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Abstract This paper shows how the wildfire simulation tool farsite is
augmented with data assimilation capabilities that exploit the notion of
barrier points and a constraint-point ensemble Kalman filtering to up-
date wildfire perimeter predictions. Based on observations of the actual
fire perimeter, stationary points on the fire perimeter are identified as
barrier points and combined with a recursive update of the initial fire
perimeter. It is shown that the combination of barrier point identifica-
tion and using the barrier points as constraints in the ensemble Kalman
filter gives a significant improvement in the forward prediction of the
fire perimeter. The results are illustrated on the use case of the 2016
Sandfire that burned in the Angeles National Forest, east of the Santa
Clarita Valley in Los Angeles County, California.
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1 Introduction

The ability to reliably predict fire perimeter propagation during a wildfire event
has a large potential in resource allocation and fire fighting planning to help save
lives and valuable infrastructure. Studying wildfire dynamics is done by collect-
ing data [3] and combining wildfire simulation tools with experimental data to
assimilate or adjust the widfire simulation [11–14]. Previous work on data as-
similation using the farsite [7] wildfire simulation tool combined with ensemble
Kalman filtering can be found in [5, 16]. Next to large body of work that use
some form of Kalman filtering, [2, 4, 8, 10] there are alternative approaches that
use Genetic Algorithms to determine the best set of input parameters to match
the measurements [1]. The power of a data driven approach is also confirmed
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by [17] illustrating improvements to wildfire prediction on data obtained from
physical experiments.

Fire perimeters that may be obtained periodically during a wildfire event
may be well-suited for periodic or recursive updates of the initial conditions (e.g.
initial fire perimeter) and the relevant parameters that govern the wildfire dy-
namics. For a Kalman filter-based approach it is essential that wildfire perimeter
measurements are quantified with a measurement accuracy to find the optimal
trade-off in adjusting initial conditions and wildfire parameters. To this extend,
the work by [14] uses thermal-infrared imaging to measure the true fire perimeter
on a controlled fire experiment done on a (4m×4m) patch of land and [17] used
ForeFire/Meso-NH simulations produced by [6] as observations. Unfortunately,
such methods cannot be employed for time-sensitive and large scale wildfires,
where perimeters are obtained with aerial measurements and computations of
future wildfire perimeters must be done in near real-time.

To improve the quality of wildfire prediction and to speed up computations,
one piece of critical information is often neglected in wildfire data assimilation:
stationary points at which a (part of the) fire perimeter remains at the same
locations between periodic updates. Clearly, those points can be characterized
with a relatively high accuracy and do not require computational updates. In
terms of data assimilation, such stationary points can be viewed as constrains
in a constrained Ensemble Kalman Filtering [15] formulation. Fortunately, the
farsite [7] wildfire simulation tool has the notion of barrier points to account
for stationary fire perimeters. Identifying such stationary or barrier points on the
fire perimeter and combining this information with ensemble Kalman filtering is
the main contribution of this paper.

The results presented are based on the work in [5,16] to fully use the informa-
tion of barrier points in the prediction and update steps of the data assimilation
tools for farsite. The approach presented in this paper performs recursive data
assimilation to estimate the true values of fuel dependent adjustment factors
along with wind speed and direction that influence fire spread rate by including
them in the state updates. Estimation of these input parameters along with the
identification of barrier points further improve the periodic prediction of fire
perimeters. The data assimilation tools are tested on actual wildfire perimeter
data that was obtained for the 2016 Sandfire that burned in the Angeles National
Forest, east of the Santa Clarita Valley in Los Angeles County, California.

2 Contour and Stationary Points

2.1 Fourier Analysis

To introduce the concept of stationary points, we first formalize the approxi-
mation of a fire perimeter as a n-polygon described by a ordered sequence of
n piece-wise linear line segments parametrized in Eastern ej and Northern nj
coordinate pairs (ej , nj), j = 0, 1, . . . , n − 1. To simplify notation, we may rep-
resent the n coordinates of the n-polygon as a complex number pj = ej + i · nj
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for which we can define a complex Discrete Fourier Transform (DFT)

ul =

n−1∑
j=0

pje
−il 2πn j (1)

and represent the fire perimeter pj , k = 0, 1, . . . , n− 1 by the complex sequence
Fourier series ul, l = 0, 1, . . . , n − 1. Since a fire perimeter is always a closed
polygon, e.g. p1 is connected to pn via a linear line segment, the parametriza-
tion of the n-polygon should be independent of the starting point p1 and the
(anti)clock wise rotation of the sequence pj in the complex plane. A shift in the
starting point or rotation can be easily represented in the Fourier series ūl by
an additional phase shift of ul and given by ūl = ule

−iφ, where the rotation
angle φ is determined by an integer shift in the starting point and the binary
choice on the anti-clockwise or clockwise rotation of pj [9]. The Fourier series
representation ul of the n-polygon approximation of a fire perimeter allows fire
perimeters at subsequent time steps k and k+ 1 to be compared as parts of the
fire perimeter might be stationary. A non-moving or stationary part of the fire
perimeter may be due to the presence of a nonburnable surface fuel or explicit
fire fighting efforts in which part of the surface fuel has been removed or extin-
guished. Such information must be taken into account to improve the prediction
of fire perimeter progression over time.

To identify stationary parts of the fire perimeter, we consider fire perimeters
represented by the n-polygon pj(k), j = 0, 1, . . . , n− 1 at time step k and a m-
polygon pj(k+ 1), j = 0, 1, . . . ,m−1 at a subsequent time step k+ 1. As n 6= m
and the starting point p1(k) 6= p1(k + 1), the simple check of pj(k) = pj(k + 1)
will not suffice in determining the stationary points pj(k) of the fire perimeter.
Instead, we first consider the Least Squares minimization

φ̄ = arg min
φ

d−1∑
l=0

|ul(k)− ul(k + 1)e−iφ|2 (2)

where d = min(m,n) and ul(k), ul(k + 1) are given by the DFT in (1). The
optimization in (2) recomputes the optimal starting point and rotation of the
Fourier transform of the m-polynomial pj(k + 1) by evaluating the difference
between s = min(m,n) Fourier coefficients. The end result is a set of Fourier
coefficients ūl(k + 1) = uj(k + 1)e−iφ̄ for which the inverse DFT will lead to a
re-oriented m-polygon p̄j(k+ 1), j = 0, 1, . . . ,m− 1 of the fire perimeter at time
step k+1 that can be compared with the fire perimeter pj(k), k = 0, 1, . . . , n−1
at time step k. Stationary points are now defined as the set of points pj(k) ∈ Pk
on the fire perimeter pj(k) at time step k for which

Pk : |pj(k)− p̄j(k+1)| ≤ ε for k = t, t+1, . . . , t+tstat−1, t = 0, 1, . . . , d−tstat
(3)

where tstat > 1 ensures no single points for which |pj(k)− p̄j(k+1)| ≤ ε are iden-
tified as stationary points. Only a sequence of tstat points on the fire perimeter
pj(k) at time step k and p̄j(k + 1) at time step k + 1 must lie within a distance
of ε to qualify as stationary points.
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2.2 Illustration and Boundary Points

The above proposed identification of stationary points is illustrated in Figure 1,
that shows fire perimeter measurements for two consecutive (time step k = 0
and time step k = 1) for the use case of the 2016 Sandfire that burned in the
Angeles National Forest, east of the Santa Clarita Valley in Los Angeles County,
California. It can be seen that only the lower portion of the fire has propagated
from time step k = 0 to k = 1, indicating a large set of stationary points in the
progression of ther wildfire.
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Figure 1. Polygon approximation of fire perimeter measurement at time step k=0
(blue) compared with the fire perimeter at the subsequent time step k = 1 (red) for
the 2016 Sandfire. Black squares are the identified stationary points of the fire perimeter
at time step k = 0.

With the re-orientation of the fire perimeter points found by the optimiza-
tion in (2), the location of stationary points identified by the black squares in
Figure 1 become apparent. It should be noted that stationary points along the
fire perimeter might persist only for certain amount of time, as the fire could
eventually progress. For example, the stationary points shown in Figure 1 are
only valid for the fire perimeter at time step k = 0. To identify the stationary
points for the fire perimeter at k = 1, measurement at time step k = 2 are
required. Clearly, the information on the set of stationary points is important in
predicting the spread of wildfires accurately. The wildfire simulation tool far-
site [7] has the notion of a barrier perimeter defined by barrier points to account
for the identified stationary points in the fire perimeter by temporarily defining
surface fuels as non-burnable.
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3 Data Assimilation

3.1 Ensemble Forward Simulation

The farsite wild fire simulation tool takes in n real valued eastern- and
northern-coordinates of a fire perimeter pj(k) at time step k to simulate a fire
perimeter pj(k+1) at time step k+1. Next to the initial perimeter pj(k) specified
in a shape file, farsite also uses information on surface fuels, topography, wind
speed, wind direction and fuel adjustment factors, collectively combined in the
environmental parameter θk at time step k, to adjust the fire perimeter predic-
tion [16]. In addition, farsite can account for a set of barrier points bj(k) ∈ Pk
as defined in (3) to approximate the stationary points of the fire perimeter. Using
only real valued calculations, farsite can be viewed as a non-linear mapping

X(k + 1) = f(X(k), θk, Bk) (4)

where X(k) is a vector of the eastern- and northern coordinates of the wild fire
perimeter pj(k) and Bk is a vector of the eastern- and northern coordinates of
the barrier points bj(k).

It should be noted that the non-linear map f(·) is not known analytically and
both sensitivity or uncertainty of the inputs X(k), θk and Bk can be evaluated
numerically via ensemble averaging. For that purpose, random samples (ensem-
bles) are chosen from a probability description of the initial fire perimeter X(k)
and possibly the environmental parameters θk. In this paper only uncertainty on
the initial fire perimeter X(k) is considered in the form of a covariance on the
vector X(k), whereas the environmental parameters θk and the barrier points Bk
are assumed to be fixed. The later is a reasonable assumption as barrier points
are defined as stationary points, whereas variability in θk can be considered as
a possible improvement for the ensemble forward simulation presented in this
paper.

The approach of ensemble forward simulation is similar to presented ear-
lier in [16], but with the important addition of the vector of barrier points
Bk. For the initialization of the covariance matrix Pk on the vector X(k) for
fire perimeter points, the proximity of the eastern- and northern-coordinates
to its neighboring points is used. The proximity measure for the covariance
σej ,nj for each point (ej , nj) on the n-polygon of the fire perimeter is defined by
σej ,nj = h(ej−1, yj−1, ej , nj , ej+1, nj+1), where h(·) is a function that computes
the measure of closeness of each point to its neighboring points on the fire perime-
ter. The value of σej ,ej is inversely proportional to the distance of (ej , nj) with
its neighboring points. Using the environmental parameters θk, barrier points
Bk and N ensembles Xi(k) taken from a normal distribution determined by the
mean value X(k) and the covariance σej ,nj , each ensemble member Xi(k) at
time step k is advanced through the forward model

Xi(k + 1) = f(Xi(k), θk, Bk), i = 1, 2, . . . , N,

where Bk is determined recursively from a measurement of a fire perimeter
X(k + 1) at time step k + 1 by the optimization in (2) and the definition of the
stationary points in (3) using the mean value X(k).
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With the ensemble forward simulation, N predicted fire perimeters Xi(k+1)
or pij(k + 1) for i = 1, 2, . . . , N and j = 0, 1, . . . , ni have become available. For
ensemble averaging, a mean value and a covariance must be estimated, but typ-
ically two different fire perimeter boundaries Xi(k + 1) and Xj(k + 1) will not
have the same number ni of polygon points, starting point of orientation. To
address this issue, first all N predicted fire perimeters pij(k + 1), i = 1, 2, . . . , N
are interpolated to the same number of (maximum) points nmax = maxi(ni).
Subsequently, an optimization similar to (2) is performed to align the starting
point and orientation of all the ensembles. Denoting u1

l (k+1) as the DFT trans-
form of the first (primary) ensemble p1

j (k+ 1) for j, l = 0, 1, . . . , nmax, the other
ensembles are aligned using the minimization

φ̄i = arg min
φ

nmax−1∑
l=0

|u1
l (k + 1)− uil(k + 1)e−iφ|2, (5)

for the index i = 2, . . . , N , while i in the exponent e−iφ still denotes the complex
number i2 = −1. The N − 1 optimizations in (5) leads to a re-oriented set of
ensembles represented by the vector X̄i(k + 1) for i = 2, . . . , N and found by

the inverse DFT of p̄ij(k + 1) = uil(k + 1)e−iφ
i

. The end result of this process is

set of properly aligned N ensembles X1(k + 1) and X̄i(k + 1), i = 2, . . . , n for
which a mean Xµ(k+ 1) ∈ Rnmax and a covariance Pµ(k+ 1) ∈ Rnmax,nmax can
be computed.

3.2 Ensemble Kalman Filter Update

In the ensemble Kalman filter update, a measurement of a fire perimeter obtained
at time step k + 1 is consolidated with the prediction of the mean Xµ(k +
1) ∈ Rnmax and the covariance Pµ(k + 1) ∈ Rnmax,nmax obtained from the
ensemble forward simulation described above. For the optimal consolidation of
the measurement and the prediction, we assume that the fire perimeter obtained
at time step k+ 1 is described by its mean Y (k+ 1) and a covariance P y(k+ 1).
It is worth noting that the covariance P y(k+1) may be determined by either the
inherent limited accuracy in obtaining the measurement Y (k + 1), the relative
distance between the points on the perimeter Y (k) or estimated by computing
a two-dimensional variance from multiple measurements [5].

As the points of the measured fire perimeter Y (k + 1) ∈ Rm and typically
m 6= nmax, the different size of the observation and prediction is handled by
linear interpolation of Y (k+ 1) and P y(k+ 1) to nmax points. Subsequently, the
following steps are done for each ensemble pair contained in X̃ and Ỹ

1. Find the closest point on X̃e to each point in Ỹ e and pair them up, store
the pair for which magnitude of distance is minimum and discard others, i.e.
capture i that satisfies,

min
i

(min
j
|yei − xej |) ∀i = 1, ...,m/mi

j = {1, 2, ..., nmax}/mj
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along with i store its corresponding j in mi and mj respectively
2. Repeat the step above until each point in Ỹ e is paired with a unique point

in X̃e.
3. This pairing scheme is used to construct the C matrix that is required to

perform the Kalman update step to get the updated perimeter using the
Kalman gain K via

Xe
updated = X̃e +K[Ỹ e − CX̃e] (6)

The steps above are repeated until all ensembles have been exhausted. In this
manner we perform data assimilation to improve our prediction by optimally
combining results from a forward model (with errors in input) and measurement
(with errors). Incorporation of stationary point information in the form of the
barrier points Bk is done in the forward model itself to improve the ensemble
forward simulation.

4 Results for the 2016 Sand Fire

4.1 Illustration for single step data assimilation

For the illustration of the data assimilation with barrier points, ensemble forward
simulations and actual measurements of the 2016 Sandfire in Los Angeles County,
California are used at time steps k separated by 2 hour intervals, as shown in
Figure 2.
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Figure 2. Initial fire perimeter at time step k = 1.

In this case, the input fire perimeter given to farsite at step k = 1 shown in
Figure 2 is obtained from ensembles of the last fire perimeter depicted earlier in
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Figure 1. Note that the variability along the fire perimeter at step k = 1 is very
small and virtually non-existent in certain parts due to the stationary points
identified from the previous time step at k = 0.

The stationary points for the fire perimeter at time step k = 1 are indicated
by the black squares in Figure 2. The stationary points are found by the proce-
dure outlined earlier in Section 2 using the interpolated fire perimeter X(k+ 1)
obtained from a measurement of the actual fire perimeter Y (k + 1) at time
step k + 1 = 2. With the identified stationary points, barrier perimeters are
defined in farsite and the ensemble forward simulation now lead to a predicted
fire perimeter characterized by a mean Xµ(k + 1) ∈ Rnmax and a covariance
Pµ(k+ 1) ∈ Rnmax,nmax as described earlier in Section 3.1. A comparison of the
measurement of the actual fire perimeter Y (k + 1) and the predicted mean fire
perimeter Xµ(k+1) with the covariance at each point is summarized in Figure 3.

Figure 3. Comparison of the mean (blue) and variance (red) of the ensemble forward
simulation and measured fire perimeter (green) before the data assimilation at time
step k + 1.

From Figure 3 one may recognize the stationary points for the fire perimeter
at time step k = 1 indicated earlier in Figure 2. In addition, it can be observed
(especially in the bottom right of the graph) that the ensemble forward simu-
lation results may be biased and may have an incorrectly estimated covariance
compared to the measurements. It is clear that the forward simulations require
a data assimilation step to provide a better fit to the measured fire perimeter
Y (k + 1) and adjust the covariance information.

Application of the data assimilation procedure outlined earlier in Section 3.2
now leads to a correction on both the mean and covariance of the predicted fire
perimeter X(k + 1) at the time step k + 1 = 2. The results are summarized
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in Figure 4 where it can be observed that the ensemble Kalman filter adjusted
forward simulation now provides a much better fit to the measured fire perimeter
at the next time step k + 1.
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Figure 4. Comparison of mean value (black) and variance (red) of Kalman filtered
updated fire perimeter and measured fire perimeter (green) after the data assimilation
at step k + 1.

4.2 Definition of fire coverage error

For the evaluation of the performance and improvement of wildfire data as-
similation it is important to carefully characterize the error between two fire
perimeters. Typically, the error is computed using the euclidean distance be-
tween points in a predicted fire perimeter and points along the measured fire
perimeter [17]. This method is not suitable in large scale fires as the number of
points along a fire perimeter can be vastly different in the predicted and the mea-
sured fire perimeter. Instead, we define the error using lower and upper bounds
on the surface of the overlapping area of the fire perimeter, taking into accounts
the uncertainty or variability of the fire perimeters.

Figure 5 has a visual illustration of how the error and its lower and upper
bounds are computed. All points along the fire perimeter are associated with
a value of uncertainty for the predicted fire perimeter and the measured fire
perimeter. The uncertainty is represented in the form of an ellipse, which rep-
resents the confidence interval of where that particular point could lie. For the
computation of the lower and upper bounds, we compute the area Ap covered
by the predicted fire perimeter and the area Am covered by the measured fire
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(a) (b)

(c) (d)

Figure 5. (a) Predicted fire perimeter (black) and measured fire perimeter (red), grey
area in (b): minimum error in area coverage (lower bound on error uncertainty), (c):
maximum error in area coverage (upper bound on error uncertainty) and (d): mean
error in area coverage.

perimeter. Based on these areas, the mean value of the fire coverage error Ae is
computed via

Ae = Ap ∪Am − 2(Ap ∩Am) (7)

whereas lower and upper bounds are created by taking into account the variabil-
ity or uncertainty on each fire perimeter.

4.3 Performance comparison of data assimilation with barrier
points

The single step data assimilation summarized earlier in Figure 4 illustrates an
improvement in the fire coverage error. The question remains whether the iden-
tification of stationary points and used as barrier points in farsite indeed im-
proves the fire coverage error, in addition to improvements achieved by standard
ensemble Kalman filter based data assimilation techniques. To illustrate the im-
provement of the fire coverage error, the subsequent steps of ensemble forward
simulation and data assimilation for several time step k = 0, 1, . . . , 4 is performed
with and without the identification of stationary points.

To summarize the improvement in performance, the mean value of the fire
coverage error Ae as defined in (7) along with the upper and lower bounds due
to the variability on the fire perimeters is computer for the different time steps.
The results are summarized in Figure 6 and the improvement in performance
measured in fire coverage error is evident from the graph. Both uncertainty and
magnitude of the fire coverage error have been reduced when data assimilation is
performed, but results are further improved when stationary points are identified
and used as barrier points in the ensemble forward simulations. Especially the
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Figure 6. Mean value, lower bounds and upper bounds on the fire coverage error Ae as
defined in (7) for: no data assimilation (green), ensemble Kalman filtering without sta-
tionary points (black) and ensemble Kalman filtering with identification of stationary
points (magenta).

upper bound on the fire coverage error remains at acceptable levels during several
data assimilation steps when using the identified stationary points on the fire
perimeter.

5 Conclusions

This papers shows the importance of data assimilation combined with the identi-
fication of stationary points in correcting the prediction of the spread of wildfires
at a large scale. Stationary points are identified by comparison of subsequent fire
perimeters and used in farsite to define barrier points to limit fire propagation.
Based on the observations of the 2016 Sandfire, it is shown that the combined
use of data assimilation and barrier points can significantly improve the fire
coverage error. It is worth noting that an Ensemble Kalman Filter (EKF) ap-
proach is used to perform data assimilation, where a Gaussian representation of
the fire perimeter vector is assumed. However, in certain situations it would be
more suitable to implement a particle filter to take into account non-Gaussian
distributions of fire perimeter uncertainty for future research directions.
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