
Accelerated Gaussian Convolution in a Data
Assimilation scenario

Pasquale De Luca1[0000−0001−7031−920X], Ardelio Galletti2[0000−0002−5208−6219],
Giulio Giunta2[0000−0003−0101−6154], and Livia Marcellino2[0000−0003−2319−8008]

1 Department of Computer Science, University of Salerno, Fisciano, Italy
2 Department of Science and Technology, University of Naples Parthenope, Naples,

Italy
p.deluca16@studenti.unisa.it,

{ardelio.galletti, giulio.giunta, livia.marcellino}@uniparthenope.it

Abstract. Machine Learning algorithms try to provide an adequate
forecast for predicting and understanding a multitude of phenomena.
However, due to the chaotic nature of real systems, it is very difficult to
predict data: a small perturbation from initial state can generate serious
errors. Data Assimilation is used to estimate the best initial state of
a system in order to predict carefully the future states. Therefore, an
accurate and fast Data Assimilation can be considered a fundamental step
for the entire Machine Learning process. Here, we deal with the Gaussian
convolution operation which is a central step of the Data Assimilation
approach and, in general, in several data analysis procedures. In particular,
we propose a parallel algorithm, based on the use of Recursive Filters
to approximate the Gaussian convolution in a very fast way. Tests and
experiments confirm the efficiency of the proposed implementation.

Keywords: Gaussian convolution · Recursive filters · parallel algorithms
· GPU

1 Introduction

Data Assimilation (DA) is a prediction-correction method for combining a physical
model with observations. The Data Assimilation and the Machine Learning (ML)
fields are closely related to each other. Machine Learning process is used to
perform a specific task without using explicit instructions and it can be seen as a
subset of the Artificial Intelligence (AI) field, because it creates new methods and
applications for analyze and classify many natural phenomena (see for example
[1]). In general, this process consists in two main phases: the analysis phase -
some collected data are analyzed to detect patterns that help to create explicit
features or parameters; the training phase - data parameter generated in the
previous phase are used to create Machine Learning models.
However, the learning part of the training phase relies on a relevant training
data-set, containing samples of spatio-temporal dependent structures. In many
fields, there is an absence of direct observations of the random variables, and

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

2 P. De Luca et al.

therefore, learning techniques cannot be readily deployed.
Therefore, a correct training dataset is a basic need to get a right learning. This
is because in order to perform a correct ML approach, often a classifier is used
in the analyze phase. Each classifier is composed by a kernel which aims to
correctly predict the classes by using a higher-dimension feature space to make
data almost linearly separable. In order to compute a fair classification and
accurate prediction a suitable method could be chosen.

The variational approach of the Data Assimilation process, characterized by
a cost function minimization, is a good choice for classification. Numerically,
this means to apply an iterative procedure using a covariance matrix defined
by measuring the error between predictions and observed data. Here, we are
interested in those numerical issues. In particular, since the error covariance ma-
trix presents a Gaussian correlation structure, the Gaussian convolution process
plays a key role in such a problem. Furthermore, it should be noted that, beyond
its fundamental role in the Data Assimilation field, the convolution operation
is always significant in the computational process of most big-data analysis
problems. Hence, a correct Machine Learning process can use it as a basic step
in the analysis phase. Moreover, because of the need to process large amount of
data, parallel approaches and High Performance Computing (HPC) architectures,
as multicore or Graphics Processing Units (GPUs), are mandatory [2–4]. In this
direction, some recent papers deal with parallel data assimilation [5–7] but we
just limit our attention to the basic step represented by a parallel implementation
for the Gaussian Convolution. In particular, we propose an accelerated procedure
to approximate the Gaussian convolution which is based on Recursive Filters
(RFs). In fact, Gaussian RFs have been designed to provide an accurate and
very efficient approximated Gaussian convolution [8–11]. Since the use of RFs is
mainly suitable to overcome a large execution time, when there is a lot of data to
analyze, many parallel implementations have been presented (see survey in [12]).
Here, we propose a novel implementation that exploits the computational power
of the GPUs which are very useful for solving numerical problems in several
application fields [13, 14].
More precisely, to manage big size input data, the parallelization strategy is
based on a domain decomposition approach with overlapping, so that all possible
interactions between forecasts and observations are included. In this way, this
computational step becomes a very fast kernel specifically designed for exploiting
the dynamic parallelism [15] approach available on the Compute Unified Device
Architecture (CUDA) [16].

The paper is organized as follows. Section 2 recalls the variational Data
Assimilation problem, and the use of the Recursive Filter to approximate the
discrete Gaussian convolution. In Section 3, the underlying domain decomposition
strategy and the GPU-CUDA parallel algorithm are provided. The experiments
in Section 4 confirm the efficiency of the proposed implementation in terms of
performance. Finally conclusions are drawn in Section 5.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

Accelerated Gaussian Convolution in a Data Assimilation scenario 3

2 Gaussian convolutions in Data Assimilation

In this section, we show how the Gaussian convolution is involved in a Data
Assimilation scenario. In particular, let us consider a three-dimensional variational
data assimilation problem [17]: the objective is to give a best estimate of x, that
is called the analysis or state vector, once a prior estimate vector xb (background),
usually provided by a numerical forecasting model, and a vector y = H(x) + δy
of observations, related to the nonlinear model H, are given. The unknown x
solves the regularized constrained least-squared problem:

min
x
J(x) = min

x

[
‖y −H(x)‖2 + ‖x− xb‖2

]
, (1)

where J denotes the objective function to minimize. Here, ‖x− xb‖2 is a penalty
term and ‖y−H(x)‖2 is a quadratic data-fidelity term which compares measured
data and solution obtained by the nonlinear model H [10]. In this scheme, the
background error δx = xb − x and the observational error δy = y − H(x) are
assumed to be random variables with zero mean and covariance matrices

B =< δx, δxT > and R =< δy, δyT >,

respectively. Following description in [9], let the matrix H be a first-order ap-
proximation of the Jacobian of H at xb and denote by

d = y −H(xb)

the so-called misfit. Denoting by V the unique symmetric Gaussian matrix such
that V2 = B, and by introducing the variable v = V−1δx, the problem (1) can
be proven to be equivalent to [9, 18, 19]:

min
v
J̃(v) = min

v

1

2
(d−HVv)TR−1(d−HVv) +

1

2
vT v. (2)

The minimization of the cost function J̃(v) leads to the linear system:

(I + VΨV)v = VHTR−1d. (3)

Since I+VΨV is symmetric, the linear system (3) that can be handled by means
of the CG method, whose basic operation is the matrix-vector multiplication:

(I + VΨV)ρ = ρ+ VΨVρ.

Here, Ψ = HTR−1H is a diagonal matrix and ρ denotes the residual at the
current step of the CG algorithm. More precisely, it turns out that such an
operation involves three discrete Gaussian convolutions:

Vρ, V(ΨVρ), V(HTR−1d). (4)

In conclusion, previous analysis shows that Gaussian convolution becomes a main
kernel for Data Assimilation. From here comes the need to implement accurate

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

4 P. De Luca et al.

and fast methods to perform it. In fact, in the described context, the matrix V is
neither effectively used nor even assembled, and the matrix-vector multiplications
in (4) are computed by introducing the so-called Gaussian Recursive Filters.
It has been proved that these tools offer good accuracy and bring down the
computational cost in time and space [20, 21].

In particular, in this work we just consider K-iterated first-order Gaussian
RFs and follow the approach and notation used in [8]. Let:

s(0) =
{
s
(0)
j

}
j∈Z =

(
. . . , , s

(0)
−1, s

(0)
0 , s

(0)
1 , . . .

)
be an input signal and let g denote the Gaussian function with zero mean and
standard deviation σ. The Gaussian filter is a filter whose response to the input
s(0) is given by the discrete Gaussian convolution:

s
(g)
j =

(
g ∗ s(0)

)
j

=
∑
t∈Z

gj−ts
(0)
t , ∀ j ∈ Z, (5)

where gt ≡ g(t). A K-iterated first-order Gaussian recursive filter generates an
output signal s(K), the so-called K-iterate approximation of s(g), whose entries
solve the 2K recurrence relations:

p
(k)
j = βs

(k−1)
j + αp

(k)
j−1, ∀ j ∈ Z, (6)

s
(k)
j = βp

(k)
j + αs

(k)
j+1, ∀ j ∈ Z. (7)

(k= 1, . . . ,K) where values α and β = 1 − α are called smoothing coefficients
and verify:

α = 1 + Eσ −
√
Eσ(Eσ + 2), β =

√
Eσ(Eσ + 2)− Eσ, (8)

with Eσ = Kσ−2. It has been proved that as K →∞ the filter converges to the
Gaussian filter [22]. If we consider a finite size input signal s(0) (i.e. with support
in the grid {0, 1, 2, . . . , N − 1}) then the index j has to be used in increasing
order in (6) and decreasing order in (7). Hence, relations (6) and (7) are suitable
called advancing and backing filters, respectively [8]. We highlight that to prime

the algorithm these filters requires to set values p
(k)
0 and s

(k)
N−1. This can be done

using the boundary conditions [24]:

p
(k)
0 =

1

1 + α
s
(k−1)
0 , s

(k)
N−1 =

1

1 + α
p
(k)
N−1

which are derived to simulate the effect of the neglected entries when using finite
size input signals. Typically a well-known edge effect, .i.e. a large perturbation
error, can be seen on the boundary entries of the output. In [8], provided that the
input support is in [0, N − 1], this effect can be mitigated by increasing the input
size including and putting artificial zero entries at the left and right boundaries
of the input. Algorithm 1 describes a K-iterated first-order Gaussian RF straight
implementation.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

Accelerated Gaussian Convolution in a Data Assimilation scenario 5

Algorithm 1 K-iterated first-order RF with boundary conditions

Input: s(0), σ, K

Output: s(K)

1: set β, α as in (8); M := 1/(1 + α)

2: set N := size(s(0))

3: for k = 1, 2, . . . ,K % filter loop

4: compute p
(k)
0 := Ms

(k−1)
0 % left end condition

5: if k = 1 then

6: p
(k)
0 := βs

(k−1)
0

7: end

8: for j = 1, . . . , N − 1 % advancing filter

9: p
(k)
j := βs

(k−1)
j + αp

(k)
j−1

10: endfor

11: compute s
(k)
N−1 := Mp

(k)
N−1 % right end condition

12: for j = N − 2, . . . , 0 % backing filter

13: s
(k)
j := βp

(k)
j + αs

(k)
j+1

14: endfor

15: endfor

3 Parallel approach and GPU algorithm

In this section we give a description of our parallel algorithm, and the related
strategy, to implement a fast and accurate version of the K-iterated first-order
Gaussian RF. This approach exploits the main features of the GPU environment.
The main idea relies on several macro steps in order to obtain a reliable and
performing computation. The whole process can be partitioned in three steps.

In the first phase, step 1, in order to perform a fair workload distribution, we
use a Domain Decomposition (DD) approach with overlapping. More specifically,
the strategy consists in splitting the input signal s(0) into t local blocks, one for
each thread:

s
(0),m
0 , s

(0),m
1 , . . . , s

(0),m
t−1 . (9)

Here, N denotes the problem size, while:

d =

⌊
N

t

⌋
and r = mod(N, t) (10)

are the quotient and the remainder when dividing N by t, respectively. Moreover,
the parameter m denotes the overlapping size. To be specific, each thread j

loads in own local memory the block s
(0),m
j , whose size is d+ 2m or d+ 1 + 2m

(depending on j). The entries of the j-th local block are formally defined using

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

6 P. De Luca et al.

the subdivision:

(
s
(0),m
j

)
i
=

s
(0)
jd+j+i−m, i = 0, . . . , d+ 2m if j < r

s
(0)
jd+r+i−m, i = 0, . . . , d+ 2m− 1 if j ≥ r

(11)

where the input signal entries are set to zero, when not available (s
(0)
i = 0 for

i < 0 and i ≥ N).
In other words, this partitioning consists in assigning to each thread a part of

the signal, so that two consecutive threads have consecutive signal blocks and
those blocks overlap on the edges by sharing exactly 2m entries. The reason
of overlapping is because, to perform a good approximation of the convolution,
block edge values need to use close values that lie in the neighboring blocks. We
notice that by setting m = 0, i.e. by excluding the overlapping areas, could create
possible perturbation errors and generate a bad accuracy close to the boundaries
of the local output signals.

The step 2 deals with the approximated local Gaussian convolution for each
block. More precisely, each thread j performs the K-iterated first-order Gaussian

RF to s
(0),m
j , by applying Algorithm 1, and computes s

(K),m
j .

The last phase, step 3, is related to collect the local approximated results by
loading them into a global output signal. Therefore, in order to remove the
first and last m entries, a resizing operation is firstly performed for each local

output. More in details, each thread j resizes the local computed signal s
(K),m
j ,

by removing its first and last m entries, and it generates the local output s
(K)
j .

Finally, a gathering of local resized outputs into the global output signal is done.

A very important consequence of our strategy is that all previous steps, which are
summarized in the following parallel algorithm, can be computed by all threads
in a fully-parallel way.

Algorithm 2 Parallel K-iterated first-order Gaussian recursive filter based on
domain decomposition with overlapping

Input: s(0), σ, m, K, t

Output: s(K)

1: FOR ALL THREAD j
2: save in the private memory of thread the extended input signal s

(0),m
j as

described in step 1 (domain decomposition with overlapping)

3: apply Algorithm 1 to s
(0),m
j with parameters σ, K as described in step 2, to

obtain s
(K),m
j

4: resize s
(K),m
j to recover s

(K)
j and copy it in the shared memory in order

to obtain the global output s(K) as described in step 3

5: ENDFOR ALL THREAD j

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

Accelerated Gaussian Convolution in a Data Assimilation scenario 7

Now, we discuss how the Algorithm 2 is implemented in a CUDA environment.
Firstly, input data are transferred to device global memory. Hence, in order to
guarantee a reliable workload distribution, the described domain decomposition
in step 1 is performed. More in detail, we set for each thread the local size
nloc = d or nloc = d+ 1, depending on the threads number j and the value r in
(10). This confirms that if the input size value n is not divisible by t, according to
(11) a suitable workload distribution is done. By also considering the overlapping
entries, the block length becomes nloc + 2m, and each thread can retrieve from
the global array the required amount of data needed for its local computation.
Moreover, an adequate access to the global memory is performed by means of a
suitable indexing, i.e. every thread loads data from global memory and stores them
in its own local memory in order to perform each operation independently. Thanks
to this operation, any overhead due to the contention and synchronization of the
global memory is avoided. In the following, the overall GPU parallel algorithm is
shown.

Algorithm 3 GPU parallel implementation

Input: N, input data[], K

1: % set overlapping size value m

2: % compute local size value n loc

3: % define the extended local size
4: length = 2m + n loc

5: % define the index of each thread
6: index = threadIdx.x+(blockDim.x× blockIdx.x)

7: % define the local chunk interval
8: chunk idx = (index× n loc)+((index+1)× n loc)

9: % parallel work: begin
10: for each thread do
11: % compute the chunk overlapped from input
12: x local[index] = input data[chunk idx + length]

13: % start the dynamic parallelism region, by setting the threads number using the
iteration number K

14: for each thread in dynamic region do
15: % compute forward & backward filter
16: x local[index]

17: end for
18: %end the dynamic parallelism region
19: % collect local results
20: results[n loc] = x local

21: end for
22: % parallel work: end

Output: results[]

Shortly, in Algorithm 3, starting from the input data size N , the iteration
number K and the input signal vector input data, which are loaded in the

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

8 P. De Luca et al.

global device memory, the procedure returns the approximated Gaussian convo-
lution by the signal vector results which is computed in a GPU-parallel way.
More in detail, Algorithm 3 highlights several memory and computation strategies.

To be specific, first operations provide, lines 1-8 to set the local stacks for
each thread by considering the padding pieces related to the overlapping value
m. Hence, according to step 1 each thread performs a preliminary check of the
local chunk by means of the local index chunk idx. Therefore, if the left and the
right side of the input data are provided, these values are added, otherwise m
values, set to zero, are inserted on the overlapped positions. In lines 9-18 the
computation phase is performed and a dynamic parallelism approach [15] has
been applied, when possible. CUDA allows us to exploit the dynamic parallelism
which is an extension to the CUDA programming model by enabling a CUDA
kernel to configure new thread grids in order to launch new kernels for reducing
the computational time. The aim of dynamic parallelism in our implementation
consists in to the assignment, by each thread corresponding to each input portion,
therefore for every CUDA kernel, to K threads by scheduling each thread in
order to perform the forward and the backward filter operations as described in
Algorithm 1, in synchronous way. More in details, K different threads perform the
operations on each element following a pipeline modality. The usage of dynamic
parallelism is able to obtain very low execution times, despite the predictable
start-up and end-up times. The lines 19-22 are related to gathering of the local
results of each thread in the global output. The copy operation is designed
according to avoid memory contention, so that it is memory-safe because each
thread carries out only the n loc central elements of own local result by removing
the 2m boundary values. This property guarantees a strong memory consistency.

4 Experimental results

In this section, several experimental results highlight and confirm the reliability
and the efficiency of the proposed software. Following, the technical specifications
where the GPU-parallel algorithm has been implemented, are shown:

– two CPU Intel Xeon with 6 cores, E5-2609v3, 1.9 Ghz, 32GB of RAM, 4
channels 51Gb/s memory bandwidth

– two NVIDIA GeForce GTX TITAN X, 3072 CUDA cores, 1 Ghz Core clock
for core, 12 GB DDR5, 336 GBs as bandwidth.

Thanks to GPUs’ computational power, our algorithm exploits the CUDA frame-
work in order to take best advantage of parallel environment. Our approach relies
on an ad-hoc memory strategy which provides to increase the size of local stack
heap memory for each thread and for each thread blocks’. Exploiting this tech-
nique, when a large amount of input data will be loaded, the memory access time
is reduced. Previous operations are executed by using the following CUDA routine:
cudaDeviceSetLimit, by setting as first parameter cudaLimitMallocHeapSize

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

Accelerated Gaussian Convolution in a Data Assimilation scenario 9

and second cudaLimitStackSize; while as size, according to hardware architec-
ture, the value 1024× 1024× 1024 is fixed. This trick allows us to allocate the
dynamic memory, by using malloc system-call, directly on the device.
Therefore, in order to increase the performances an additional memory-based oper-
ation has been done. More precisely, this operation relies on L2 cache obtaining a
gain of performance by varying dynamically the fetch granularity. More in details,
after that each thread blocks computation is completed, we perform a dynamic
fetch granularity by using the CUDA routine cudaDeviceSetLimit and setting
as parameters: cudaLimitMaxL2FetchGranularity and 128*sizeof(int). The
value 128 is related to hardware architecture that can be support this range of
data loading. Applying this approach an appreciable increasing of performance
has been obtained by exploiting the memory cache’s property that can recover
the most used data and instructions during the execution. Accordingly, due to
the canonical operations of Recursive Filters during their execution, a reduced
memory access time is obtained by increasing the fetch granularity.
In other words, in a classical execution each thread accesses to the global memory
to retrieve the required data for the computation. In this case, according to the
memory hierarchy and the L2 memory strategy, each thread accesses first in the
cache, then in the local stack, and finally in the heap/global memory. With this
procedure a considerable gain in terms of performance has been achieved. In the
following tests we set σ = 2 and input signals randomly distributed (Gaussian or
uniform). The choice m = 2.5σ = 5 guarantees a good accuracy level, as shown
in [8, 20].

Test 1. Here, in order to highlight the performance gain, we set as input: N = 105,
m = 5, K = 10 and the thread number t = 100. Averaged times, related to 10
executions, achieved are:

– 7.24 seconds, without increasing fetch granularity,

– 6.93 seconds, by varying dynamic fetch granularity.

The first test highlights a small time difference but, if we give a large dataset input,
which requires a large execution time even on GPU, thanks to the granularity of
the dynamic recovery a significant performance gain can be obtained. Thus, the
dynamic operations are closely related to the size of the input, i.e. according to
cache granularity size chosen as parameter into function cudaDeviceSetLimit,
where in this case the maximum value is fixed to 128 bytes. This experiment
provides a comparison among serial and GPU parallel execution times. More
precisely, in Table 1 the execution times for both serial (CPU) and parallel version
(GPU) by choosing different input sizes and the iteration numbers are shown.
The input parameters are set as: Blocks× Threads= 10 × 100 and m = 5.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

10 P. De Luca et al.

Table 1. Execution times (in seconds), Blocks× Threads= 10 × 100, m = 5.

K

N
1× 104 5× 104 1× 105

10
GPU 0.274 3.243 10.219

CPU 5.892 129.790 403.871

50
GPU 0.483 3.592 11.883

CPU 6.293 149.592 518.560

100
GPU 0.596 4.711 12.703

CPU 8.431 172.197 650.195

500
GPU 0.778 5.719 13.177

CPU 9.324 195.150 757.912

1000
GPU 0.984 6.135 14.297

CPU 129.790 223.542 875.442

Test 2. This experiment confirms the reliability effects when choosing different
CUDA thread configurations. Here, we emphasize the different input sizes given,
while the iteration number and the overlapping value are set to K = 500 and
m=5, respectively. Indeed, reduction of execution times has been achieved by
decreasing the Blocks number, this holds true for all given input sizes. This
phenomenon is related to a good synchronization applied during the access to the
global memory from each thread, which reduces the access time and consequently
the overall execution time. These results are confirmed and verified also by
choosing any possible CUDA configuration in the range 1000–3072 threads (3072
is the maximum threads number available for our hardware). Table 2 confirms
the reliability of the parallelization strategy by highlighting the access time to
the global memory. In particular, the results allow us to find the best CUDA
thread configuration, Blocks× Threads= 3 × 1024, obtained in correspondence
of the best execution times.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

Accelerated Gaussian Convolution in a Data Assimilation scenario 11

Table 2. Execution times (in seconds), Iteration number K = 500. m = 5.

CUDA
configuration

N 1 × 104 5 × 104 1× 105

10 × 100 0.77 5.72 13.17

4 × 250 0.59 5.01 11.88

2 × 512 0.41 4.07 10.91

1 × 1024 0.38 3.76 9.68

20 × 100 0.55 6.24 11.57

8 × 250 0.47 4.92 10.71

4 × 512 0.39 3.67 10.42

2 × 1024 0.31 3.10 8.96

30 × 100 0.21 3.24 6.58

12 × 250 0.17 3.12 5.70

6 × 512 0.14 3.02 4.99

3 × 1024 0.12 2.99 4.07

Test 3. This experiment is referred to the optimal CUDA configuration and aims
to investigate the behaviour of the algorithm by varying both iteration number
value K and the input size N . Figure 1 shows an appreciable gain of performance
and, in particular, a sub-linear increase of execution time with respect to the
problem size (which is linear in N ×K), typical for GPUs architectures.

Fig. 1. Execution times by varying K and N (Blocks×Threads= 3× 1024, m = 5)

100 250 500 1000 2000 3000 5000 10000

K

0

1

2

3

4

5

6

7

8

E
x
e

c
u

ti
o

n
 t

im
e

s
 (

in
 s

e
c
o

n
d

s
)

N=1 x 10
4

N=5 x 10
4

N=1 x 10
5

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

12 P. De Luca et al.

Test 4. Here, we show a further improvement of the performance due to the use
the power of dynamic parallelism approach. Table 3 exhibits the best execution
times achieved by using the dynamic parallelism and choosing an ad-hoc, i.e.
limited by our machine available resources, CUDA configuration. Comparison
with Table 2 (first 4 lines) confirms the improvement for all data sizes. However,
we underline that, because the hardware limits available, if we set a too large
threads number, a big portion of them cannot work and, from a numerical point
of view, the output result becomes completely unreliable. In other words, a fair
CUDA configuration avoids a failed computation. For this reason, we have no
results by using a greater number of threads. Finally, behaviour of results in
Table 3 seems to suggest that an improving of performance should be obtained
by exploiting a machine with higher computational resources.

Table 3. Execution times (in seconds). Iteration number K = 500. m = 5.

CUDA
configuration

N 1 × 104 5 × 104 1× 105

10 × 100 0.28 4.64 10.09

4 × 250 0.21 3.86 9.71

2 × 512 0.19 3.60 8.15

1 × 1024 0.13 3.09 6.92

5 Conclusions

In this paper, we proposed a GPU-parallel algorithm that provides a fast and
accurate Gaussian convolution, which is a fundamental step in both Data As-
similation and Machine Learning fields. The algorithm relies on the K-iterated
first-order Gaussian Recursive filter. The parallel algorithm is designed by ex-
ploiting dynamic parallelism available in CUDA environment. The experimental
results confirm the reliability and the efficiency of the proposed algorithm.

References

1. De Luca P., Fiscale S., Landolfi L., Di Mauro A. (2019) Distributed Genomic
Compression in MapReduce Paradigm. In: Montella R., Ciaramella A., Fortino G.,
Guerrieri A., Liotta A. (eds) Internet and Distributed Computing Systems. IDCS
2019. Lecture Notes in Computer Science, vol 11874. Springer, Cham

2. De Luca P., Galletti A., Giunta G., Marcellino L., Raei M. (2020) Performance
Analysis of a Multicore Implementation for Solving a Two-Dimensional Inverse
Anomalous Diffusion Problem. In: Sergeyev Y., Kvasov D. (eds) Numerical Compu-
tations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science,
vol 11973. Springer, Cham

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

Accelerated Gaussian Convolution in a Data Assimilation scenario 13

3. De Luca, P. and Formisano, A. (2020) ”Haptic Data Accelerated Prediction via
multicore implementation”. In: Kohei A. (ed) Proceedings of the 2020 Computing
Conference. CompCom 2020. Advances in Intelligent Systems and Computing,
Springer, Cham

4. Giunta, G., R. Montella, Patrizio Mariani, and A. Riccio. ”Modeling and computa-
tional issues for air/water quality problems: A grid computing approach.” Nuovo
Cimento C Geophysics Space Physics C 28 (2005): 215

5. Rao, Vishwas, and Adrian Sandu. ”A time-parallel approach to strong-constraint
four-dimensional variational data assimilation.” Journal of Computational Physics
313 (2016): 583-593.

6. Bousserez, Nicolas, Jonathan J. Guerrette, and Daven K. Henze. ”Enhanced par-
allelization of the incremental 4D-Var data assimilation algorithm using the Ran-
domized Incremental Optimal Technique (RIOT).” Quarterly Journal of the Royal
Meteorological Society (2019).

7. Fisher, Michael, and Selime Gürol. ”Parallelization in the time dimension of four-
dimensional variational data assimilation.” Quarterly Journal of the Royal Meteoro-
logical Society 143.703 (2017): 1136-1147.

8. Galletti, Ardelio, and Giulio Giunta. ”Error analysis for the first-order Gaussian
recursive filter operator.” 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE, 2016. APA

9. Cuomo, S., Galletti, A., Giunta, G., & Marcellino, L. (2017). Numerical Ef-
fects of the Gaussian Recursive Filters in Solving Linear Systems in the 3Dvar
Case Study. Numerical Mathematics: Theory, Methods and Applications, 520-540.
doi:10.4208/nmtma.2017.m1528

10. D’Amore, L., Arcucci, R., Marcellino, L., & Murli, A. (2011, September). A Par-
allel Three-dimensional Variational Data Assimilation Scheme. In AIP Conference
Proceedings (Vol. 1389, No. 1, pp. 1829-1831). American Institute of Physics.

11. P. De Luca, A. Galletti and L. Marcellino, ”A Gaussian Recursive Filter Parallel
Implementation with Overlapping”, 2019 15th International Conference on Signal-
Image Technology & Internet-Based Systems (SITIS), Sorrento, Italy, 2019, pp.
633-640.

12. Chaurasia, G., Kelley, J.R., Paris, S., Drettakis, G., Durand, F., - Compiling
High Performance Recursive Filters. Proceedings of the 7th Conference on High-
Performance Graphics, pp 85–94, 2015.

13. De Luca, P., Galletti, A., Ghehsareh, H.R., Marcellino, L., & Raei, M. A gpu-
cuda framework for solving a two-dimensional inverse anomalous diffusion problem.
In: Foster, I., Joubert, G.R., Kučera, L., Nagel, W.E., Peters, F. (eds) Parallel
Computing: Technology Trends, Advances in Parallel Computing. Vol 36. pp 311 -
320. IOS Press, 2020. DOI: http://doi.org/10.3233/APC200056

14. S. Cuomo, P. D. Michele, A. Galletti and L. Marcellino, ”A GPU-Parallel Algorithm
for ECG Signal Denoising Based on the NLM Method,” 2016 30th International
Conference on Advanced Information Networking and Applications Workshops
(WAINA), Crans-Montana, 2016, pp. 35-39.

15. Jones, S. (2012, May). Introduction to dynamic parallelism. In GPU Technology
Conference Presentation S (Vol. 338, p. 2012).

16. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
17. Ghil, Michael, and Paola Malanotte-Rizzoli. ”Data assimilation in meteorology and

oceanography.” Advances in geophysics. Vol. 33. Elsevier, 1991. 141-266.
18. A.C. Lorenc - Development of an operational variational assimilation scheme.

Journal of the Meteorological Society of Japan 75, pp 339-346, 1997.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

14 P. De Luca et al.

19. C. Hayden, R.J. Purser - Recursive filter objective analysis of meteorological field:
applications to NESDIS operational processing. Journal of Applied Meteorology 34,
pp 3-15, 1995.

20. S. Cuomo, R. Farina, A. Galletti and L. Marcellino, ”An error estimate of Gaussian
recursive filter in 3Dvar problem,” 2014 Federated Conference on Computer Science
and Information Systems, Warsaw, 2014, pp. 587-595. doi: 10.15439/2014F279

21. Young, I.T., van Vliet L.J.. - Recursive implementation of the Gaussian filter. Signal
Processing 44, pp 139-151, 1995.

22. Wells, William M. ”Efficient synthesis of Gaussian filters by cascaded uniform
filters.” IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1986):
234-239.

23. Gilbert, R. C., Richman, M. B., Trafalis, T. B., & Leslie, L. M. (2010). Machine
learning methods for data assimilation. Computational Intelligence in Architecturing
Complex Engineering Systems, 105-112.

24. B. Triggs, M. Sdika - Boundary conditions for Young-van Vliet recursive filtering.
IEEE Transactions on Signal Processing, 54 (6 I), pp. 2365-2367, 2006.

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_16

https://dx.doi.org/10.1007/978-3-030-50433-5_16

