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Abstract.  We present a new formulation of the error covariances that derives from ensembles 

of model simulations, which captures terrain-dependent error correlations, without the prohibi-

tive cost of ensemble Kalman filtering.  Error variances are obtained from innovation variances 

empirically related to concentrations using a large data set.  We use a k-fold cross-validation 

approach to estimate the remaining parameters.  We note that by minimizing the cross-validation 

cost function, we obtain the optimal parameters for an optimal Kalman gain.  Combined with the 

innovation variance consistent with the sum of observation and background error variances in 

observation space, yield a scheme that estimates the true error statistics, thus minimizing the true 

analysis error. Overall, this yield a new error statistics formulation and estimation out-performs 

the older optimum interpolation scheme using isotropic covariances with optimized covariance 

parameters.  Yet, the analysis scheme is computationally comparable to optimum interpolation 

and can be used in real-time operational applications.  These new error statistics comes as data-

driven models, were we use validation techniques that are common to machine learning.  We 

argue that the error statistics could benefit from a machine learning approach, while the air quality 

model and analysis scheme derives from physics and statistics. 

Keywords: Air quality analysis, Cross-validation, Data driven model of error 

covariance. 

1 Introduction 

Data assimilation was originally developed from a need to specify the initial conditions 

of numerical weather prediction models [1] that otherwise would have little predictive 

skill due to unstable dynamics of the atmosphere.  Imperfectly known and incorrect 

assumptions (e.g. no model error covariance) on the (input) error statistics used for data 

assimilation, is not as critical for numerical weather prediction as opposed to other ap-

plications, due to the presence of the unstable subspace in the forecast error.  Indeed, it 

has been argued that by confining the forecast error corrections to the unstable and 
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neutral subspace, four-dimensional variational data assimilation can better perform 

than without this confinement [2, 3].  However, not all application areas of data assim-

ilation have an unstable subspace. Atmospheric chemistry models, for example, are 

known to be “slaved” by the meteorology [4, 5] and it is known that the precise 

knowledge of the chemical observation and model error covariances has a rather strong 

impact on the performance of the (chemical) data assimilation results [6, 7].  The esti-

mation of correct error statistics is important for a truly optimal chemical data assimi-

lation system.  This has been recognized from the very beginning of Kalman filtering 

data assimilation using neutral or dissipative models (e.g. [8, 9]). 

With dissipative models, the verification of the forecast as a measure of analysis 

accuracy has limited value.  However, the true analysis error can be evaluated using 

cross-validation [10, 11].  In cross-validation we produce analyses with a subset of ob-

servations and verify the analysis with the remaining observations.  There is no need to 

conduct a forecast.  Since the optimality of analyses (measured against independent 

observations) depends on having the correct (input) error statistics, we may view the 

problem of estimating the true error statistics as an inverse problem of analyses (meas-

ured by cross-validation).  But as with most inverse problems, the minimization of the 

verification error alone is not sufficient to determine the correct input error statistics 

[12].  Additional criteria are needed, such as the matching of the covariance of innova-

tion with the sum of the background error covariance in observation space with the 

observation error covariance, called the innovation covariance consistency [13].  This 

is where (even elementary concepts) of machine learning can become useful.  

Atmospheric models are based on the laws of physics, and in our case on chemical 

laws as well; they induce our prior knowledge of the system.  On the other hand, the 

innovations or observation-minus-model residuals, are quantities that contain infor-

mation that is unexplained by the model, and this is where machine learning can have 

a complementary role to data assimilation.  Complementary roles of machine learning 

and data assimilation were also developed in a form of Kalman filtering (known as the 

Parametric Kalman filter) that requires closure on the form and parameters or error 

covariances [14]. 

At Environment and Climate Change Canada (ECCC) we have developed an opera-

tional surface analysis of atmospheric pollutants since 2002 [15] that provide a com-

plete and more accurate representation of the air quality atmospheric chemistry, which 

has been used in several health impact studies (e.g. [16, 17]).  Although the optimization 

of (isotropic) covariance model parameters improves the analysis [18], little is known 

about the more realistic and accurate covariance models suitable for chemical data as-

similation [19, 20].   

Since air quality models are computationally demanding (compared to numerical 

weather prediction models) the use of (ensemble) Kalman filtering data assimilation to 

obtain non-homogeneous non-isotropic error covariances is more in the realm of re-

search than operational purposes.  Recently at ECCC we have been developing a simple 

approach to generate non-homogeneous non-isotropic error correlations near the sur-

face that does not involve rerunning the air quality model, by simply using pre-existing 

model simulations over a period of a few months.  Note that chemical simulations are 

driven (slaved) by meteorological analyses.  The error correlations that are obtained are 

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_17

https://dx.doi.org/10.1007/978-3-030-50433-5_17


3 

not flow-dependent but are non-homogeneous non-isotropic and terrain-dependent, 

which account for a large fraction of the error correlation signal near the surface.  We 

will presents some examples of these error correlations in Section 2.1.  As with Kalman 

filtering localization of these ensembles is needed, and is obtained by minimizing the 

analysis error evaluated by cross-validation.  This will be presented in Section 2.3.  For 

error variances we use essentially an innovation-driven (data-driven) representation of 

the error variances as a function concentration, which is simple but somewhat appro-

priate for these fields.  This will be discussed in Section 2.2.  We show that this new 

analysis scheme is superior to the currently operational implementation using optimum 

interpolation with homogeneous isotropic correlation models [21].  We realize that the 

method we are using, is similar (yet much simpler) to some of the methods used in 

(simple) machine learning.  We argue that a data-driven approach to model error co-

variances, and more sophisticated machine learning algorithms [22] could potentially 

improve those representations and be beneficial for truly optimizing an assimilation 

system.   

2 Description of the method 

2.1 Model representors 

In our current operational version of the analysis of surface pollutants, we use homo-

geneous isotropic correlation models [21] with tuning of covariance parameters [15, 

18] to optimize the system.  In this new version, we obtain anisotropic error correlations 

from an ensemble of pre-existing air quality simulations (i.e. forecasts with no chemical 

data assimilation).  The ensemble is in fact climatological, where the air quality simu-

lations are collected over a period of two months.  For each hour of the day, we thus 

have an ensemble of about 60 realizations over that time period that captures non-ho-

mogenous and non-isotropic correlations.  As in the ensemble Kalman filter, there is a 

need for localization to avoid spurious correlations at large distances that infiltrate the 

analysis and thus significantly reduce its optimality.  The idea behind using an ensemble 

of pre-existing model forecasts is that those error correlations will be able to capture 

stationary and terrain-dependent structures such as those induced by the proximity of 

water surfaces, mountain ranges, valleys, chemical sources, and so on, since these fea-

tures are always present.  This method does not capture the day-to-day variability (or 

flow dependence) of the error correlations like in an ensemble Kalman filter, but may 

capture the effect of prevailing winds for example.  

In the example presented below, we computed the spatial correlations for each ob-

servation sites using a time series of the Canadian operational air quality model (GEM-

MACH) output of PM2.5 at 21 UTC over a two-month period (July-August 2016) and 

applied a compact support correlation function (the 5th-order piecewise rational func-

tion of Gaspari and Cohn [23]) as a method for localization.   

Examples of spatial correlation of PM2.5 are presented in Figure 1, with respect to 

an observation site in Toronto (Canada) and in Los Angeles (USA).  We note that the 

correlation around Toronto (upper panel) is more or less oval, while strong anisotropic 

structures extending along the coast and influenced by the presence of water and terrain 
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are depicted with the correlation about Los Angeles (lower panel).  Correlations at Win-

nipeg in the Canadian prairies over a flat terrain are nearly circular or isotropic (result 

not shown).  Likewise, the spatial correlation with respect to Surrey (in the neighbor-

hood of Vancouver, Canada) shows a minimum over the Coast Mountain range and 

over the Rockies with a maximum in between over the central interior plateau (results 

not shown).  In general, the spatial correlation structures shows the presence of moun-

tain ranges, valleys, and extended water surfaces.  These correlation structures were 

obtained after localization using a Schur product with a compact support correlation 

function.  The length-scale of the compact correlation model is estimated by cross-val-

idation (see section 2.4). 

 

 

Fig. 1. Error correlation obtained for a time series of the air quality model GEM-MACH simula-

tions valid at 21 UTC over a period of 2 months (July-August 2016), after localization using the 

compact support correlation function.  Upper panel is the correlation with respect to Toronto 

(Canada) and lower panel with respect to Los Angeles (USA) stations.  The solid black line de-

picts the correlation contour of 0.3. 
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2.2 Innovation scatter plot 

The innovation (i.e. the observation-minus-model residual) variance has been plotted 

against the mean concentration for each station at a given local time (21 UTC) using a 

2-months’ time series to generate the statistics for each station.  The variance of the 

innovation gives the sum of observation and model (i.e. background) error variances, 

but its partition into observation and model errors is yet unknown.  Furthermore, the 

observation error is not simply the instrument error but should also include; errors due 

to the mismatch in scales being sampled in a single observation vs that of the model 

grid box, subgrid scale variability that may be captured by the observation but not by 

the model, and missing modeling processes, etc., that collectively we call representa-

tiveness error.  The observation error is thus not well known and needs to be estimated. 

This will be done in the Section 2.4 using cross-validation and assuming that observa-

tion error variance is simply a fraction of the variance of the innovation.   

 
Fig. 2. Variance of the innovation as a function of the mean concentration, station by 

station.  Upper panel is for PM2.5 and lower panel for NO2 (same time period as in 

Figure 1).  The red squares represent the median in each bin, and the horizontal line in 

each bin determines the third inter quartile of the distribution in a bin. 
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The behavior as a function of concentration is different for PM2.5 than for NO2. We note 

that for NO2 the innovation variance goes to zero when the concentration goes to zero, 

which is not the case for PM2.5.  The PM2.5 is nearly linear, while NO2 (especially at 

night - result not shown) has a shape of a quadratic for low concentrations and saturate 

at higher concentrations.  

The fitting of the innovation variance as a function of concentration (as in Figure 2) 

is important for two reasons.  First, as it will become relevant in the following subsec-

tion, we need to have the sum of observation and model (background) error variances 

match the innovation variance - a property known as the innovation variance con-

sistency.  Secondly, after obtaining the portion of the innovation variance due to the 

model (background) error variance, we can then apply the relationship between back-

ground error variance with concentrations, to determine the background error variance 

at each model surface grid point (not only at the observation locations). 

2.3 Estimation of the true error statistics in observation space 

Under the assumptions of uncorrelated observation and background errors, it has been 

established that two necessary and sufficient conditions to estimate the true observation 

and background error covariances are [13]. One, is that the Kalman gain in observation 

space (i.e. HK  where H  is the observation operator and K  the Kalman gain) is opti-

mal in the sense that the true analysis error (in observation space) is minimum. The 

second condition is that the innovation covariance matches the sum of the background 

error covariance in observation space plus the observation error covariance, i.e 
T HBH R where B  is the background error covariance and R  the observation error 

covariance.  

The fit of the innovation variance presented in Figure 2 assures by construction that 

the sum of error variances 2 2
o b   is consistent with innovation variance (not the in-

novation covariance), thus at least partly fulfilling the second condition above. 

The first condition about the optimal Kalman gain is obtained by using cross-vali-

dation [10, 11].  As a way to illustrate this, we use a geometric interpretation where 

random variables 1 2,y y  are represented in a Hilbert space whose inner product is 

defined as the covariance between the two random variables.   

  1 2 1 1 2 2, : ( ( ))( ( ))y y y y y y  E E E , (1) 

where E  is the mathematical expectation.  In this framework, random variables form 

an Hilbert space.  For example, uncorrelated random variables are represented as per-

pendicular “vectors”, and the error variance as the norm squared of that “vector” (see 

[11] and references therein).   

Figure 3 illustrates geometrically the cross-validation.  Let the active observation 
oy  be illustrated as O in the Figure 3, the prior or background by  (illustrated as B), 

the analysis ay  (illustrated as A), and the independent (or passive) observation cy  

(illustrated as cO ).  The origin T corresponds to the truth.  Note that although the illus-

tration is made for a (scalar) random variable, the same principle holds for random 

vectors for each components.  We assume that the background error is uncorrelated 
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with observations errors, and that observations are spatially uncorrelated horizontally. 

Then, the background error, the active and the passive observation errors are uncorre-

lated with one another, so the three axes; o  for the active observation error, b  for the 

background error, and o
c  for the passive observation error are orthogonal.  The plane 

defined by axes o  and b  is the space where the analysis takes place, and is called the 

analysis plane.  Since we define the analysis to be linear and unbiased, the analysis is a 

linear combination of the observation and background.  Thus, in this illustration the 

analysis A lies on the line (B,O).  The thick lines in Figure 4 represent the norm of the 

associated error.  For example, the thick line along the o  axis depict the (active) ob-

servation standard deviation o , and similarly for the other axes and other random 

variables.  Since the active observation error is uncorrelated with the background error, 

the triangle OTB  is a right triangle, and by Pythagoras theorem we have, 
2 2 2( ) : ( ) , ( )o b

o by y O B O B        .  This is the usual statement that the innovation var-

iance is the sum of background and observation error variances.  The analysis is optimal 

Â  when the analysis error 2 2|| ||a
a   is minimum, that is when the point A is closest 

to T. In this case the line ˆ( )T,A is perpendicular to line ( )O,B .  Since passive observa-

tions are never collocated with active observations, they have errors uncorrelated to 

active observations and background errors, and thus o
c  lies perpendicular to the anal-

ysis plane.  So when the point A is closest to T it is also closest to cO . Since the distance

( )cO ,A  squared corresponds to the variance of ( )CVcO - A  evaluated in cross-valida-

tion, we conclude that when Var ( )CVcO - A  is minimum, the analysis is optimal (i.e. 

minimal error), ˆA = A  [11]. 

 

 
Fig 3. Geometric representation (i.e. Hilbert space) of a scalar analysis with cross-validation (re-

produced from [24] figure 37.2 b)). 

2.4 Optimization by cross-validation 

An evaluation by cross-validation is performed to evaluate the quality of the analysis.  

The k-fold cross-validation methodology consists of separating the data set of observa-

tions into k equal size spatially random-distributed subsets and using each subset to 
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evaluate an analysis while using the remaining observations in the k-1 subsets to com-

pute the analysis. Here we use k = 3 [16, 17].  The separation into spatially random-

distributed subsets has been achieved by selecting one station over three in an ordered 

station ID number list.  An illustration of the selection method for the PM2.5 surface 

monitoring stations is depicted in Figure 5, below.  Another method which makes this 

selection rigorous is the application Hilbert curves [25].  

 

 

 
Fig 4. Spatial distribution of three subsets of PM2.5 observation sites (reproduced from 

[10] figure 1) 

 

Let ( ; )jO n t  be the concentration measured at a station j at the local hour t, on day 

n.  First, we calculate the verification statistics for each station at a given local time 

using an ensemble of days{ 1, , }daysn N .  The average at a station j at the local time 

t, is simply 

 
1

1
( ) ( ; )

daysN

j j

ndays

O t O n t
N 

  . (2) 

The verification statistics are often defined over a region.  For example, the mean 

concentration variance over an ensemble i, i.e. { }iO , of stations, for a total number of 

sN  stations, is defined as 

    
 

2

1

1 1
var ( ) ( ; ) ( )

1

days

i

N

i

j j

ns daysj O

O t O n t O t
N N 

 
  

  
  . (3) 
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In general the ensemble { }iO  (or simply denoted by 
iO ) can either be an: 

 ensemble over all stations in the whole domain 

 ensemble over a region (or subdomain) 

 ensemble over all passive stations (i.e. stations not used in the analysis) 

or any variants or combination thereof.  In this document, there is only a single domain 

consisting of the continental USA and Canada.   

For cross-validation, the analyses are evaluated against passive observations, i.e. ob-

servations not used to construct the analyses. We recall that passive observation sites 

are never collocated with the active stations (stations used to construct the analyses). 

Specifically, the ensemble of observations (for each local time) is split into three dis-

joint subsets 1 2 3, ,O O O , and we denote the cross-validation analysis by 

[1] [1] 2 3( , )A A O O  as an analysis that uses 2 3,O O  and excludes the subset 1O . The 

interpolated analysis at the passive station 1j O  will be denoted by  

 
[1] [1] 2 3( , )j jA A O O . (4) 

The cross-validation variance statistics are then given by the average over the 3 sub-

sets 1,2,3i  , i.e. 

         1 [1] 2 [2] 3 [3]1
var var var var

3CV
O A O A O A O A       , (5) 

where the statistics of each passive subset i are calculated by an average over all passive 

stations in the given subset. Specifically we have, 

 

   

   

[ ] [ ]

2

[ ] [ ]

1

1
var var

1 1
( ) ( ) ( ) ( ) .

1

i

days

i

i i i i

j j

j Os

N

i i i i

j j j j

nj Os days

O A O A
N

O n A n O n A n
N N





  

           



 

(6) 

Note that a cross-validation statistic is evaluated for each local time and we have omit-

ted the variable t, to keep the notation simple.  

In our context where we enforce innovation variance consistency through the inno-

vation variance fitting (see Section 2.2), we are left with only 2 parameters to estimate: 

1) the ratio of observation error variance to background error variance 2 2/o b  , and 2) 

the compact support correlation length-scale sL  .  These parameters are estimated by 

minimizing var( )CVO A  and thus result in the end in a nearly optimal analysis. 

In Figure 5, we plotted var( )CVO A  for different values of 2 2/o b   and sL .  We find 

a single minimum of the fit of the analysis to independent (or passive observations) for 

an error variance ratio of 1.5 and for a compact support correlation length of 300 km, 

used to localized the raw model correlations. 
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Fig. 5. Contours of the cross-validation of independent observation-minus-analysis (at the pas-

sive observation sites), as a function of compact support correlation length sL  and the ratio of 

model error variance to observation error variance. 

3 Comparison with the operational analysis  

Using these optimal parameter values and the modeling based in the innovation vari-

ance as function of concentration and with model output statistics to construct the spa-

tial correlation structures, we evaluate the new analysis (i.e. Av2). We then compare it 

against the old analysis scheme (i.e. Av1) which is using homogenous isotropic corre-

lation functions and 2 -optimized error statistics [15].  The result evaluated by cross-

validation is presented in the Figure 6 below. 

We observe a sensitivity to the error statistics used to generate the analysis, with 

superior analyses when the modeling is based on our methodology using the data rather 

than using some specified isotropic models. 

It is by letting the data itself (model output and observations) provide the modeling 

elements of the observation and background error covariances that we arrive at an im-

proved analysis.  Thus, we thus argue that data-driven modeling of the observation and 

background error covariances plays a complementary role to data assimilation, result-

ing in a nearly optimal system. 
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Fig. 6. Verification of the PM2.5 analysis against passive observations using cross-validation for 

Av1 (old scheme) and Av2 (new scheme).  The solid line (green and red) uses independent ob-

servations, while the dotted lines are the statistics using the same observations as those used to 

construct the analysis. The solid blue line represent the verification of the model (i.e. no analysis).  

The upper panel displays the variance and lower panel the correlation. 
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