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Abstract. The interactions between humans and their environment,
comprising living and non-living entities, can be studied via Social Net-
work Analysis (SNA). Node classification, as well as community detection
tasks, are still open research problems in SNA. Hence, SNA has become
an interesting and appealing domain in Artificial Intelligence (AI) re-
search. Immanent facts about social network structures can be effectively
harnessed for training AI models in a bid to solve node classification
and community detection problems in SNA. Hence, crucial aspects such
as the individual attributes of spatial social actors, and the underlying
patterns of relationship binding these social actors must be taken into
consideration in the course of analyzing the social network. These factors
determine the nature and dynamics of a given social network. In this
paper, we have proposed a unique framework, Representation Learning
via Knowledge-Graph Embeddings and ConvNet (RLVECN), for studying
and extracting meaningful facts from social network structures to aid in
node classification as well as community detection tasks. Our proposition
utilizes an edge sampling approach for exploiting features of the social
graph, via learning the context of each actor with respect to neighboring
actors/nodes, with the goal of generating vector-space embedding per
actor. Successively, these relatively low-dimensional vector embeddings
are fed as input features to a downstream classifier for classification
tasks about the social graph/network. Herein RLVECN has been trained,
tested, and evaluated on real-world social networks.

Keywords: Node Classification · Feature Learning · Feature Extraction
· Dimensionality Reduction · Semi-supervised Learning.

? This research was supported by International Business Machines (IBM) and Compute
Canada (SHARCNET).

ICCS Camera Ready Version 2020
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-50433-5_15

https://dx.doi.org/10.1007/978-3-030-50433-5_15


2 B. C. Molokwu et al.

1 Introduction and Related Literature

Humans inhabit in a planet comprised of several systems and ecosystems; and
interaction is a natural phenomenon and characteristic obtainable in any given
system or ecosystem. Thus, relationships between constituent entities in a given
system/ecosystem is a strategy for survival and essentiality for the sustenance of
a given system/ecosystem. Owing to the recent AI advances, these real-world
complex systems and ecosystems can be effectively modelled as social network
structures for analysis. Social network graphs [22] are intricate structures which
present analytical challenges to Machine Learning (ML) and Deep Learning
(DL) models because of their dynamic nature, complex links, and occasionally
massive size. In this regard, we have proposed a new hybrid and DL-based
model (RLVECN) based on an iterative learning approach [1] for solving (node)
classification as well as clustering problems in SNA via an edge sampling strategy.

In SNA, the classification of nodes induces the formation of cluster(s). Conse-
quently, clusters give rise to homophily in social networks. Basically, learning in
RLVECN is induced via semi-supervised training. The architecture of RLVECN
comprises two (2) distinct Representation Learning (RL) layers, viz: a Knowledge-
Graph Embeddings (VE) layer and a Convolutional Neural Network (ConvNet)
layer [13]. Both of these layers are trained by means of unsupervised learning.
These layers are essentially feature-extraction and dimensionality-reduction layers
where underlying knowledge and viable facts are automatically extracted from
the social network structure [15]. The vector-embedding layer is responsible
for projecting the feature representation of the social graph to a q-dimensional
real-number space, Rq. This is done by associating a real-number vector to every
unique actor/node in the social network such that the cosine distance of any
given tie/edge (a pair of actors) would capture a significant degree of correlation
between the two associated actors. Furthermore, the ConvNet layer, which feeds
on the vector-embedding layer, is responsible for further extraction of apparent
features and/or representations from the social graph. Finally, a classification
layer succeeds the RL layers; and it is trained by means of supervised learn-
ing. The classifier is based on a Neural Network (NN) architecture assembled
using multiple and deep layers of stacked perceptrons (NN units) [6]. Every
low-dimensional feature (X), extracted by the representation-learning layers, is
mapped to a corresponding output label (Y ); and these (X,Y ) pairs are used to
supervise the training of the classifier such that it can effectively and efficiently
learn how to identify clusters and classify actors within a given social network
structure. Hence, the novelty of our research contribution are as stated below:

(1) Proposition of a DL-based and hybrid model, RLVECN, which is aimed at
solving node classification problems in SNA.

(2) Detailed benchmarking reports with respect to classic objective functions
used for classification tasks.

(3) Comparative analysis, between RLVECN and state-of-the-art methodologies,
against standard real-world social networks.
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Node Classification in Complex Social Graphs using RLVECN 3

RLVECN is capable of learning the non-linear distributed features enmeshed
in a social network [9]. We have evaluated RLVECN against an array of state-of-
the-art models and RL methodologies which serve as our baselines, viz:

(i) DeepWalk: Online Learning of Social Representations [19].
(ii) GCN: Semi-Supervised Classification with Graph Convolutional Networks

[11].
(iii) LINE: Large-scale Information Network Embedding [25].
(iv) Node2Vec: Scalable Feature Learning for Networks [8].
(v) SDNE: Structural Deep Network Embedding [26].

2 Proposed Methodology and Framework

2.1 Definition of Problem

Definition 1. Social Network, SN : As expressed via equation 1 such that SN is
a tuple comprising a set of actors/vertices, V ; a set of ties/edges, E; a metadata
function, fV , which extends the definition of the vertices’ set by mapping it to
a given set of attributes, V ′; and a metadata function, fE, which extends the
definition of the edges’ set by mapping it to a given set of attributes, E′. Thus, a
graph function, G(V,E) ⊂ SN

SN = (V,E, fV , fE) ≡ (G, fV , fE)

V : |{V }| = M set of actors/vertices with size, M

E : E ⊂ {U × V } ⊂ {V × V } set of ties/edges between V

fV : V → V ′ vertices’ metadata function

fE : E → E′ edges’ metadata function

(1)

Definition 2. Knowledge Graph, KG: (E,R) is a set comprising entities, E,
and relations, R, between the entities. Thus, a KG [24][28] is defined via a set of
triples, t : (u, p, v), where u, v ∈ E and p ∈ R. Also, a KG [27] can be modelled
as a social network, SN , such that: E→ V and R→ E and (E,R) ` fV , fE.

Definition 3. Knowledge-Graph (Vector) Embeddings, X: The vector-space em-
beddings, X, generated by the embedding layer are based on a mapping function,
f , expressed via equation 2. f projects the representation of the graph’s actors to
a q-dimensional real space, Rq, such that the existent ties between any given pair
of actors, (ui, vj), remain preserved via the homomorphism from V to X.

f : V → X ∈ Rq

f : (u, p, v)→ X ∈ Rq Knowledge-Graph Embeddings
(2)

Definition 4. Node Classification: Considering, SN , comprising partially la-
belled actors (or vertices), Vlbl ⊂ V : Vlbl → Ylbl; and unlabelled vertices defined
such that: Vulb = V −Vlbl. A node-classification task aims at training a predictive
function, f : V → Y , that learns to predict the labels, Y , for all actors or vertices,
V ⊂ SN , via knowledge harnessed from the mapping: Vlbl → Ylbl.
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Fig. 1: Node classification task in social graphs

2.2 Proposed Methodology

Our proposition, RLVECN, is comprised of two (2) distinct Feature Learning
(FL) layers, and one (1) classification layer.

Representation Learning - Knowledge-Graph Embeddings Layer: Given
a social network, SN , defined by a set of actors/vertices, V : U ⊂ V ∀ {um, vm} ∈
V , and M : m ∈ M denotes the number of unique actors in SN . Additionally,
let the ties/edges in SN be defined such that: E ⊂ {U × V }; where ui ∈ V and
vj ∈ V represent a source vertex and a target vertex in E, respectively.

The objective function of the vector-embedding layer aims at maximizing
the average logarithmic probability of the source vertex, ui, being predicted as
neighboring actor to the target vertex, vj , with respect to all training pairs,
∀ (ui, vj) ∈ E. Formally, the function is expressed as in equation 3:

µ =
1

M

M∑
m=1

(
∑

(ui,vj)∈E

logPr(ui|vj)) (3)

Consequently, in order to compute Pr(ui|vj), we have to quantify the prox-
imity of each target vertex, vj , with respect to its source vertex, ui. The vector-
embedding model measures this adjacency/proximity as the cosine similarity
between vj and its corresponding ui. Thus, the cosine distance is calculated as
the dot product between the target vertex and the source vertex. Mathematically,
Pr(ui|vj) is computed via a softmax function as defined in equation 4:

Pr(ui|vj) =
exp(ui · vj)∑M

m=1 exp(um · vj)
(4)
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Hence, the objective function of our vector-embedding model with respect to
the SN is as expressed by equation 5:∑

(ui,vj)∈E

logPr(ui|vj) =
∑

(ui,vj)∈E

log
exp(ui · vj)∑M

m=1 exp(um · vj)
(5)

Representation Learning - ConvNet Layer: This layer comprises three (3)
RL or FL operations, namely: convolution, non-linearity, and pooling opera-
tions. RLVECN utilizes a one-dimensional (1D) convolution layer [14] which is
sandwiched between the vector-embedding and classification layers. Equation 6
expresses the 1D-convolution operation:

FeatureMap(F ) = 1D InputMatrix(X) ∗Kernel(K)

fi = (X ∗K)i = (K ∗X)i =

J−1∑
j=0

xj · ki−j =

J−1∑
j=0

kj · xi−j
(6)

where fi represents a cell/matrix position in the Feature Map; kj denotes a cell
position in the Kernel; and xi−j denotes a cell/matrix position in the 1D-Input
(data) matrix.

The non-linearity operation is a rectified linear unit (ReLU) function which
introduces non-linearity after the convolution operation since real-world problems
usually exist in non-linear form(s). As a result, the rectified feature/activation
map is computed via: ri ∈ R = g(fi ∈ F ) = max(0, F ).

The pooling operation is responsible for reducing the input width of each
rectified activation map while retaining its vital properties. In this regard, the
Max Pooling function is defined such that the resultant pooled (or downsampled)
feature map is generated via: pi ∈ P = h(ri ∈ R) = maxPool(R).

Classification - Multi-Layer Perceptron (MLP) Classifier Layer: This
is the last layer of our proposed RLVECN’s architecture, and it succeeds the RL
layers. The pooled feature maps, generated by the Representation Learning layers,
contain high-level features extracted from the constituent actors of the social
network structure. Hence, the classification layer utilizes these extracted “high-
level features” for identifying clusters, based on the respective classes, contained
in the social graph. In this regard, a MLP [5] function is defined as a mathematical
function, fc, mapping some set of input values, P , to their respective output
labels, Y . In other words, Y = fc(P,Θ), and Θ denotes a set of parameters. The
MLP [4] function learns the values of Θ that will result in the best decision, Y ,
approximation for the input set, P . The MLP classifier output is a probability
distribution which indicates the likelihood of a feature representation belonging to
a particular output class. Our MLP [10] classifier is modelled such that sequential
layers of NN units are stacked against each other to form a Deep Neural Network
(DNN) structure [3], [16].

Node Classification Algorithm: Defined via algorithm 1.
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Algorithm 1 Proposed Algorithm for Node Classification

Input: {V,E, Ylbl} ≡ {Actors, Ties, Ground-Truth Labels}
Output: {Yulb} ≡ {Predicted Labels}

Preprocessing:
Vlbl, Vulb ⊂ V = Vlbl ∪ Vulb // Vlbl : Labelled actors // Vulb : Unlabelled actors
E : (ui, vj) ∈ {U × V } // (ui, vj) ≡ (source, target)
Etrain = Et : ui, vj ∈ Vlbl // |Etrain| =

∑
indegree(Vlbl) +

∑
outdegree(Vlbl)

Epred = Ep : ui, vj ∈ Vulb

fc ← Initialize // Construct classifier model

Training:
for t← 0 to |Etrain| do
f : Et → [X ∈ Rq] // Embedding operation
ft ∈ F = (K ∗X)t // Convolution operation
rt ∈ R = g(F ) = max(0, ft)
pt ∈ P = h(R) = maxPool(rt)
fc|Θ : pt → Ylbl // MLP classification operation

end for

return Yulb = fc(Epred, Θ)

2.3 Proposed Architecture/Framework

Fig. 2 illustrates the architecture of our proposition, RLVECN.

Fig. 2: Proposed system architecture

3 Data sets and Materials

3.1 Data sets

With regard to Table 1 herein, six (6) real-world benchmark social-graph data sets
were employed for experimentation and evaluation, viz: Cora [23] [20], CiteSeer
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[23] [20], Facebook Page-Page webgraph [21], PubMed-Diabetes [17], Internet-
Industry partnerships [12] [2], and Terrorists-Relationship [29].

Table 1: Benchmark data sets

Data set Classes → {label: ‘description’}

Cora G(V,E) = G(2708, 5429)
{C1: ‘Case Based’, C2: ‘Genetic Algorithms’, C3: ‘Neural Networks’, C4:
‘Probabilistic Methods’, C5: ‘Reinforcement Learning’, C6: ‘Rule Learning’,
C7: ‘Theory’}

CiteSeer G(V,E) = G(3312, 4732)
{C1: ‘Agents’, C2: ‘Artificial Intelligence’, C3: ‘Databases’, C4: ‘Information
Retrieval’, C5: ‘Machine Learning’, C6: ‘Human-Computer Interaction’}

Facebook G(V,E) = G(22470, 171002)
Page2Page {C1: ‘Companies’, C2: ‘Governmental Organizations’, C3: ‘Politicians’, C4:

‘Television Shows’}

PubMed G(V,E) = G(19717, 44338)
Diabetes {C1: ‘Diabetes Mellitus - Experimental’, C2: ‘Diabetes Mellitus - Type 1’,

C3: ‘Diabetes Mellitus - Type 2’}

Internet G(V,E) = G(219, 631)
Industry {C1: ‘Content Sector’, C2: ‘Infrastructure Sector’, C3: ‘Commerce Sector’}

Terrorists G(V,E) = G(851, 8592)
Relation {C1: ‘Content Sector’, C2: ‘Infrastructure Sector’, C3: ‘Commerce Sector’}

3.2 Data Preprocessing

All benchmark data sets ought to be comprised of actors and ties already encoded
as discrete data (natural-number format). However, Cora, CiteSeer, Facebook-
Page2Page, PubMed-Diabetes, and Terrorists-Relation data sets are made up of
nodes and/or edges encoded in mixed formats (categorical and numerical formats).
Thus, it is necessary to transcode these non-numeric (categorical) entities to their
respective discrete (numeric) data representation, without semantic loss, via an
injective function that maps each distinct entry in the categorical-entity domain
to distinct numeric values in the discrete-data codomain, fm : categorical →
discrete. Thereafter, the numeric representation of all benchmark data sets are
normalized, fn : discrete→ continuous, prior to training against RLVECN and
the benchmark models. Also, only edgelist ties, E ⊂ G, whose constituent actors
are present in the nodelist, V ⊂ G, were used for training/testing our model.

Table 2: Configuration of experimentation hyperparameters

Training Set: 80% Test Set: 20% Network Width: 640
Batch Size: 256 Optimizer: AdaMax Network Depth: 6
Epochs: 1.8 ∗ 102 Activation: ReLU Dropout: 4.0 ∗ 10−1

Learning Rate: 1.0 ∗ 10−3 Learning Decay: 0.0 Embed Dimension: 100
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Fig. 3: RLVECN’s learning curves during node-classification training against Cora,
CiteSeer, Facebook-Page2Page, PubMed-Diabetes, Internet-Industry-Partnership,
and Terrorists-Relation data sets (loss function vs training epochs)

4 Experiment, Results, and Discussions

RLVECN’s experimentation setup was tuned in accordance with the hyperpa-
rameters shown in Table 2. Our evaluations herein were recorded with reference
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Table 3: Node-classification over Cora data set. Results are based on the set apart
validation sample - data set vs models.

Model Metric Cora Dataset Points
C1 C2 C3 C4 C5 C6 C7 µ

RLVECN

PC 0.85 0.78 0.80 0.88 0.72 0.90 0.81 0.82

14

RC 0.86 0.93 0.81 0.87 0.75 0.91 0.78 0.84
F1 0.86 0.85 0.81 0.87 0.74 0.91 0.79 0.83
AC 0.93 0.98 0.96 0.95 0.93 0.97 0.96 0.95
RO 0.90 0.96 0.90 0.92 0.85 0.95 0.88 0.91
SP 541 134 214 405 294 345 237 310

GCN

PC 0.87 0.95 0.89 0.92 0.85 0.89 0.87 0.89

3

RC 0.85 0.73 0.65 0.82 0.58 0.85 0.73 0.74
F1 0.86 0.83 0.75 0.87 0.69 0.87 0.79 0.81
AC 0.89 0.93 0.91 0.92 0.88 0.93 0.91 0.91
RO 0.88 0.83 0.80 0.89 0.75 0.90 0.83 0.84
SP 164 36 43 85 70 84 60 77

Node2Vec

PC 0.58 0.78 0.72 0.81 0.80 0.84 0.82 0.76

0

RC 0.85 0.50 0.53 0.68 0.64 0.74 0.60 0.65
F1 0.69 0.61 0.61 0.74 0.71 0.78 0.69 0.69
AC 0.77 0.96 0.95 0.92 0.93 0.94 0.94 0.92
RO 0.79 0.75 0.76 0.83 0.81 0.86 0.79 0.80
SP 164 36 43 85 70 84 60 77

DeepWalk

PC 0.57 0.58 0.72 0.58 0.68 0.72 0.63 0.64

0

RC 0.80 0.42 0.42 0.59 0.39 0.63 0.65 0.56
F1 0.67 0.48 0.53 0.58 0.49 0.67 0.64 0.58
AC 0.76 0.94 0.94 0.87 0.90 0.90 0.92 0.89
RO 0.77 0.70 0.70 0.75 0.68 0.79 0.80 0.74
SP 164 36 43 85 70 84 60 77

LINE

PC 0.35 0.86 0.80 0.65 0.50 0.43 0.61 0.60

0

RC 0.85 0.17 0.19 0.35 0.20 0.15 0.23 0.31
F1 0.50 0.28 0.30 0.46 0.29 0.23 0.34 0.34
AC 0.48 0.94 0.93 0.87 0.87 0.84 0.90 0.83
RO 0.59 0.58 0.59 0.66 0.59 0.56 0.61 0.60
SP 164 36 43 85 70 84 60 77

SDNE

PC 0.37 0.83 0.70 0.60 0.54 0.64 0.64 0.62

0

RC 0.91 0.14 0.16 0.35 0.20 0.27 0.12 0.31
F1 0.53 0.24 0.26 0.44 0.29 0.38 0.20 0.33
AC 0.50 0.94 0.93 0.86 0.87 0.86 0.89 0.84
RO 0.62 0.57 0.58 0.65 0.59 0.62 0.55 0.60
SP 164 36 43 85 70 84 60 77

to a range of objective functions. Thus, Categorical Cross Entropy was employed
as the cost/loss function; while the fitness/utility was measured based on the
following metrics: Precision (PC), Recall (RC), F-measure or F1-score (F1), Ac-
curacy (AC), and Area Under the Receiver Operating Characteristic Curve (RO).
Moreover, the objective functions have been computed against each benchmark
data set with regard to the constituent classes (or categories) present in each
data set. The Support (SP) represents the number of ground-truth samples per
class/category for each data set.

In a bid to avoid sample bias across-the-board, we have used exactly the same
SP for all models inclusive of RLVECN model. However, since RLVECN is based
on an edge-sampling technique; the SP recorded against RLVECN model represent
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Table 4: Node-classification over CiteSeer data set. Results are based on the set
apart test sample - data set vs models.

Model Metric CiteSeer Dataset Points
C1 C2 C3 C4 C5 C6 µ

RLVECN

PC 0.76 0.81 0.78 0.43 0.88 0.60 0.71

12

RC 0.84 0.83 0.79 0.60 0.79 0.65 0.75
F1 0.80 0.82 0.79 0.50 0.83 0.63 0.73
AC 0.93 0.88 0.92 0.93 0.96 0.89 0.92
RO 0.90 0.87 0.87 0.78 0.89 0.79 0.85
SP 304 609 377 107 225 275 316

GCN

PC 0.80 0.78 0.86 0.95 0.91 0.75 0.84

2

RC 0.76 0.76 0.73 0.08 0.67 0.54 0.59
F1 0.78 0.77 0.79 0.15 0.77 0.63 0.65
AC 0.88 0.87 0.88 0.91 0.89 0.83 0.88
RO 0.84 0.83 0.83 0.53 0.81 0.72 0.76
SP 119 134 140 50 102 118 111

Node2Vec

PC 0.57 0.55 0.49 0.33 0.55 0.38 0.48

0

RC 0.55 0.60 0.66 0.06 0.45 0.40 0.45
F1 0.56 0.58 0.56 0.10 0.50 0.39 0.45
AC 0.85 0.82 0.78 0.92 0.86 0.78 0.84
RO 0.73 0.74 0.74 0.53 0.69 0.63 0.68
SP 119 134 140 50 102 118 111

DeepWalk

PC 0.46 0.53 0.43 0.43 0.47 0.33 0.44

0

RC 0.51 0.54 0.57 0.06 0.41 0.32 0.40
F1 0.49 0.54 0.49 0.11 0.44 0.32 0.40
AC 0.81 0.81 0.75 0.92 0.84 0.76 0.82
RO 0.69 0.71 0.69 0.53 0.66 0.59 0.65
SP 119 134 140 50 102 118 111

SDNE

PC 0.37 0.50 0.24 0.20 0.45 0.31 0.35

0

RC 0.19 0.27 0.77 0.02 0.14 0.09 0.25
F1 0.25 0.35 0.36 0.04 0.21 0.14 0.23
AC 0.80 0.80 0.42 0.92 0.84 0.80 0.76
RO 0.56 0.60 0.55 0.51 0.55 0.52 0.55
SP 119 134 140 50 102 118 111

LINE

PC 0.18 0.30 0.28 0.60 0.22 0.27 0.31

0

RC 0.15 0.47 0.39 0.06 0.12 0.21 0.23
F1 0.16 0.36 0.32 0.11 0.15 0.24 0.22
AC 0.72 0.67 0.65 0.93 0.80 0.76 0.76
RO 0.50 0.59 0.56 0.53 0.52 0.55 0.54
SP 119 134 140 50 102 118 111

the numbers of edges/ties used for computation as explained in algorithm 1.
With regard to the standard node-classification tasks herein, the performance
of our RLVECN model during benchmarking against five(5) popular baselines
(DeepWalk, GCN, LINE, Node2Vec, SDNE); and when evaluated against the
validation/test samples for the benchmark data sets are as documented in Table
3, Table 4, Table 5, and Table 6 respectively. Consequently, Fig. 3 graphically
shows the learning-progress curves during the node-classification tasks using our
proposed RLVECN model; and when training over the benchmark data sets.
Hence, the dotted-black lines represent learning progress over the training set;
and the dotted-blue lines represent learning progress over the test set.
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Table 5: Node-classification experiment over Facebook Page-Page webgraph and
PubMed-Diabetes data sets. Results are based on the reserved test sample - data
set vs models. N.B.: Mtc = Metric (fitness function); Pts = Points.

Model Mtc Facebook-Page2Page Pts PubMed-Diabetes Pts
C1 C2 C3 C4 µ C1 C2 C3 µ

RLVECN

PC 0.87 0.95 0.91 0.87 0.90

8

0.76 0.83 0.84 0.81

6

RC 0.84 0.85 0.85 0.86 0.85 0.60 0.88 0.91 0.80
F1 0.85 0.90 0.88 0.86 0.87 0.67 0.86 0.87 0.80
AC 0.96 0.90 0.94 0.97 0.94 0.89 0.88 0.90 0.89
RO 0.97 0.97 0.98 0.98 0.98 0.92 0.94 0.95 0.94
SP 9989 33962 16214 6609 16694 3300 7715 7170 6062

Node2Vec

PC 0.81 0.84 0.81 0.84 0.83

0

0.74 0.47 0.49 0.57

0

RC 0.82 0.87 0.85 0.67 0.80 0.03 0.65 0.55 0.41
F1 0.81 0.85 0.83 0.74 0.81 0.05 0.55 0.52 0.37
AC 0.89 0.91 0.91 0.93 0.91 0.80 0.57 0.60 0.66
RO 0.87 0.90 0.89 0.82 0.87 0.51 0.58 0.59 0.56
SP 1299 1376 1154 665 1124 821 1575 1548 1315

DeepWalk

PC 0.75 0.84 0.76 0.75 0.78

0

0.65 0.57 0.58 0.60

0

RC 0.81 0.85 0.82 0.52 0.75 0.15 0.67 0.71 0.51
F1 0.78 0.84 0.79 0.62 0.76 0.24 0.62 0.63 0.50
AC 0.87 0.90 0.89 0.90 0.89 0.81 0.67 0.68 0.72
RO 0.85 0.89 0.87 0.75 0.84 0.56 0.67 0.69 0.64
SP 1299 1376 1154 665 1124 821 1575 1548 1315

LINE

PC 0.53 0.66 0.72 0.66 0.64

0

0.48 0.42 0.44 0.45

0

RC 0.72 0.71 0.59 0.29 0.58 0.05 0.60 0.46 0.37
F1 0.61 0.68 0.65 0.40 0.59 0.08 0.50 0.45 0.34
AC 0.73 0.80 0.83 0.87 0.81 0.79 0.51 0.56 0.62
RO 0.73 0.77 0.75 0.63 0.72 0.52 0.53 0.54 0.53
SP 1299 1376 1154 665 1124 821 1575 1548 1315

SDNE

PC 0.49 0.80 0.70 0.65 0.66

0

0.65 0.43 0.74 0.61

0

RC 0.90 0.63 0.50 0.19 0.56 0.05 0.96 0.17 0.39
F1 0.64 0.70 0.58 0.29 0.55 0.10 0.59 0.27 0.32
AC 0.70 0.84 0.82 0.86 0.81 0.80 0.48 0.65 0.64
RO 0.76 0.78 0.71 0.58 0.71 0.52 0.56 0.56 0.55
SP 1299 1376 1154 665 1124 821 1575 1548 1315

Tables 3, 4, 5, and 6 have clearly tabulated our results as a multi-classification
task over the benchmark data sets. Thus, for each class per data set, we have
laid emphasis on the F1 (the weighted average of the PC and RC metrics) and
RO. Therefore, we have highlighted the model which performed best (based on
F1 and RO metrics) for each classification task using a bold font. Additionally,
we have employed a point-based ranking standard to ascertain the fittest model
for each node classification task. The model with the highest aggregate point
signifies the fittest model for the specified task, and so on in a descending order
of aggregate points. Accordingly, as can be seen from our tabular results, our
proposed methodology (RLVECN) is at the top with the highest fitness points.

L2 regularization (L2 = 0.04) [7] and early stopping [18] were used herein as ad-
don regularization techniques to overcome overfitting incurred during RLVECN’s
training. Hence, the application of early stopping with respect to RLVECN’s
training over the benchmark data sets were, viz: 50 epochs (Cora, CiteSeer,
Facebook-Page2Page, PubMed-Diabetes, Terrorists-Relation) and 180 epochs
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Table 6: Node-classification experiment over Internet-Industry-Partnership and
Terrorists-Relationship data sets. Results are based on the reserved validation
sample - data set vs models. N.B.: Mtc = Metric (fitness function); Pts = Points.

Model Mtc Internet-Industry- Pts Terrorists-Relation Dataset PtsPartnership
C1 C2 C3 µ C1 C2 C3 C4 µ

RLVECN

PC 0.33 0.96 0.29 0.53

5

0.93 0.91 0.46 1.00 0.83

6

RC 0.65 0.77 0.76 0.73 0.97 0.97 0.42 0.97 0.83
F1 0.44 0.86 0.42 0.57 0.95 0.94 0.44 0.98 0.83
AC 0.84 0.78 0.87 0.83 0.95 0.98 0.89 0.99 0.95
RO 0.76 0.81 0.82 0.80 0.98 1.00 0.85 1.00 0.96
SP 26 238 17 94 1706 491 319 561 769

GCN

PC No experiment

0

0.94 0.74 0.67 0.96 0.83

5

RC due to the 0.90 0.95 0.60 1.00 0.86
F1 absence of 0.92 0.83 0.63 0.98 0.84
AC vectorized feature 0.92 0.95 0.88 0.99 0.94
RO set for this 0.98 0.99 0.91 1.00 0.97
SP data set 92 21 30 27 43

DeepWalk

PC 0.50 0.81 0.36 0.56

1

0.88 0.82 0.64 0.86 0.80

0

RC 0.12 0.93 0.44 0.50 0.90 0.86 0.53 0.93 0.81
F1 0.20 0.86 0.40 0.49 0.89 0.84 0.58 0.89 0.80
AC 0.82 0.82 0.73 0.79 0.88 0.96 0.86 0.96 0.92
RO 0.55 0.79 0.62 0.65 0.88 0.92 0.73 0.95 0.87
SP 8 27 9 15 92 21 30 27 43

Node2Vec

PC 0.00 0.68 0.75 0.48

1

0.86 0.82 0.60 0.86 0.79

0

RC 0.00 1.00 0.33 0.44 0.88 0.86 0.50 0.93 0.79
F1 0.00 0.81 0.46 0.42 0.87 0.84 0.55 0.89 0.79
AC 0.82 0.70 0.84 0.79 0.86 0.96 0.85 0.96 0.91
RO 0.50 0.62 0.65 0.59 0.86 0.92 0.71 0.95 0.86
SP 8 27 9 14.67 92 21 30 27 43

LINE

PC 0.00 0.61 0.00 0.20

0

0.82 0.82 0.58 0.92 0.79

0

RC 0.00 1.00 0.00 0.33 0.92 0.86 0.37 0.85 0.75
F1 0.00 0.76 0.00 0.25 0.87 0.84 0.45 0.88 0.76
AC 0.82 0.61 0.80 0.74 0.85 0.96 0.84 0.96 0.90
RO 0.50 0.50 0.50 0.50 0.84 0.92 0.65 0.92 0.83
SP 8 27 9 15 92 21 30 27 43

SDNE

PC 0.00 0.61 0.00 0.20

0

0.77 0.90 0.56 1.00 0.81

0

RC 0.00 1.00 0.00 0.33 0.92 0.86 0.30 0.85 0.73
F1 0.00 0.76 0.00 0.25 0.84 0.88 0.39 0.92 0.76
AC 0.82 0.61 0.80 0.74 0.81 0.97 0.84 0.98 0.90
RO 0.50 0.50 0.50 0.50 0.80 0.92 0.62 0.93 0.82
SP 8 27 9 15 92 21 30 27 43

(Internet-Industry-Partnership). We have used a mini-batch size of 256 for train-
ing and testing/validating because we want to ensure that sufficient patterns are
extracted by RLVECN during training before its network weights are updated.

5 Limitations, Conclusion, Future Work, and
Acknowledgements

The benchmark models evaluated herein were implemented using their default
parameters. We were not able to evaluate GCN [11] against Facebook Page-
Page webgraph, PubMed-Diabetes, and Internet-Industry-Partnership data sets;
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because each of these aforementioned data sets does not possess a vectorized
feature set which is required by GCN model for input-data processing. Overall,
RLVECN’s remarkable performance with respect to our benchmarking results
can be attributed to the following:

(1) The RL kernel of RLVECN is constituted of two (2) distinct layers of FL,
viz: Knowledge-Graph Embeddings and ConvNet [13].

(2) The high-quality data preprocessing techniques employed herein with respect
to the benchmark data sets. We ensured that all constituent actors of a given
social graph were transcoded to their respective discrete data representations,
without any loss in semantics, and normalized prior to training and/or testing.

In conclusion, we intend to expand our experimentation scope to include more
social network data sets and benchmark models. This research was made possible
by International Business Machines (IBM), SHARCNET and Compute Canada
(www.computecanada.ca).
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