation order P = 15, a tolerance
parameter ε = 10−8 and a shape parameter c = 0.2. The domain occupied by
the plate is replaced by 583 nodes irregularly distributed (see figure 4b). For the
reference solution, 3825 T6 elements are used.

The figure 5 represents the load-displacements curves at the interest point
(x = 100, y = 50) obtained the both mesh-free approaches and by the reference
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(a) Load-displacement curve (b) Residual-load curve

Fig. 3. Load-displacement and residual-load curves at the registration point (x =
100, y = 10) for a quadratic basis and h = 2.5
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(b) Irregular nodal distribution

Fig. 4. Two dimensional elastic plate under traction load and irregular nodal distribu-
tion

algorithm.The horizontal displacement u and the vertical displacement v are
plotted at the interest point. Even when using an irregular nodal distribution,
the load-displacement curve computed by the HOC-WLS is in a good agreement
with the reference solution. Whereas the load-displacement curve obtained by
HOC-MLS algorithm could not reach the same load as the proposed approach
with the same number of steps. This shows that the MLS approximation does
not give the same solution when the nodes are distributed irregularly.

5.3 Two dimensional plate with three holes

In this numerical study, the effect of complex geometry on the proposed approach
is tested. Two dimensional plate with three holes is considered which is clamped
on the left hand side x = 0 and subjected to a load λF on the top hand side
y = l (see figure 6a). The mechanical and geometrical properties are : Young’s
modulus E = 210GPa, Poison’s ratio ν = 0.3, Length L = 100mm, height
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(a) Load-displacement curve (b) Residual-load curve

Fig. 5. Load-displacement and residual-load curves at the registration point (x =
100, y = 50)

l = 10mm and radius of each hole is a = 3mm. We adopt the following numerical
parameters: a truncation order P = 15, tolerance parameter ε = 10−8 and a
shape parameter c = 0.2. The domain occupied by the plate is replaced by
1030 nodes (see figure 6b). For the reference solution a 1784 T6 elements are
used. In figure 7, the load-displacement curve is plotted at the interest point

x

y

a aa l

𝜆𝐹

L

(a) Two dimensional plate with three holes
0 10 20 30 40 50 60 70 80 90 100 110

0

5

10

(b) Nodal distribution of two dimensional
plate with three holes

Fig. 6. Two dimensional plate with three holes and nodal distribution

(x = 100, y = 5).The horizontal displacement u and the vertical displacement
v are plotted at the interest point. The obtained solution is compared to HOC-
MLS approach and the reference solution. From figure 7a, the obtained solution
is in a good agreement with the reference solution, while the one obtained by
HOC-MLS diverges. In figure 7b, the proposed approach shows a good solution
quality than the HOC-MLS approach.
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(a) Load-displacement curve (b) Residual-load curve

Fig. 7. Load-displacement and residual-load curves at the interest point (x = 100, y =
5)

6 Conclusion

A new approach for non-linear elasticity is presented in this work. This approach
is based on the WLS approximation and a High Order Continuation under a
strong formulation (HOC-WLS). The HOC-WLS requires no mesh generation
and it avoids numerical integration which is computationally expensive. The
proposed approach is tested and verified in various numerical examples of 2D
elasticity with different nodal distributions and geometries. These tests were
done also by the HOC-MLS approach which is another mesh-free approach of
the same category as the proposed one and HOC-FEM that represents a reference
solution. These numerical tests are done to find the best numerical parameters
for the proposed approach. Both mesh-free methods show a good quality results
when the nodal distribution is regular. However, the HOC-WLS approach shows
a better convergence and efficiency than HOC-MLS regarding irregular nodal
distributions and complex geometries.
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