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Abstract. We introduce a new neural network for Data Assimilation
(DA). DA is the approximation of the true state of some physical system
at a given time obtained combining time-distributed observations with
a dynamic model in an optimal way. The typical assimilation scheme is
made up of two major steps: a prediction and a correction of the prediction
by including information provided by observed data. This is the so called
prediction-correction cycle. Classical methods for DA include Kalman
filter (KF). KF can provide a rich information structure about the solution
but it is often complex and time-consuming. In operational forecasting
there is insufficient time to restart a run from the beginning with new
data. Therefore, data assimilation should enable real-time utilization of
data to improve predictions. This mandates the choice of an efficient data
assimilation algorithm. Due to this necessity, we introduce, in this paper,
the Neural Assimilation (NA), a coupled neural network made of two
Recurrent Neural Networks trained on forecasting data and observed data
respectively. We prove that the solution of NA is the same of KF. As NA is
trained on both forecasting and observed data, after the phase of training
NA is used for the prediction without the necessity of a correction given
by the observations. This allows to avoid the prediction-correction cycle
making the whole process very fast. Experimental results are provided
and NA is tested to improve the prediction of oxygen diffusion across the
Blood-Brain Barrier (BBB).
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1 Introduction and Motivations

The current approach to forecasting modelling consists of simulating explicitly
only the largest-scale phenomena, while taking into account the smaller-scale
ones by means of “physical parameterisations”. All numerical models introduce
uncertainty through the selection of scales and parameters. Additionally, any
computational methodology contributes to uncertainty due to discretization,
finite precision and accumulation of round-off errors. Finally the ever growing size
of the computational domains leads to increasing sources of uncertainties. Taking
into account these uncertainties is essential for the acceptance of any numerical
simulation. Numerical forecasting models often use Data Assimilation methods
for the uncertainty quantification in the medium to long-term analysis. Data
Assimilation (DA) is the approximation of the true state of some physical system
at a given time by combining time-distributed observations with a dynamic model
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in an optimal way. DA can be classically approached in two ways: as variational
DA [I6] and as filtering [5]. In both cases we seek an optimal solution. The most
popular filtering approach for data assimilation is the Kalman Filter (KF) [15].
Statistically, KF seeks a solution with minimum variance. Variational methods
seek a solution that minimizes a suitable cost function. In certain cases, the two
approaches are identical and provide exactly the same solution [16]. However,
the statistical approach, though often complex and time-consuming, can provide
a richer information structure, i.e. an average and some characteristics of its
variability (probability distribution). During the last 20 years hybrid approaches
[I0/18] have become very popular as they combine the two approaches into a
single taking advantage of the relative rapidity and robustness of variational
approaches, and at the same time, obtaining an accurate solution [2] thanks to
the statistical approach. In this paper, in order to achieve the accuracy of the KF
solution and reduce the execution time, we use Recurrent Neural Networks (RNN).
Today the computational power of RNN is exploited for several application in
different fields. Any non-linear dynamical system can be approximated to any
accuracy by a Recurrent Neural Network, with no restrictions on the compactness
of the state space, provided that the network has enough sigmoidal hidden units.
This is what the Universal Approximation Theorem [12]20] claims. Only during
the last few years, the DA community is starting to approach machine learning
models to improve the efficiency of DA models. In [I7], the authors combined
Deep Learning and Data Assimilation to predict the production of gas from
mature gas wells. They used a modified deep LSTM model as their prediction
model in the EnKF framework for parameter estimation. Even if the prediction
phase is speed up due to the introduction of Deep Learning, this only partially
affects the whole prediction-correction cycle which is still time-consuming. In [9],
the authors presented an approach for employing artificial neural networks (NNs)
to emulate the local ensemble transform Kalman filter (LETKF) as a method
of data assimilation. Even if the Feed Forward NN they implemented is able
to emulate the DA process for the time window they fixed, when they need to
assimilate observations in new time steps, it still needs the prediction-correction
cycle and this affects the execution time which is just 90 times faster than the
reference DA model. To further speed up the process, in [§] the authors combined
the power of Neural Networks and High Performance Computing to assimilate
meteorological data. These studies, alongside others discussed in conferences and
still under publication, highlight the necessity to avoid the prediction-correction
cycle by developing a Neural Network able to completely emulate the whole Data
Assimilation process. In this context, we developed a Neural Assimilation (NA) as
a Coupled Neural Network made of two RNNs. NA captures the features of a Data
Assimilation process by interleaving the training of the two component RNNs on
the forecasting data and the observed data. That is, the two component RNNs
are trained on forecasting and observed data respectively with additional inputs
provided by the interaction of these two. This NA network emulates the KF and
runs much faster than the KF prediction-correction cycle for data assimilation. In
this paper we develop the NA architecture and proved its equivalence to the KF.
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The equivalence between NA and KF is independent from the structure on the
RNNs. In this paper we show results we obtained employing two Long short-term
memory (LSTM) architectures for the two RNNs. Then we employ the NA model
to a practical problem in predicting of oxygen (and drugs) diffusion across the
Blood-Brain Barrier (BBB) [I] to justify its correctness and efficiency.

This paper is structured as follows. In Section [2] the Data Assimilation
problem is described. The Neural Assimilation is introduced in Section [3| where
we investigate the accuracy of the introduced method and we present a theorem
demonstrating that the novel model is consistent with the KF result. Experimental
results are provided in Section [d] Conclusions and future works are summarised
in Section

2 Data Assimilation

Data Assimilation (DA) is the approximation of the true state of some physical
system at a given time by combining time-distributed observations o(t) with a
dynamic model £ = M(z,t) in an optimal way. DA can be classically approached
in two ways: as variational DA [3] and as filtering. One of the best known tools
for filtering approach is the Kalman filter (KF) [15]. We seek to estimate the state
x(t) of a discrete-time dynamic process that is governed by the linear difference
equation

x(t) =M z(t — 1) +wy (1)

with an observation o(t):

o(t) = H x(t) + vt (2)

Note that M and H are discrete operators. The random vectors w; and v,
represent the modeling and the observation errors respectively. They are assumed
to be independent, white-noise processes with normal probability distributions

Wt NN(O,Bt), V¢ NN(O,Rt) (3)

where B; and R; are covariance matrices of the modeling and observation
errors respectively. All these assumptions about unbiased and uncorrelated errors
(in time and between each other) are not limiting, since extensions of the standard
KF can be developed should any of these not be valid [5]. The KF problem can be
summarised as follows: given a background estimate x(t), of the system state at
time ¢, what is the best analysis z(¢) based on the current available observation
o(t)?
The typical assimilation scheme is made up of two major steps: a prediction step
and a correction step. At time ¢ we have the result of the previous forecast, x(¢)
and the result of an ensemble of observations o(t). Based on these two vectors,
we perform an analysis that produces z(t). We then use the evolution model to
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obtain a prediction of the state at time ¢t + 1. The result of the forecast at the
prediction step is denoted with x(t + 1)

x(t+1) = Mz(t), (4)
Byy1 =M ((1 - K.H)B,) M7, (5)
and becomes the background for the next correction time step:
Kiv1 = By HY(HBy  HT 4 Ryyy) 7, (6)
z(t+1) =2(t+1)+ Ky (o(t +1) — He(t + 1)), (7)

We observe that, in case the observed data are defined in the same space of
the state variable, the operator H; in is the identity matrix and the equations
@— can be simplified becoming:

Kit1 = Biy1(Bisr + Rir) ™, (8)

z(t+1) =2(t+1)+ Kipr (ot +1) —z(t + 1)), 9)

Due to the high computational cost in updating the covariance matrices By
by equation 7 it in operational DA, is often used to assume By = B;;1 Vt. This
assumption leads to a model which is also called Optimal Interpolation [I6].
Statistically, KF seeks a solution with minimum variance. This approach, though
often complex and time-consuming, can provide a rich information structure
(often richer than information provided by variational DA), such as an average
and some characteristics of its variability (probability distribution). In order to
maintain the accuracy of the KF solution and reduce the execution time, we
introduce, in the next section, a Neural Assimilation (NA) which is a network
representing KF but much faster than a KF prediction-correction cycle.

3 Neural Assimilation

For a fixed time window [to,?;] and a fixed discretization time step At, let x(¢)
still denote the forecasting result at each time step t € [to,t1]. Let o(t) denotes
an observation of the state value. As it does not affect the generality of our study,
we are assuming here the observed data defined in the same space of the state
variable, i.e. the operator H; in is the identity matrix.

Given the data sets {2(t) }1e[sy,¢,) and {o(t)}eejo i1, the Neural Assimilation
(NA) is a Coupled Neural Network (for temporal processing) as shown in Figure 2]
where:

— the top forecasting network NNy is a Recurrent Neural Network trained
on forecasting data z(t) with an additional input h(t — 1) provided by the
bottom forecasting network NN trained on observed data o(t);
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Fig. 1: Available data in the fixed time window.

— the bottom forecasting network NN is a Recurrent Neural Network trained
on observed data o(t) with an additional input h(¢) provided by the top
forecasting network NN p.

A fundamental feature of each network is that it contains a feedback connection,
so the activations can flow round in a loop. That enables the networks to do
temporal processing and learn sequences with temporal prediction. The form of
NA is a RNN with the previous set of hidden unit activations feeding back into
the network along with the inputs.

E_time step: t ! forecasting observation

Output @ @
Hidden ... @
Layers Wiy

IWIHI-‘ IW]HU
NN

Fig. 2: Neural Assimilation

Note that the time t is discretized, with the activations updated at each time
step. The time scale might correspond to any time step of size appropriate for the
given problem. A delay unit given by the network NN needs to be introduced to
hold activations in NNy until they are processed at the next time step and vice
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versa. As for simple architectures and deterministic activation functions, learning
will be achieved using similar gradient descent procedures to those leading to the
back-propagation algorithm for feed forward networks.

The NA scheme is made up of two major steps: a pre-processing step and
a training step. During the pre-processing step, the data set is normalized
considering the information we have about the error estimations and the error
covariance matrices introduced in . We consider, to normalise, the inverse
of the error covariance matrices so that, data with big covariance/variance are
assumed with a small weight [5/16]. We pose

z(t) = B, 'x(t) and o(t) = R; to(t). (10)

The computed vectors Z(t) and o(t) are the data used in the training step:

o(t) = foo (Wrooh(t — 1)) (11)
h(t) = fu (Wiga(t — 1) + Wygh(t — 1)) (12)
Z(t) = for Who,h(1)) (13)

where the vectors Z(t — 1) are the inputs, the matrices Wiy, Wag, Who,
and Wgo,, are the four connection weight matrices, and fx, fo, and fo, are the
hidden and outputs unit activation functions. The state of the dynamical system
is a set of values that summarizes all the information about the past behaviour
of the system that is necessary to provide a unique description of its future
behaviour, apart from the effect of any external factors. In this case the state is
defined by the set of hidden unit activations h(t). The Back propagation Through
Time for this algorithm is a natural extension of standard back propagation that
performs gradient descent on a complete unfolded network ([2I], Chapter 5 of
[6]). If the NA training sequence starts at time ¢y and ends at time ¢, the total
cost function is simply the sum over time of the standard error function C(t) at
each time-step:

Ctotal = Zl C(t) (14>

t=to

where

0= 23 (@t =)=l = 1P + @~ m@)?) (19
k=1

and n is the total number of training samples. The gradient descent weight
updates have contributions from each time-step [19]:

OC4otal(to, t1)
Awij =y total\'0, 1) Z

Do (16)

8wl j
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aC (¢

where 7 is the learning rate [14]. The constituent partial derivatives 7 ) have
ij

contributions from the multiple instances of each weight

wij € {Wra, W, Whoo WaoR }

and depend on the inputs and hidden unit activations at previous time steps.
The errors now have to be back-propagated through time as well as through the
network [23].

We prove that the output function h(t) of the NA model corresponds to
the solution of Kalman filter with fixed covariance matrices, i.e. in its Optimal
Interpolation version [I6]. The following result held.

Theorem 1. Let h(t) be the solution of NA given by equations (@)—(@ and
let z(t) denote the solution of the KF algorithm as defined in (@ We have
h(t) = 2(t), Vt € [to,t1] (17)

Proof: Due to the definition of the L? norm, the loss function in can be
written as
C(t) = [lo(t — 1) — h(t = 1)|3 + 2(t) — h(®)]3 (18)

then, from equation , and except for the numerical errors that will be
introduced later as already included in the data sets, the (@ can be written as:

C(t) = llo(t —=1) = h(t = D3+ M z(t —1) = M h(t - 1)3 (19)
From the properties of the L? norm, the (@ can be written as

Ct)y=0t—-1)—ht—-1)T(6(t—-1)—h(t—1)+

H(ME(E—1) = Mh(t— )T (Ma(t—1) = Mht—1). 20

To minimise this loss function, we compute the gradient
Vii-1C(t) =2(0(t — 1) — h(t — 1)) + 2M" (Mz(t — 1) — M h(t—1)) (21)

where MT denotes the Adjoint operator of the linear operator M [7] and we
pose Vi ;—1)C(t) = 0, then we have:
2h(t—1)=o(t—1)+z(t—1) (22)
From the definition of T and 6 in (@, the (@ gives:

h(t - 1) (Bt—l + Rt—l) = Rt_ll'(t — 1) + Bt_10(t - 1) (23)

Then, adding and subtracting the quantity B;_1x2(t — 1) and merging the
common factors, the become

h(t —1) (By—1 + Ri_1) = 2(t — 1) (By—1 + Re_1) + By_1 (o(t — 1) — x(t — 1()) |
24
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Finally, posed Qi—1 = By_1 (By—1 + Rt_l)_l, the gives:

h(t—1)=a(t — 1) + Qi1 (o(t — 1) — 2(t — 1)) (25)

which is the expression of the KF solution z(t—1) in @ for the time step t —1
and for the case of observed data defined in the same space of the state variable
(i.e. H=1 and I is the identity matriz). Qi—1 is the Kalman gain matriz in (@

The equation in Theorem [1| represents a condition to assume that NA is
consistent with KF.

In Section [d] we validate the results provided in this section. We also show
that the employment of NA alleviates the computational cost making the running
less expensive.

4 Experimental Results

In this section we provide experimental results that demonstrate the applicability
and efficiency of NA. In our experiment, the NA is implemented by adopting
Long short-term memory (LSTM) architecture for the two RNNs. The reason we
use LSTMs is that they are suitable to contain information outside the normal
flow of the recurrent network so it is easier to plug two networks together. Also,
LSTMs allow to preserve the error that can be backpropagated through time
and layers which is a very important point for discrete forecasting models. A
description of the NA we implemented is provided in Figure [3]

ot

I )h(t-l)<—

—h(t)

1

1 1

1 o) tanh g
R

(tanh)

i T ) X) et D)

/\X "Lh‘ > NNF(t)_> NN,

(tanh)

|—>>|< ,—»1

> h(t) |% L?J E'nﬂ L?J I—>h(t+1)->

x(t)

Canolt-1) =

Fig. 3: Implementation of Neural Assimilation

The test case we consider is a numerical model to predict the oxygen diffusion
across the Blood-Brain Barrier (BBB). Nevertheless the model can be used
for any drugs by replacing the diffusion constant and the initial and boundary
conditions [I]. The Blood-Brain Barrier protects the central nervous system,
controls the entry of compounds into the brain by restricting access for blood
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borne compounds and facilitates access for nutrients. This protection makes it
difficult to provide therapeutic compounds to brain cells when they are affected
by brain diseases as Alzheimer, Autism [I3]. The BBB is composed of endothelial
cells connected by tight junctions. The main mechanisms allowing the transport
of drugs across the membrane are passive transport, carrier-mediated transport,
receptor-mediated transcytosis, and adsorption-mediated transcytosis [22]. The
passive transport mechanism is the easiest method of drug transport for lipophilic
and low molecular size molecules. It means a simple diffusion across any membrane
without application of energy and carrier proteins. Opioids and steroids are
examples of drugs which can be passively diffused [4]. Assuming that the main
transport mechanism is through passive diffusion, the initial three-dimensional
space problem can be reduced to a one-dimensional space problem. In fact, passive
diffusion involves many simplifications as no reaction term, uniform movement in
all directions and an overall diffusion constant. Therefore, a 1D partial differential
equation (PDE) as with one initial condition and two boundary conditions
is an accurate model for this problem [22] where 0 corresponds to the location
at which the blood meets the Blood-Brain Barrier and L = 400nm is the real
average thickness of the Blood-Brain Barrier.

9z _ o’z
ot _D8y2

z(0,y) = xo,y 2%
x(t,0) = x40 (26)
l’(t, L) = Tt,L

where t € [0, 10ms] (ms denotes microsecond) and y € [0, L]. We consider that, at
time O there is no oxygen, then z(, = 0. Moreover, for our boundary conditions,
we consider that we have a constant concentration of oxygen in the bloodstream
and that at the interface of the barrier and the brain tissue all oxygen will be
consumed z;o = 0.02945 L / L blood and x¢ 1, = 0. We assume the diffusivity of
oxygen through the Blood-Brain Barrier to be 3.24 x 1075 cm? /s [1].

Equation is discretised by a second order central finite difference in space
with Ay = 8nm and a backward Euler method in time with At = 0.1ms:

—Fa}y + (1+2F)x} —afy = a7

where F' = DAAytz, i=1,...,50 and n = 1,...,100. As we know that it does
not affect the generality of our study, in this paper we show results of NA using
observed data o(t) provided in [I] by the analytical solution of for the
oxygen diffusion. The model can be used for any drugs by replacing the diffusion
constant and the initial and boundary conditions. Data sets for observed data can
be found in http://cheminformatics.org/datasets/. The NA code and the
pre-processed data can be downloaded using the link https://drive.google.
com/drive/folders/1C_0-rkbwyqFsG5U-T7_vugBOddTPmOlY?usp=sharing,

The NA network has been trained using the 85% of the data and tested on
the remaining 15%. Figure 4] shows the value of the Loos function for training
and testing the forecasting network.
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Fig. 4: Values of the Loss function.

NA has been compiled as a sequential neural network with just one LSTM
layer of 48 units using as loss function the mean squared error one and as optimiser
the Adam one. Weights are automatically initialised by Keras using:

— Glorot uniform for the kernel weights matrix for the linear transformation of
the inputs;
— Orthogonal for the linear transformation of the recurrent state.
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00150 forecasting
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00125 { — NA
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Fig. 5: Temporal evolution of the concentration at (a) y = 12nm and (b) y = 35nm

Figure |5| shows the temporal evolution of the concentration at y = 12nm
(Figure and y = 35nm (Figure . The accuracy of the NA results is
evaluated by the absolute error

and the mean squared error
12(t, y) — h(t, )|l
MSE(h(t,y)) = 28
) = L s 25)

where z(t,y) is the solution of KF performed at each time step. Table [1| shows
values of absolute error computed every 10 time steps. We can see that the
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order of magnitude of the error is between e — 07 and e — 04. The corresponding
values of mean squared error are M SE(h(t,y)) = 1.31e — 07 for y = 12nm and
MSE(h(t,y)) = 8.16e — 08 for y = 35nm where ¢ € [0,0.10ms]. Figure [6] shows
the comparison of the KF result and the NA result for the temporal evolution of
the concentration at each point of the BBB we are modelling. Values of execution
time are provided in Table [2 The values are computed as mean of execution
times from 100 runnings. We can observe that the time for prediction in NA is
1000 faster than the prediction with KF.

Time step t[eNA(t, Yy), Yy = 12nm[eNA(t, y), y = 35nm

0 0 0

10 7.05e-04 6.11e-04
20 4.17e-04 4.88e-04
30 4.29e-04 1.91e-04
40 1.52e-04 6.05e-07
50 2.51e-04 9.11e-05
60 3.40e-05 1.11e-04
70 4.13e-05 1.05e-04
80 4.72e-05 7.35e-05
90 1.11e-04 1.89e-05
100 1.60e-04 3.18e-05

Table 1: Error computed every 10 time steps at (a) y = 12nm and (b) y = 35nm

|Executing Time (s)

Neural Assimilation (training) | 121.47
Neural Assimilation (prediction) 0.117
Kalman filter (prediction) 138

Table 2: Execution time for 100 time steps and all the distances

Finally, Table [3| shows the values of mean square forecasting error:

_ ||.’L'(t,y) — O(tv y)||L2

MSEY (x(t,y 29
) = o e 9
and mean square assimilation error:
h(t,y) — o(t, y)ll 2
MSEYA(h(t,y)) = L) ol (30)
llo(t, y)ll 2
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Concentration - Kalman

Concentration - NN

Fig. 6: Comparison between Data Assimilation (KF) and the Neural Network
version for ¢ € [0, 10ms] (ms denotes microsecond) and y € [0, 400nm].

computed with respect observations o(t,y). The values of the errors in the
assimilation results present a reduction of approximately one order of magnitude
with respect to the error in forecasting data.

Time step t‘MSENA(h(t, Y), y= 12nm‘MSEF(x(t,y)), y = 12nm

0 5.03e-03 1.00e-02
10 5.48e-03 1.00e-02
20 5.34e-03 9.99e-03
30 5.06e-03 9.95e-03
40 4.88e-03 1.00e-02
50 4.80e-03 1.00e-02
60 4.78e-03 1.00e-02
70 4.80e-03 1.00e-02
80 4.83e-03 1.00e-02
90 4.87e-03 1.00e-02
100 4.90e-03 1.00e-02

Table 3: Mean square error forecasting error M SET and mean square assimilation
error MSEN4 computed every 10 time steps at y = 12nm

5 Conclusions and future works

We introduced a new neural network for Data Assimilation (DA) that we named
Neural Assimilation (NA). We proved that the solution of NA is the same of
KF. We tested the validity of the provided theoretical results showing values
of misfit between the solution of NA and the solution of KF for the same test
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case. We provided experimental results on a realistic test case studying oxygen
diffusion across the Blood-Brain Barrier. NA is trained on both forecasting
and observed data and it is used for predictions without needing a correction
given by the information provided by observations. This allows to avoid the
prediction-correction cycle of a Kalman filter, and it makes the assimilation
process very fast. We show that the time for prediction in NA is 1000 faster
than the prediction with KF. An implementation of NA to emulate variational
DA [1I] will be developed as future work. In particular, we will focus on a 4D
variational (4DVar) method [5]. 4DVar is a computational expensive method as
it is developed to assimilate several observations (distributed in time) for each
time step of the forecasting model. We will develop an extended version of NA
able to assimilate set of distributed observations for each time step and, then,
able to emulate 4DVar.
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